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In situ transmission electron microscope (TEM) adds a promising
instrument to the exploration of the nanoscale world, allowing motion
pictures to be taken while nano objects are initiating, crystalizing
and morphing into different sizes and shapes. To enable in-process
control of nanocrystal production, this technology innovation hinges
upon a solution addressing a statistical problem, which is the capa-
bility of online tracking a dynamic, time-varying probability distribu-
tion reflecting the nanocrystal growth. Because no known parametric
density functions can adequately describe the evolving distribution,
a nonparametric approach is inevitable. Towards this objective, we
propose to incorporate the dynamic evolution of the normalized par-
ticle size distribution into a state space model, in which the density
function is represented by a linear combination of B-splines and the
spline coefficients are treated as states. The closed-form algorithm
runs online updates faster than the frame rate of the in situ TEM
video, making it suitable for in-process control purpose. Imposing the
constraints of curve smoothness and temporal continuity improves
the accuracy and robustness while tracking the probability distribu-
tion. We test our method on three published TEM videos. For all of
them, the proposed method is able to outperform several alternative
approaches.

1. Introduction. The nanoparticle self-assembly process produces nanocrystals from small

building blocks such as atoms and molecules that are spontaneously arranged into order structures

at the nanoscale. It is considered a promising method of producing nanocrystals in large quanti-

ties (Li et al., 1999; Boal et al., 2000). To produce nanocrystals with desired sizes and shapes, its

growth process should be monitored and controlled (Grzelczak et al., 2010), but accomplishing

this goal is rather challenging, due to the existence of multiple growth mechanisms (Zheng et al.,

2009), complex interactions among hundreds of nanoscale particles (Park et al., 2015), and after

all, the stochastic nature of the growth processes. Critical to the mission of achieving in-process

control is a recent technology innovation in nanoscale metrology, the in situ transmission elec-

tron microscope (TEM) (Zheng et al., 2009). An in situ TEM uses a special sample holder in

which a nanocrystal growth process takes place, allowing motion pictures to be taken while the

nanocrystals in the sample holder are initiating, crystalizing, and morphing into different sizes

and shapes.

The morphological features extracted from a TEM video are the sizes and shapes of the

nanocrystals and their evolving trajectories over the time. In this study, we focus primarily
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on particle size, because all the TEM videos we have at hand contain nanocrystals of rather

uniformly round shape throughout their growth process. We note that the current progress by

research communities in handling dynamic TEM images (i.e., videos) is still at the stage of dealing

with size, rather than both size and shape.

When an image frame of the process is recorded, an image processing tool is used to extract

the contours of the nanocrystals in the frame, count the quantity, and calculate the particle sizes.

After that, an estimate of the normalized particle size distribution (NPSD) is created and used

as the observational input to the subsequent modeling. Here, the NPSD is the original particle

size distribution normalized by the average radius of the nanocrystals at a given moment. Studies

show that NPSD provides a better indicator than the average absolute size to anticipate and

detect phase change point in nanocrystal growth (Zheng et al., 2009; Woehl et al., 2013; Qian

et al., 2017). Research has been conducted by domain experts to shed insights on asymptotic

solutions of NPSD under certain growth mechanisms (Lifshitz and Slyozov, 1961; Aldous, 1999).

Understanding and modeling the evolution of NPSD appears to be an enabling prerequisite

to process control of a nanocrystal growth process. Estimating NPSD using particle size data

extracted from TEM images is a statistical problem of probability density estimation. Empirical

analyses in Zheng et al. (2009) and Woehl et al. (2013) demonstrate that the density function

of NPSD can change from a multi-modal, asymmetric function in the early stages of growth to

a uni-modal, symmetric one in the late stages. Since it is hard to specify a parametric function

of NPSD to adequately describe different growth mechanisms in a multi-stage growth processes

(Lifshitz and Slyozov, 1961; Aldous, 1999), a nonparametric approach appears inevitable.

Direct application of standard nonparametric methods, however, does not produce good density

estimation, due to the fact that too few nanocrystals are available in the image at a single

time frame of the TEM video. To overcome the small sample size problem, Qian et al. (2017)

observe that the NPSD changes gradually over time during each nanocrystal growth stage, so

one can borrow information across time frames to obtain a more reliable density estimation.

Following Eilers and Marx (1996), they model the log density function at each time frame as

a linear combination of B-spline basis functions and employ the penalized Poisson likelihood of

binned data with a smoothness penalty. The formulation of Eilers and Marx (1996) is further

extended in Qian et al. (2017) by pooling the log-likelihoods from all time frames together and

including a second penalty to ensure that the estimated density functions have certain degree

of “temporal continuity.” As TEM videos are captured at discrete times, here the temporal

continuity means that the NPSD evolves gradually from one image frame to the next, so that

the estimated NPSDs at neighboring image frames should be close to each other, especially so

when two frames are in the same growth stage. Using the extended formulation embedding two

smoothness penalties, Qian et al. (2017) estimate the time varying NPSD density functions, via

a modified alternating direction method of multipliers (ADMM) algorithm that efficiently solves

the resulting optimization problem.

The method developed in Qian et al. (2017) is a retrospective approach conducted offline. It

uses the observations from all video frames and minimizes a loss function embodying all available

data. Should this retrospective approach be applied to an online application, it ought to solve the
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optimization problem whenever a new image frame (or a couple of new images) comes. Doing so

takes more time than allowed in a real-time processing. For instance, it takes a couple of minutes

to solve the optimization problem using the algorithm in Qian et al. (2017) for the 76-second

video clip (Video 1, Section 2), not a big deal for offline analysis but not practical for online

applications. The retrospective approach is hence inefficient and ill suited for online applications.

The goal of the current paper is to develop a prospective method by furthering the development

in Qian et al. (2017).

Before we discuss our contributions in this paper, we would like to emphasize that there is a

strong need for a prospective method for real-time processing, because our goal is online moni-

toring and tracking, and only through this online capability does it enable in-process control of

an ongoing process. Since the nanocrystal growth process is stochastic and volatile, it is difficult

to foresee control opportunities ahead of time. When a control opportunity presents itself, one

needs to react rapidly, as the window of opportunity may not stay long in such stochastic dy-

namic environment. A retrospective method does not enable process control capability since one

waits for the process to complete and by then the control opportunity is long gone. For an online

analysis, the model updating to capture the NPSD change needs to be fast enough; how fast is

enough is dictated by the imaging speed (in Video 1 of Section 2, about 15 frames per second).

Same as in Qian et al. (2017), we estimate the NPSD density at each time frame by smoothing

the histogram data using penalized B-splines. Departing from Qian et al. (2017), we characterize

the dynamics of the NPSD using a state space model in which the spline coefficient vector at each

time frame is treated as the hidden state and its time evolution is modeled through a random

walk. The random walk state equation naturally ensures the temporal continuity among the

states. To ensure the estimated density function at each time frame to be a smooth function, we

introduce a new state vector that encodes the second order differences of the spline coefficients

at each time frame, thus achieving smoothness by controlling the magnitude of time increment of

such differences. To deal with the non-Gaussian natural of our state space model, we develop an

iterative local Gaussian approximation, in the form of an extended Kalman filter (Ljung, 1979),

and derive a closed form state-updating equation for updating the time-varying NPSD when new

observations come. Our algorithm is fast enough to catch up with the imaging rate for the TEM

videos that are available to us. The imposition of the two constraints on B-splines alleviates

overfitting and reduces the estimation sensitivity to observational variability. Figure 1 presents

an overview of the proposed online, prospective analysis.

Related to this work, there are two main branches of research: (1) nano image processing, (2)

estimation of time-varying nonparametric density functions.

In the first branch of literature, the vast majority of the existing methods for analyzing TEM

measurements, including several of our own, are for handling still images (Park et al., 2012, 2013;

Muneesawang and Sirisathitkul, 2015; Qian et al., 2016). These methods laid the foundation for

handling dynamic images in TEM videos. One can even use them to process the images one frame

at a time. Of course, processing one frame at a time is inefficient and also overlooks the dynamics

and correlation among the adjacent video frames. A few approaches are available for handling

dynamic TEM images, including Qian et al. (2017), but the current approach, with exception of
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Fig 1. The framework of a prospective analysis of in situ TEM videos.

Qian et al. (2017), is to identify and track individual nanocrystals (Park, 2014; Park et al., 2015)

and characterize the growth dynamics by looking at the trajectories of individual nanocrystals.

This object-tracking approach assumes traceability of nanocrystals across image frames, which

may not be possible in practice.

Among the second branch of literature, Rodriguez and Ter Horst (2008), and Mena and Rug-

giero (2016) studied a dynamic hierarchical model for time-varying distributions. Under their

framework, the time-varying distribution follows a Dirichlet mixture prior (Lo, 1984), the param-

eters of the Dirichlet processes change over time according to a time series model, and posterior

sampling is used for inference. Another set of papers (Ma et al., 2008; Zhang et al., 2017), which

develop the dynamic multivariate count data model, is conceptually useful for our work, too,

because of the connection between the estimation of density functions and the estimation of in-

tensities of Poisson counts in a histogram (Eilers and Marx, 1996). However, the sampling-based

solution approaches advocated in those works are computationally slow, hence ill-equipped to

satisfy the online model updating objective (recall the 15 frames per second imaging rate).

The remaining parts of the article are organized as follows. In Section 2, we discuss the data

used in this study. In Section 3, we present the state space model and devise an extended Kalman

filter for online updating and tracking of the particle size distribution. In Section 4, we explain

how to estimate the parameters used in the state space model. In Section 5, we apply our method

to analyze three segments of TEM videos and demonstrate the merits of the proposed method.

Finally, we conclude our work in Section 6.

2. Data. As a newly emerged technology and rather expensive, there are not many in situ

TEMs available yet in the United States. There are a very limited number of TEM videos available

in the public domain. In this study, we use three clips of in situ TEM video: two clips published

by Zheng et al. (2009) and one clip published by Woehl et al. (2013). The three videos clips

capture, respectively, 76.6, 42.5, and 112 seconds of a nanocrystal growth process, and there are

1,149, 637, and 112 image frames in the respective clip. We label them as Video 1, Video 2 and

Video 3, respectively. Figure 2 presents four frames of Video 1, capturing the growth of platinum

nanocrystals.
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The data processing works as follows. When an image frame of the nanocrystal growth process

is recorded by an in situ TEM, we first process the image and extract the nanocrystal information,

which is the number and the corresponding size of the nanocrystals in the frame. The specific

tool for processing individual images is from Qian et al. (2016), a method particularly potent of

handling noisy TEM images with low contrast. The result of one frame from each video clip is

shown in Figure 3. Of the three video clips, Video 1 and 2 are of 290×242 pixels in size and Video

3 is of 496 × 472 pixels. Considering their relatively small image size, the image pre-processing

can be done fairly quickly. For Video 1 and Video 2, the image processing takes only 0.04 seconds

per frame and for Video 3 it takes 0.2 seconds per frame.

After all nanocrystals in the frame of time t are detected, we calculate A`(t), the area of the `-th

nanocrystal at time t, for ` = 1, ..., Nt, where Nt is the total number of nanocrystals in the frame

of time t. Following Woehl et al. (2013), we use A`(t) to compute the average radius of the `-th

nanocrystal, namely r`(t) =
√
A`(t)/π, to represent the size of each nanocrystal. The mean radius

for each image frame, r̄(t), can be readily obtained. Finally, we normalize r`(t) by r̄(t) to obtain

the normalized radius x`(t), such that x`(t) = r`(t)/r̄(t). We note that here “size” is represented

by the radius, so that the normalized particle size distribution is in fact the normalized particle

radius distribution. Such modeling choice follows the domain science’s convention and treatment

(Aldous, 1999; Lifshitz and Slyozov, 1961; Woehl et al., 2013).

To facilitate the subsequent computation in estimation and updating, we bin the observations

to create a histogram and then use the histogram as the input to the dynamic state space model.

We limit the range of x`(t) to [0, 2.0], as the nanocrystals twice as large as the average size are

very few at any given time. We divide the range into m intervals of equal size δ. Here we use a

constant m = 21 throughout the monitoring process and denote by xi the normalized particle

size corresponding to the center of the ith interval, i = 1, . . . ,m. We will further elaborate in

Section 3.1 the reasons behind binning the observations and conduct in Section 5.2 a sensitivity

analysis on the number of intervals used in the input histogram. The resulting histogram for the

frame of time t is denoted by the vector of Yt = [Y1t;Y2t; · · · ;Ymt], where Yit is the number of

the observed x`(t)’s falling into the ith interval of the histogram.

3. State Space Modeling and Updating. Our primary objective is to estimate the prob-

ability density function, ft(x), of the normalized particle size using x`(t), available up to time t.

Fig 2. Four frames from the in situ TEM video studied by Zheng et al. (2009). The dark spots are nanocrystals.



6 Y. QIAN ET AL.

As mentioned in Section 1, direct application of the retrospective method developed in Qian et al.

(2017) is inefficient and does not serve the purpose of real-time processing. In this section, we

develop a computationally efficient state space modeling approach that allows us to update the

density estimation at time t+ 1 using the density estimation at time t and the new data observed

at time t+ 1.

3.1. State Space Model for Normalized Particle Size Distribution. Since it is difficult to find a

parametric method to be adaptive enough to model various types of NPSDs at different growth

stages of nanocrystals, we naturally resort to a nonparametric method for density estimation.

Among many available nonparametric methods for density estimation, we follow the procedure

in Eilers and Marx (1996), which presents a sufficiently flexible spline representation of ft(x) by

fitting a Poisson model to the histogram data Yt. This modeling choice is made mainly because

doing so allows us to implement a real-time estimation algorithm on the time-varying distribution.

As Yit is the count of observations falling in [xi − δ/2, xi + δ/2], it is a standard approach to

assume that Yit follows the Poisson distribution with expectation of λit (Bishop et al., 1975):

(3.1) Yit ∼ Poisson{λit}, i = 1, . . . ,m.

Following the treatment in Eilers and Marx (1996), we model the count data with B-splines. We

adopt a generalized linear model with a log link function to represent λit as:

(3.2) log λit =
n∑
j=1

αjtBj(xi),

where n is the number of basis functions, Bj(x) is the jth B-spline basis function, and αjt is its

coefficient at time t. Using the log link function can guarantee a positive λit, which is needed in

our application. Collectively, [α1t;α2t; · · · ;αnt] can be represented as a vector of αt. If we write

the B-spline basis functions as a matrix B, such that (B)ij = Bj(xi), the Poisson model of Yit is

then expressed as:

(3.3) Yit ∼ Poisson{(exp[Bαt])i}, i = 1, . . . ,m.

Video 1 Video 2 Video 3

Fig 3. The nanocrystal detection results of a single frame, one each from the three TEM video clips. The green line
shows a nanocrystal’s edge and the red ‘+’ shows a nanocrystal’s center. Videos 1 and 2 were published by Zheng
et al. (2009) and Video 3 was published by Woehl et al. (2013).
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Equation (3.3) is referred to as a Poisson-exponential model.

The maximum likelihood method can be used to estimate the spline coefficient vector αt. Once

αt is estimated, we can further obtain the normalized particle size distribution ft(x) as follows.

As λit ∝
∫ xi+δ/2
xi−δ/2 ft(x)dx, λit ∝ ft(xi) when δ is small, so that ft(x) can be estimated by the

continuous form of Equation (3.2) as

(3.4) ft(x) =
1

Ct(αt)
exp

 n∑
j=1

αjtBj(x)

 ,
where Ct(αt) is a normalizing constant to guarantee ft(x) integrating to one. To ensure the

smoothness of the estimated density function, Eilers and Marx (1996) proposed to use a small δ

and use a penalized Poisson likelihood with a smoothness penalty that has the form of sum of

squared second-order differences of the spline coefficients.

The above approach adopted from Eilers and Marx (1996) is an approximation and simplifi-

cation of the standard approach of directly fitting the raw data to the model in (3.4), which is

through the maximization of the log-likelihood of

∑
`

log ft(x
`(t)) =

Nt∑
`=1

n∑
j=1

αjtBj(x
`(t))−Nt logCt(αt).

By applying the penalized Poisson likelihood to the binned data, the approach of Eilers and Marx

(1996) can avoid computing the integral in the normalizing constant,

(3.5) Ct(αt) =

∫
x

exp

 n∑
j=1

αjtBj(x)

 dx.

This simplification turns out to be critical for us to develop an online updating algorithm. When

a small δ is used, the binning action does not cause much information loss as compared to using

the original observations of x`(t), and the smoothness penalty helps prevent overfitting. To focus

on developing an online algorithm, we postpone our discussion regarding the smoothness penalty

to Section 3.3.

With the B-spline representation in place, we can use the B-spline coefficient vector, αt, as the

state vector in the proposed state space model, because the change in αt indicates the change of

the underlying normalized particle size distribution ft(x). Previous studies (Lifshitz and Slyozov,

1961; Aldous, 1999) show that ft(x) undergoes small fluctuations during a growth stage in which

the commanding physical growth mechanism remains the same, while ft(x) will see a much greater

change as a different growth mechanism takes over. Based on this understanding, we assume that

the state vector, αt, follows a random walk model

(3.6) αt = αt−1 + wt,

where the innovation, wt, is the disturbance vector of the state and assumed to follow the distri-

bution of normal(0,Q). The covariance matrix Q will be treated as a constant matrix throughout

the process. The state updating equation (3.6) and the observation equation (3.3) constitute our
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state space model, which will serve as the basis for developing an online updating algorithm using

an extended Kalman filter.

Our use of the random walk model is based on a trade-off between flexibility and tractability.

We would like to choose a model that is flexibility enough but is still tractable. The main concern

for tractability is fast computation that allows real time online processing. Although using a

stationary time series process such as ARMA in the state space model is possible, real time

updating of both the ARMA parameters and the state variables is a daunting task for online

processing. Moreover, it may be tempting to build the change point/regime transition into our

model, but this certainly hurts the tractability.

We found that the simple random walk model can cope very well with the nanocrystal growth

process. Within a specific stage of nanocrystal growth, the normalized particle size distribution

undergoes small fluctuations, and this is well captured by the random walk model. In a transition

period moving from one growth stage to another, the random walk model serves as a prior

distribution on the state variables, and the Kalman filter is able to adapt to structure changes

by calculating the posterior after receiving new observations. When the Kalman filter outputs a

large value in the innovation series, it signals possible growth mechanism changes, providing a

simple way of identifying change points; see Figure 7 presented later for an illustration.

3.2. Online Updating of State αt. Updating the estimation of NPSD is thus equivalent to

updating the state vector in the state space model. In the dynamic systems and control theory,

the Kalman filter (Kalman, 1960) is arguably the most popular method used for conducting such

update. For linear state space models with Gaussian observations, a Kalman filter (Kalman, 1960)

uses the posterior mean E(αt|Y1, · · · , · · · ,Yt), denoted as α̂t, to iteratively estimate αt. There

are two main steps in a Kalman filter. The first step, known as prediction, is to predict the prior

mean, α̂−t , and the prior covariance matrix, P−t , of the state at time t, based on the observations

received up to time t− 1. When the new observation of Yt arrives, the Kalman filter undertakes

a correction step to obtain the posterior mean, α̂t, and the posterior covariance matrix, Pt. For a

Gaussian system, the Kalman filter has a closed-form solution for both prediction and correction

steps and can thus run very efficiently.

Unfortunately, our state space model of the time-varying NPSD is not a Gaussian system since

Yt follows a Poisson distribution with an exponential link function in Equation (3.3). To solve for

the posterior mean E(αt|Y1, · · · ,Yt), one possible solution approach is to use sampling methods,

such as particle filtering (Doucet et al., 2001; Ma et al., 2008; Zhang et al., 2017), to simulate the

posterior distribution of the state αt. But the sampling approach is not ideal for online estimation

because the approach’s computational speed can hardly meet the online updating requirement.

After knowing the model set up, the shortcoming of the sampling approach is even more obvious.

To estimate the NPSD accurately, both Yt and αt should have a moderate to high dimension;

for instance, m ≥ 10 and n ≥ 10 . To sample from a space of such dimension for approximating

a posterior distribution, the sample size are rather large, making its computational efficiency a

daunting task to be addressed.

Our solution is to extend the Kalman filter by adopting Durbin and Koopman (1997)’s method
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to find a good Gaussian approximation, locally around the current estimation α̂t, of the Poisson

observation in Equation (3.3). Rather than approximating the Poisson distribution globally, a

Gaussian distribution can have a similar shape as the Poisson within the neighborhood of α̂t. As

the Kalman filter usually updates αt near its current position, such a local approximation can

lead to an efficient and accurate estimation. When used in our context, this means that we want

to have the following approximation:

(3.7) Yt ∼ normal(Bαt + µt,Ht),

so that the probability density functions of Equations (3.3) and (3.7) have the same first and

second derivatives with respect to αt near α̂t. Following this thought, we can derive the following

expressions for the mean vector µt and the covariance matrix Ht (please see the derivation details

in Appendix A):

(3.8)
µt = Yt −Bα̂t − exp(−Bα̂t)[Yt − exp(Bα̂t)],

Ht = diag[exp(−Bα̂t)].

As such, the original state space model is converted into an approximated Gaussian state space

model, now constituting of Equation (3.7) and Equation (3.6). Technically, a standard Kalman

filter can then be devised and applied.

A remaining problem is that α̂t is unknown when we calculate µt and Ht in Equation (3.8).

To address that issue, we use an iterative strategy to find α̂t: first we use the prior estimator

α̂−t to calculate µt and Ht, then update α̂t by the Kalman filter; and after that, we update µt
and Ht using the newly estimated α̂t. Repeat this process until α̂t converges. According to both

Durbin and Koopman (1997) and our own experiments, this process routinely converges in fewer

than five steps.

Algorithm 1 presents the detailed estimation and updating process. We put in Appendix B the

basic steps and explanations of the Kalman filter for readers who are not familiar with it.

After we obtain the posterior estimation of the state α̂t, the corresponding NPSD f̂t(x) can

be represented as:

(3.9) f̂t(x) =
1

Ct(αt)
exp

 n∑
j=1

α̂jtBj(x)

 ,
where α̂jt is the jth element of α̂t. The normalizing constant Ct(αt) is computed by numerical

integration after Algorithm 1 converges. Figure 4 highlights the main online updating steps for

tracking the time-varying NPSD.

Remark: The variance stabilizing transformation provides a simple global Gaussian approxi-

mation of Poisson distribution. For Y ∼ Poisson(λ),
√
Y + 1

4 is approximatelyN(
√
λ, 14) (Anscombe,

1948). Based on this fact, Brown et al. (2010) studied a root-unroot nonparametric density esti-

mation method. As pointed out by a referee, these work suggest a potentially simple solution to

our online density updating problem, as follows—One first models the square-root of the density

by a B-spline, i.e.,
√
λt = Bαt, applies the standard Kalman filter to the square-root transformed

bin counts, and then unroots the estimator to obtain a proper density function.
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Algorithm 1 Online updating method of the state space model.

1. Set t = 1 and initialize α̂0 and P0.

2. Predict the prior estimator of the state as: α̂−
t = α̂t−1.

3. Predict the prior covariance matrix as: P−
t = Pt−1 + Q.

4. Set α̂t = α̂−
t .

5. Calculate µt and Ht as:

µt = Yt −Bα̂t − exp(−Bα̂t)[Yt − exp(Bα̂t)],
Ht = diag[exp(−Bα̂t)].

6. Compute the innovation and its covariance matrix:

νt = Yt −Bα̂−
t − µt; Ft = BP−

t B
T + Ht.

7. Compute the Kalman gain as: Kt = P−
t B

TF−1
t .

8. Update the posterior estimator with measurement Yt: α̂t = α̂−
t + Ktνt.

9. Repeat Step 5 to 8 until α̂t converges.

10. Update the posterior covariance matrix as: Pt = P−
t (I−KtB)T .

11. Set t = t+ 1, repeat from Step 2 until the process ends.

We found this root-unroot approach does not work well, for two reasons: (1) The approximation

of using the square root transformation has a large bias when λ is close to 0. Both Anscombe

(1948) and Brown et al. (2010) noted that the bias is proportional to λ−2/3. In our context

of probability density estimation using binned data, since there are many bins with zero counts

(corresponding to small λ’s), this approximation is too crude. (2) If we apply the standard Kalman

filter to update
√
λt = Bαt, we may end up with a negative value for

√
λt. Although its square

still gives a positive density estimation, there is an upward bias. In fact, when λt is near zero,

updating the state variables to reduce the value of λt may yield a negative updated value of Bαt

and thus can lead to a larger absolute value of λt, contrary to the purpose of reducing λt, creating

the bias.

As a comparison, the quality of our local Gaussian approximation does not depend on the value

of λ. Moreover, it is used in an iterative manner, so that the approximation improves along the

iterations. Our numerical results show that the local Gaussian approximation works rather well

in the presence of empty bins, especially once the smoothness constraint is imposed.

3.3. Curve Smoothness for Distribution Estimation. While Algorithm 1 can provide an on-

line estimation and updating of the time-varying NPSD, it does not impose any requirement on

the smoothness of the estimated density function. Without a proper smoothness constraint, the

resulting density estimation could be sensitive to choices like the number of intervals in the his-

togram Yt and the number of B-spline basis functions, and could become considerably inaccurate

in the cases that some middle intervals in the input histogram turn out empty. So our goal here

is to incorporate the curve smoothness constraint and make it work with the state space model.

We plan to impose the curve smoothness constraint for the B-spline density estimation by

penalizing the squared norm of the second order difference of the spline coefficient vector αt,
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update

Approximate the observation equation as

𝒀𝑡 ∼ normal(𝐁𝜶𝑡 + 𝝁𝑡, 𝐇𝑡)

Update ෝ𝜶𝑡 and 𝐏𝑡 as: 

𝐊𝑡 = 𝐏𝑡
−𝐁𝑇 𝐁𝐏𝑡

−𝐁𝑇 +𝐇𝑡
−1

ෝ𝜶𝑡 = ෝ𝜶𝑡
− + 𝐊𝑡 𝒚𝑡 − 𝐁ෝ𝜶𝑡

− − 𝝁𝑡
𝐏𝑡 = 𝐏𝑡

− 𝐈 − 𝐊𝑡𝐁
𝑻

𝑡 = 𝑡 + 1

Fig 4. The illustration of main online updating steps.

which is denoted as an n− 2 dimension vector ∆2αt and defined as

(3.10) ∆2αt =


−α1t + 2α2t − α3t

−α2t + 2α3t − α4t

· · ·
−α(n−2)t + 2α(n−1)t − αnt

 =


−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1

αt.

In the smoothing spline literature, the commonly used penalty to enforce smoothness is the

squared second derivative penalty
∫
x(f ′′(x))2dx (Wahba, 1990). Section 3 of Eilers and Marx

(1996) pointed out that the squared second difference penalty ‖∆2αt‖2 adopted here can be

viewed as a convenient approximation with the B-spline representation. The precise relation of

the two penalties is given in Equation (11) of Eilers and Marx (1996).

To put a constraint on ‖∆2αt‖2, we propose to transform linearly the original state αt into

another state γt. The new state γt includes ∆2αt but should ideally have the same dimension as

αt. We therefore make the last n− 2 elements of γt equal to ∆2αt and then add something else

as its first two elements for the purpose of making the new vector an n dimensional vector.

A straightforward choice for the first two elements is to let γ1t be the summation of all the even

numbered coordinates of αt and γ2t be the summation of all the odd numbered coordinates of

αt. This choice ensures these two elements are orthogonal and have similar magnitudes. Because

of the later property, we can set the variances of the corresponding innovations, wt, at the same

value. Consequently, we obtain an invertible transformation from αt to γt as:

(3.11) γ1t =

[n/2]∑
j=1

α(2j)t, γ2t =

[n/2]∑
j=1

α(2j−1)t, γ(3:n)t = ∆2αt,

where [n/2] is the largest integer smaller than or equal to n/2. We can also write this linear

transform in a matrix format, such that αt = Cγt, where

(3.12)
C−11(2j) = 1, C−12(2j−1) = 1, j = 1, · · · , [n/2];

C−1j(j−2) = −1,C−1j(j−1) = 2,C−1jj = −1, j = 2, · · · , n;
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and other elements of C−1 are equal to 0.

By using the new state γt, we express the state space model as:

(3.13)
Yit ∼ Poisson{(exp[BCγt])i},
γt = γt−1 + wt,

where wt ∼ normal(0,Q). Here we slightly abuse the notations—even though wt and Q are used

again, they are of different values from those in Equation (3.6).

This transformation in the state vector allows us to use the structure of Q to add the smoothness

constraint on the estimated density f̂t(x). Aware that [γ1t, γ2t] are the summations of the even

and odd terms of αt, respectively, and [γ3t, · · · , γnt] are the second differences of αt, we assume

that their innovations are independent to each other, making Q a diagonal matrix, denoted as

diag(σ21, σ
2
2, · · · , σ2n), in which σ21, σ

2
2 are the variances of w1t, w2t, and σ23, · · · , σ2n are the variances

of w3t, · · · , wnt. For simplicity, we further assume that σ21 and σ22 have the same value, denoted

as σ2α, and all the remaining σ23, · · · , σ2n are equal, their value denoted as σ2ε . According to the

previous analysis, requiring σ2α � σ2ε for the new state vector is effectively forcing the second

order difference of αt to be small and thus resulting the smoothness constraint imposed onto the

estimated density curves. We can still use Algorithm 1 to update γ̂t after replacing B and αt with

BC and γt, respectively, so that the fast computation and online estimation/updating capability

are retained.

4. Parameter Estimation and Selection. In order for our prospective analysis to work,

we do need a short starting up period, which is to gather a limited amount of training video data

to initialize the parameters in the model. We typically use the first few hundreds of frames for

parameter estimation, equivalent to the first 15 to 20 seconds of the process.

In our state space model, there are two parameters σ2α and σ2ε that need to be estimated using

the training data from the short starting up period, from t = 1 until time T . The two parameters

determine the covariance matrix of wt: σ
2
α represents the degree of variability of the underlying

state γt, whereas σ2ε controls its second order, indicating the smoothness of the estimated density

curve. It is not convenient to find the values of σ2α and σ2ε by maximized likelihood estimation

(MLE) as calculation of the likelihood of such a mixed system needs complicated process like

importance sampling (Durbin and Koopman, 1997) or simulation smoothing (de Jong and Shep-

hard, 1995), let alone to optimize the likelihood to estimate its parameters. Here, we adopt a

Bayesian approach to obtain the two parameters in the covariance matrix.

4.1. Bayesian Modeling. We regard σ2α and σ2ε as latent random variables and choose their

prior distributions first. Then, we obtain their posterior distribution through a sampling method

and use the corresponding posterior means as the estimate of the parameters.

Since σ2α and σ2ε define the covariance matrix of wt, which we assume follow a normal distribu-

tion, we choose the corresponding conjugate prior as an inverse-gamma distribution, making the

posterior distribution in the same family. We can write the hierarchical structure of the Bayesian
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model as:

(4.1)

Yit ∼ Poisson{(exp[BCγt])i},
γt − γt−1 = wt ∼ normal(0,Q), Q = diag(σ2α, σ

2
α, σ

2
ε , · · · , σ2ε ),

σ2α ∼ inverse-gamma(a1, b1), σ
2
ε ∼ inverse-gamma(a2, b2),

where the initial state γ0 is set as [−2,−2, · · · ,−2] so that f(x) will evolve from a zero function.

To determine the hyper-parameters in the inverse-gamma distributions of σ2α and σ2ε , we choose

the non-informative prior (Spiegelhalter et al., 1996) as a1 = 1.0 and b1 = 1.0 for σ2α. To make sure

σ2α � σ2ε , we choose the same shape parameter, i.e., a2 = 1.0, but a much smaller scale parameter

b2 for σ2ε (the mean of the inverse-gamma distribution is proportional to the scale parameter). We

recommend choosing b2 such that b1/b2 = 100. The robustness check of this choice is discussed

in Section 4.3.

Compared to the original state space model, the hierarchical model adds another layer as-

sociated with the prior distributions of σ2α and σ2ε . Once observing Y1, · · · ,YT in the starting

up period, we employ a Markov chain Monte Carlo (MCMC) sampling method to update the

posterior distributions of σ2α and σ2ε , and then use the posterior means as the estimate of the two

parameters.

4.2. MCMC Sampling. Denote the values in the kth iteration of MCMC by γ
(k)
1 , · · · ,γ(k)

T ,

(σ2α)(k) and (σ2ε )
(k). After the initialization, we sample (σ2α)(k) and (σ2ε )

(k) through the Gibbs

sampling, given γ
(k−1)
1 , · · · ,γ(k−1)

T . Since we adopt the conjugate priors, the posterior distributions

are still inverse-gamma as:

(4.2) (σ2α)(k) ∼ inverse-gamma(apost1 , bpost1 ), (σ2ε )
(k) ∼ inverse-gamma(apost2 , bpost2 ),

where apost1 , bpost1 , apost2 and bpost2 are determined by a1, b1, a2, b2, and the sampled γ
(k−1)
t . The

derivation of the posterior distribution of (σ2α)(k) and (σ2ε )
(k) is included in Appendix C.

Then, we sample γ
(k)
1 , · · · ,γ(k)

T , given Q(k) = diag[(σ2α)(k), (σ2α)(k), (σ2ε )
(k), · · · , (σ2ε )(k)] and the

observations, Y1, · · · ,YT . Unfortunately, the posterior distributions of γ
(k)
t are not of a standard

type. We therefore implement a Metropolis-Hastings algorithm to sample γ
(k)
t from t = 1 to T .

For each individual t, we first draw γ
(k)
t from the following proposal distribution:

(4.3) γ
(k)
t ∼ normal(γ

(k−1)
t ,R),

where R = diag(σ21, σ
2
1, σ

2
2, · · · , σ22) shares a similar structure as Q. The acceptance ratio of a

newly sampled γ
(k)
t , r, is defined in a standard way, as the ratio of the conditional pdf given the

current γ
(k)
t to that given the previous γ

(k−1)
t . After getting r, we compare it with a uniform

random variable, u, in [0, 1], to determine whether to accept the new γ
(k)
t or not.

After repeating the above sampling iterations K times, the posterior means can be obtained

by:

(4.4) σ̂2α =
1

K −KB

K∑
k=KB+1

(σ2α)(k), σ̂2ε =
1

K −KB

K∑
k=KB+1

(σ2ε )
(k),

where KB is the amount of the burn-in steps. We list the detailed steps in Algorithm 2.
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Algorithm 2 parameter estimation through Bayesian sampling

1. Initialize γ
(0)
1 , · · · ,γ(0)

T , (σ2
α)(0) and (σ2

ε )(0).

2. Set k = 1, then sample (σ2
α)(k) and (σ2

ε )(k) as: (σ2
α)(k) ∼ inverse-gamma(apost1 , bpost1 ) and (σ2

ε )(k) ∼
inverse-gamma(apost2 , bpost2 ), where

apost1 = a1 + (T − 1), bpost1 = b1 + 1
2

∑2

j=1

∑T

t=2
[γ

(k−1)
jt − γ(k−1)

j(t−1)
]2,

apost2 = a2 + n−2
2

(T − 1), bpost2 = b2 + 1
2

∑n

j=3

∑T

t=2
[γ

(k−1)
jt − γ(k−1)

j(t−1)
]2.

3. Let Q(k) = diag[(σ2
α)(k), (σ2

α)(k), (σ2
ε )(k), · · · , (σ2

ε )(k)].

4. Set t = 1, sample γ
(k)
t from a proposal distribution: γ

(k)
t ∼ normal(γ

(k−1)
t ,R).

5. Calculate the acceptance rate r as:

r =

∏m

i=1
ppoi(Yit|[BCγ

(k)
t ]i)pnor(γ

(k)
t |γ

(k)
t−1,Q

(k))pnor(γ
(k)
t |γ

(k−1)
t+1 ,Q(k))∏m

i=1
ppoi(Yit|[BCγ

(k−1)
t ]i)pnor(γ

(k−1)
t |γ(k)

t−1,Q
(k))pnor(γ

(k−1)
t |γ(k−1)

t+1 ,Q(k))
,

where ppoi(·|·) is the pdf of a Poisson distribution and pnor(·|·, ·) is the pdf of a multivariate normal distri-
bution.

6. Generate a uniform random number, u, in [0, 1]. If r > u, accept γ
(k)
t ; otherwise set γ

(k)
t = γ

(k−1)
t .

7. Set t = t+ 1, and repeat Step 4 to 6 until t = T .

8. Set k = k + 1, and repeat Step 2 to 7 until k = K.

9. Estimate σ2
α and σ2

ε as the posterior means:

σ̂2
α =

1

K −KB

K∑
k=KB+1

(σ2
α)(k), σ̂2

ε =
1

K −KB

K∑
k=KB+1

(σ2
ε )(k).

Table 1
The parameters, σ̂2

α and σ̂2
ε , and their 90% credible intervals, estimated using Video 1 data and under different b2

values. In the following, a1 = a2 = b1 = 1.0.

b2 b1/b2 σ̂2
α σ̂2

ε σ̂2
α/σ̂

2
ε

0.1 10 5.94 (4.44, 7.70)× 10−2 4.03 (3.52, 4.64)× 10−3 14.73

0.05 20 6.47 (4.89, 8.41)× 10−2 3.92 (3.44. 4.54)× 10−3 16.49

0.01 100 6.39 (4.46, 8.77)× 10−2 3.82 (3.27, 4.35)× 10−3 16.72

0.005 200 6.39 (4.80, 8.16)× 10−2 3.66 (3.25, 4.18)× 10−3 17.46

4.3. Select the hyper-parameters. In this subsection, we discuss the choices of the hyper-

parameters in the Bayesian model (4.1) and the MCMC algorithm: a1, b1, a2 and b2 in the

prior distribution, the initial values of the MCMC sampling, γ
(0)
t , (σ2α)(0) and (σ2ε )

(0), and σ21 and

σ22 in the covariance matrix R of the proposal distribution. The parameters in the MCMC sam-

pling matter less, as a long burn-in stage (namely a large enough KB) makes the MCMC robust to

initialization. As long as the MCMC has a good mixing, different proposal distributions give sim-

ilar estimation outcomes. We set those parameters in the following way: (σ2α)(0) = 4 × 10−2,

(σ2ε )
(0) = 2 × 10−3, run the extended Kalman filter in Algorithm 1 to obtain γ

(0)
t , and let

σ21 = 2× 10−2 and σ22 = 1× 10−3.

While a1, b1 and a2 are specified in Section 4.1, we run the MCMC to find a suitable value for

b2. We found that as long as b1/b2 is large enough, say, more than an order of magnitude, the

estimation outcome appears robust. Table 1 presents the posterior means of the two parameters
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estimated from Video 1, with a total of K = 1× 105 iterations and KB = 4× 104 burn-in steps.

Despite significantly different b2’s are used, the estimated results for other parameters stay similar.

In practice, we recommend using b2 = 0.01 as the default setting. We also check the convergence

of the MCMC by plotting the chains of (σ2α)(k) and (σ2ε )
(k) with multiple initial values and find

that all the chains mix well after the burn-in stage.

5. Application to TEM Videos. We test our state space model and its online updating

on the three clips of in situ TEM video described in Section 2. The number of the B-spline basis

functions is fixed at 20 in all three cases. Because of incorporation of the smoothness constraint

in our state space model, our final estimation of the NPSD is not sensitive to the choices of this

parameter. To save space, we discuss the full results on Video 1 clip. For the other two clips, we

present limited analysis results to confirm the generality of the modeling and analysis.

5.1. Analysis of the three videos. Our first step is to find σ2α and σ2ε for each clip of videos. In

Video 1, there are 1, 149 frames in total, with 15 frame per second (fps) frame rate. We choose

the first 300 frames as the training set, corresponding to the first 20 seconds of the process. Using

the Bayesian estimation method in Section 4 with the default parameter setting, our estimate of

the two system parameters is σ̂2α = 6.39× 10−2 and σ̂2ε = 3.82× 10−3.

Next we apply our updating method to the whole video. In our test, the TEM videos have

already been fully recorded. We mimic a prospective analysis, starting at the end of the initial-

ization period. For the remaining 849 frames in Video 1, the total processing time of using our

algorithm is 1.23 second, or 1.5× 10−4 seconds per frame, much faster than the frame rate of the

video (which is 15 frames per second or 0.067 seconds per frame). Combined with the image pro-

cessing time (0.04 seconds per frame), the overall model processing is still fast enough for online

monitoring. Figure 5 illustrates the updating process running from 25.67 second through 28.33

second. The upper row shows the input histograms, whereas the lower row shows the updated

NPSDs. To demonstrate the difference of the estimated distributions, the time difference between

two consecutive images in that plot is chosen to be 10 frames.

We also show in Figure 6 the estimated NPSDs in different growth stages at 15s, 30s, 45s and

60s, respectively. Figure 6(a) presents the NPSD at the beginning of the growth stage when the

nanocrystals are initializing in the chemical solution. The variance of the particle sizes is large

and the support of the distribution is broad. Figure 6(b) presents a NPSD at the orientated

attachment (Aldous, 1999) growth stage, at which time the smaller particles collide with each

other and are merged into larger ones. The variance of the particle sizes is smaller than that

of the first stage. There is a noticeable bimodal pattern in the NPSD, in which the two peaks

correspond to the sizes of the smaller particles and the merged (larger) particles, respectively.

The final two plots in Figure 6(c) and (d) are in the final growth stage, known as the Ostwald

ripening (Lifshitz and Slyozov, 1961) stage. In that stage, the larger particles grow at the expense

of dissolving smaller particles. The size distribution tends to get concentrated and become uni-

modal. The variance continues to decrease. Material scientists expect to get nanocrystals having

more uniform sizes at the end of the growth process. Our state space model’s online tracking

results are consistent with the manual analysis results presented in the original report (Zheng
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Input Histograms

Updated Distributions

Fig 5. Illustration of the updating outcomes of the state space model.

et al., 2009).

The last part of analysis performed on Video 1 is to show the innovation sequence of this

nanocrystal growth process. Loosely speaking, the innovation sequence is the difference between

what is newly observed at time t and what is anticipated, based on the state space model and

historical observations. In the literature, the innovation sequence is commonly used to indicate

a process change: if the underlying process is stable, then the innovation is supposedly to be

random noise, whereas if the underlying process is going through a change, then the innovation

sequence shows departure from random noise. The innovation at time t, denoted by νt and its

covariance matrix Ft, is computed in Step 6 of Algorithm 1. To monitor the multivariate vector

νt, we calculate the Mahalanobis squared distance (Mahalanobis, 1936) between νt and 0 at each

(a) (b) (c) (d)

Fig 6. The estimated NPSD of Video 1 at different growth stages.
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Fig 7. Statistic, At, obtained from the innovation sequence of the Kalman filter with the 3-sigma control limits for
the two growth stages.

t, such that

(5.1) At = νTt F
−
t νt.

The sequence {A1, A2, . . . , } for Video 1 is plotted in Figure 7. We observe that there is a notice-

able process change between the 20 second and 40 second time marks with an increased variance.

Before and after that period, the innovation sequence appears to have smaller magnitudes. This

observation is consistent with the physical understanding discovered by Zheng et al. (2009), i.e.,

the beginning stage of the growth is driven by the mechanism of orientated attachment, the latter

stage is driven by the mechanism of Ostwald ripening, and there is a transition period in between.

The timing of the transition period, discovered in the retrospective analysis (Qian et al., 2017), is

between 25.8 second and 39.9 second. We also plot the 3-sigma control limits for the two stages

in Figure 7, where the peaks in the transition period is far greater than the upper control limits.

The result in Figure 7 shows that by tracking the innovation sequence of the state space model,

it offers the opportunity to detect possible mechanism changes in the process.

Next, we test our algorithm on Video 2, which was published in the same paper as Video 1

(Zheng et al., 2009) and captures a similar nanocrystal self-assembly growth process. There are

total 637 frames in Video 2 with 15 fps frame rate. We still choose the first 300 frames to estimate

the parameters. The Bayesian method produces the estimate of σ2α as 7.24× 10−2 and that of σ2ε
as 4.19× 10−3. Using these parameters, we estimate the NPSDs and show some results in Figure

8. The total updating time is 0.098 seconds, or 1.54×10−4 seconds per frame; this computational

performance is consistent with that for processing Video 1 (and the image processing also takes

0.04 seconds per frame). Video 2 is a shorter clip and contains fewer particles. By observing the

density plots in Figure 8, we are satisfied with the density curves estimated by our state space

model.

Lastly, we test our algorithm on Video 3. It was published in Woehl et al. (2013) and captures a
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different growth process than that in Videos 1 and 2. This process is of silver nanocrystal growth.

There are only 112 frames in this video clip with 1 fps frame rate, so we pick the first 50 frames

as the training set to estimate the parameters. For the process in Video 3, the parameters are

accordingly estimated as σ2α = 1.75× 10−1 and σ2ε = 7.56× 10−3. Applying our updating method

to Video 3, the total run time is 0.02 seconds, or 1.79 × 10−4 seconds per frame. The image

processing time for Video 3 is 0.2 seconds per frame, so that the combined computation is again

faster than the frame rate. Figure 9 presents the estimated NPSD of Video 3. In this process, the

NPSD is always uni-modal and its variance gets larger in the process.

5.2. Comparison with alternative methods. In this subsection, we demonstrate the merits of

the proposed method, especially the benefit of having both the curve smoothness and temporal

continuity constraints. We demonstrate all comparison results using Video 1 but the same insight

holds true for other videos. We do not compare our method with a retrospective method because

a retrospective (offline) method sees all data and has the luxury of time, whereas a prospective

(online) method only sees a subset of the data, unless it reaches the very end of the video, and

must be time conscious.

The first comparison is to conduct an out-of-sample quantitative test, comparing the proposed

state space method with three types of alternative: the first type is a pure histogram-based

treatment (no smoothness constraint at all), the second type is to impose the curve smoothness

within a frame but estimate the NPSD one frame a time without considering and imposing

temporal continuity, and the third type is a state space model without the curve smoothness (i.e.,

with temporal continuity across frames but no curve smoothness within a frame). In the second

type of alternative, we include three popular methods: the smoothed histogram (Simonoff, 1983),

the kernel estimation (Sheather and Jones, 1991), and the penalized B-splines (Eilers and Marx,

1996). For the state space model without the curve smoothness, we use αt instead of γt as the

state, and the covariance matrix Q is set as diag(σ2α, σ
2
α, · · · , σ2α). The single parameter σ2α can

be estimated by a simplified Bayesian model, assuming σ2α ∼ inverse-gamma(1, 1). The first 300

frames are still used for the training purpose. The Bayesian estimate of σα is 5.9 × 10−2, which

is rather close to that estimated in the previous subsection.

The out-of-sample test calculates the log-likelihood of the estimated probability density func-

tions based on a number of observed nanocrystals. We randomly pick 90% the observed nanocrys-

(a) (b) (c) (d)

Fig 8. The estimated NPSDs of Video 2.
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(a) (b) (c) (d)

Fig 9. The estimated NPSDs of Video 3.

tals in each and every image frame and use them to establish our model and estimate the NPSD.

Then, we use the remaining 10% observed nanocrystals in each and every frame to calculate the

log-likelihood. For a given testing nanocrystal observation having a normalized particle size x` at

frame t, its log-likelihood is:

(5.2) log ft(x
`) =

n∑
j=1

Bj(x
`)[Cγt]j − log Ct(Cγt).

We proceed to calculate the summation of the log-likelihoods for all of the 10% out-of-sample

testing nanocrystals at all time frames and then use this summation as the accuracy metric for the

distribution estimation. We repeat the out-of-sample test 500 times for each of the six methods.

The mean of the log-likelihoods results are summarized in Table 2.

In the out-of-sample test, the shortcoming of using the histogram directly is highlighted—

almost all the log-likelihoods obtained are negative infinity. When certain samples fall into an

empty interval of the histogram (meaning that this interval does not have any training observa-

tions), the direct histogram method sets the likelihood of this testing sample as 0, causing the

log-likelihood to be negative infinity.

The distribution estimation methods with the curve smoothness can overcome this negative in-

finity problem. However, these methods estimate the distribution from each frame independently,

lacking the ability to borrow information across time frames. When the number of observations

at individual frames is not large enough, they fail to produce a quality estimate, as evident by

the poor results in the out-of-sample test.

Table 2
Comparison results of the out-of-sample test among six approaches: using the observed histograms directly, three
estimation methods considering the curve smoothness only, the state space method without the curve smoothness,

and the proposed method; all tested on Video 1.

Methods Mean of log-likelihoods

Observed histograms (no constraint) −∞

Curve smoothness only
Smoothed histograms −41.6
Kernel estimation −24.4
Penalized B-splines −46.7

State space model

(with temporal continuity)
Without curve smoothness 129.8
With curve smoothness 196.1



20 Y. QIAN ET AL.

(a) (b) (c) (d)

Fig 10. The estimated NPSDs of Video 1 by the state space model without the curve smoothness.

By using the state space transition equations, the two state space methods incorporate the

temporal continuity, allowing the estimators to borrow information from other image frames and

leading to much better performances than the other alternatives.

Between the state space models with and without the curve smoothness, the one with the curve

smoothness produces a much higher log-likelihood measure. We conduct a statistical testing and

see whether the log-likelihood difference between the two approaches is significant. A one-way

ANOVA, in which the null hypothesis is that the two log-likelihoods have the same mean, yields

a p-value of 6× 10−162, which confirm that the difference is indeed significant.

Given the benefit of using the state space framework demonstrated above, we hence set the

focus of the next two comparisons to be between the two state space models, with and without

the curve smoothness.

The second comparison is to inspect the resulting NPSD obtained by the two state space

models. In Figure 10, we show the NPSDs at 15s, 30s, 45s and 60s, respectively, estimated by the

state space model without the curve smoothness. Comparing the results in Figure 6 obtained at the

same time marks by the state space model with the curve smoothness, the estimated distributions

in Figure 10 are worse, as the state space model without the curve smoothness apparently overfits

the histogram, and consequently, it is sensitive to small changes in the number of particles in a

bin. To see this point, consider the following observations. In Figure 10(b), while the orientated

attachment growth mechanism suggests a bimodal distribution, the estimated distribution gives

us three peaks. Between Figure 10(c) and (d), the variance is supposed to decrease, as this is in

the Ostwald ripening growth stage, but the estimated distribution shows an increasing variance.

When displaying the online distribution estimation frame by frame, it is obvious to us that the

state space model without the curve smoothness produces a time-varying NPSD that is far more

volatile and often reacts too dramatically to noises and disturbances.

The third comparison is to show the robustness of the proposed method to possible changes

in the number of intervals in the input histograms. In the previous studies, we set the length of

interval as 0.1 which gives 20 intervals in a histogram. In this comparison experiment, we test the

cases by setting the length of interval to 0.2, 0.15, 0.08 and 0.05, respectively, and then estimate

the corresponding NPSD, using the state space model with and without the curve smoothness.

We compare the resulting NPSDs with that obtained under the default setting, i.e., the length of

interval 0.1 or 20 intervals in the histogram. The difference between the two NPSDs is measured
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(a) (b)

Fig 11. L2-norm difference between two NPSDs: (a) L2-norm differences at each time frame between the NPSDs
estimated using the histograms with 10 intervals and 20 intervals; (b) the summation over all time frames of the
L2-norm differences between the NPSDs estimated using histograms of various lengths of intervals and the default
setting.

by a L2 norm of the two density function curves.

In Figure 11(a), we plot the L2-norm differences at each time frame between the NPSDs

estimated, respectively, using the binned data with 10 intervals (the length of an interval 0.2) and

20 intervals (the length of an interval 0.1). It is apparent that inclusion of the curve smoothness

leads to an estimation less sensitive to the number of intervals, especially in the later stage of the

process. In Figure 11(b), we present the summation over all frames of the L2-norm differences

between the NPSDs estimated, respectively, using binned data of a various number of intervals

and the default setting (i.e., 20 intervals or interval length 0.1). In the broad range of choices,

the curve smoothness penalty generally decreases the L2-norm differences due to the change of

intervals by half. Those results show that the proposed method can alleviate the overfitting when

using a small interval for binned data.

6. Summary. In this paper, we propose an online method for monitoring the evolution of

certain population characteristics observed in dynamic imaging (i.e., videos). Our model injects a

flexible and robust modeling ability into a fast and closed-form updating algorithm. We demon-

strate its application in monitoring the particle size distribution as a nanocrystal growth process

is being observed by an in situ TEM.

The contributions of this work can be summarized as follows:

• The recursive, nonparametric method that models a time-varying probability density func-

tion and its specific tailoring to an evolving nanocrystal growth process;

• A closed-form updating algorithm in the form of an extended Kalman filter for tracking the

nanocrystal growth in real time;

• The incorporation of both the curve smoothness and temporal continuity in the state space

model for estimating the time-varying NPSD.

Even though our method is demonstrated in the context of estimating the normalized particle

size distribution, we believe that the resulting method has some degree of generality and could

be applicable to other online distribution estimation problems. For other applications, one needs
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to replace the normalized particle size with a population characteristic of specific interest to that

application. One importance assumption that may face challenges is the random walk assumption

on the disturbance vector. Nonetheless, the random walk assumption appears a broadly accepted

choice that can be a good starting point in a modeling effort, unless there exist contradicting

evidences associated with a specific application to override its use.
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SUPPLEMENTARY MATERIAL

Supplement A: (http://; .pdf). A pdf document including Appendix A, B and C. This

document provides the derivations of the Gaussian approximation of the Poisson distribution,

the detailed steps of Kalman filter, and the derivation of the posterior distributions of the system

parameters for the proposed model.

Supplement B: (http://; .zip). A zip file including the description of the testing videos, and

the MATLAB codes to reproduce the results in the paper. A “Data and Codes.docx” file provides

the detailed guidance to use the data and codes. The three videos have been published and are

free to download, and all the codes have been tested under MATLAB 2016b.
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