APPENDICES OF FAST DYNAMIC NONPARAMETRIC DISTRIBUTION TRACKING IN ELECTRON MICROSCOPIC DATA

By Yanjun Qian^{*}, Jianhua Z. Huang[†], Chiwoo Park[‡] and Yu Ding[†]

Virginia Commonwealth University* Texas A & M University[†] Florida State University[‡]

APPENDIX A: GAUSSIAN APPROXIMATION OF POISSON DISTRIBUTION

The Poisson distributed observation equation can be written as

(A.1)
$$Y_{it} \sim \text{Poisson}\{(\exp[\mathbf{B}\alpha_t])_i\}, i = 1, \dots, m,$$

and we would like to find a Gaussian distribution

(A.2)
$$\mathbf{Y}_t \sim \operatorname{normal}(\mathbf{B}\boldsymbol{\alpha}_t + \boldsymbol{\mu}_t, \mathbf{H}_t),$$

to approximate it. Durbin and Koopman (1997) proposed that if the probability distribution functions (pdfs) in Equation (A.1) and (A.2) have the same first and second derivatives w.r.t the state α_t , then Equation (A.2) can serve as a good approximation of Equation (A.1) in updating the state space model. We can use this idea to calculate μ_t and \mathbf{H}_t in Equation (A.2). To simplify the derivation, we use $\mathbf{B}\alpha_t$ instead of α_t as the variable to calculate those derivatives.

The logarithm of the pdfs in Equation (A.1) and Equation (A.2), as a function of $\mathbf{B}\alpha_t$, can be expressed, respectively, as

(A.3)
$$\log p_{\text{poi}}([\mathbf{B}\boldsymbol{\alpha}_t]_i) = Y_{it}[\mathbf{B}\boldsymbol{\alpha}_t]_i - \exp[\mathbf{B}\boldsymbol{\alpha}_t]_i, i = 1, \dots, m,$$

and

(A.4)
$$\log p_{\text{nor}}(\mathbf{B}\boldsymbol{\alpha}_t) = -\frac{1}{2} (\mathbf{Y}_t - \mathbf{B}\boldsymbol{\alpha}_t - \boldsymbol{\mu}_t)^T \mathbf{H}_t^{-1} (\mathbf{Y}_t - \mathbf{B}\boldsymbol{\alpha}_t - \boldsymbol{\mu}_t) + \text{const},$$

where 'const' is a term unrelated to α_t .

In Equation (A.3), the pdf of each coordinate of $\mathbf{B}\alpha_t$ is independent to each other, Equation (A.4) should have the same property, meaning that \mathbf{H}_t should be a diagonal matrix. We can then rewrite Equation (A.4) as:

(A.5)
$$\log p_{\mathrm{nor}}([\mathbf{B}\boldsymbol{\alpha}_t]_i) = -\frac{1}{2[\mathbf{H}_t]_{ii}}(Y_{it} - [\mathbf{B}\boldsymbol{\alpha}_t]_i - [\boldsymbol{\mu}_t]_i)^2 + \mathrm{const},$$

Then calculating the first and second derivatives of Equation (A.3) and (A.5) w.r.t $[\mathbf{B}\alpha_t]_i$ and equating them at the estimated $\hat{\alpha}_t$, we get the following two equations:

(A.6)
$$Y_{it} - \exp[\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i = \frac{1}{[\mathbf{H}_t]_{ii}}(Y_{it} - [\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i - [\boldsymbol{\mu}_t]_i),$$

and

(A.7)
$$\exp[\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i = \frac{1}{[\mathbf{H}_t]_{ii}}.$$

The two equations further yield:

(A.8)
$$[\mathbf{H}_t]_{ii} = \frac{1}{\exp[\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i} = \exp[-\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i,$$

and

(A.9)
$$[\boldsymbol{\mu}_t]_i = Y_{it} - [\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i - \exp[-\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i (Y_{it} - \exp[\mathbf{B}\hat{\boldsymbol{\alpha}}_t]_i)$$

Rewriting Equation (A.8) and (A.9) in a matrix form, we finally obtain μ_t and **H** as:

(A.10)
$$\boldsymbol{\mu}_t = \mathbf{Y} - \mathbf{B}\hat{\boldsymbol{\alpha}}_t - \exp(-\mathbf{B}\hat{\boldsymbol{\alpha}}_t)[\mathbf{Y} - \exp(\mathbf{B}\hat{\boldsymbol{\alpha}}_t)], \\ \mathbf{H} = \operatorname{diag}[\exp(-\mathbf{B}\hat{\boldsymbol{\alpha}}_t)].$$

APPENDIX B: DETAILED STEPS OF KALMAN FILTER

Given a linear Gaussian state space model

(B.1)
$$\begin{aligned} \mathbf{Y}_t \sim \operatorname{normal}(\mathbf{B}\boldsymbol{\alpha}_t + \boldsymbol{\mu}_t, \mathbf{H}_t), \\ \boldsymbol{\alpha}_{t+1} = \boldsymbol{\alpha}_t + \mathbf{w}_t, \ \mathbf{w}_t \sim \operatorname{normal}(\mathbf{0}, \mathbf{Q}), \end{aligned}$$

the Kalman filter can estimate the state α_t in a recursive way from t = 1 to time T. First we need to predict α_t and its covariance according to the estimation of the previous step as

(B.2)
$$\hat{\boldsymbol{\alpha}}_t^- = \hat{\boldsymbol{\alpha}}_{t-1}, \\ \mathbf{P}_t^- = \mathbf{P}_{t-1} + \mathbf{Q},$$

where $\hat{\boldsymbol{\alpha}}_t^-$ is called the prior estimator and \mathbf{P}_t^- is the prior covariance matrix. The two equations above can be derived from the distribution of $p(\boldsymbol{\alpha}_t | \mathbf{Y}_1, \cdots, \mathbf{Y}_{t-1})$ (Durbin and Koopman, 2012).

When a new \mathbf{Y}_t is coming, we calculate the innovation $\boldsymbol{\nu}_t$ and its covariance matrix according to the previous prediction $\hat{\boldsymbol{\alpha}}_t^-$ and the new input \mathbf{Y}_t as

(B.3)
$$\boldsymbol{\nu}_t = \mathbf{Y}_t - \mathbf{B}\hat{\boldsymbol{\alpha}}_t^- - \boldsymbol{\mu}_t \\ \mathbf{F}_t = \mathbf{B}\mathbf{P}_t^-\mathbf{B}^T + \mathbf{H}_t.$$

Then the Kalman gain will be calculated as:

(B.4)
$$\mathbf{K}_t = \mathbf{P}_t^{-} \mathbf{B}^T \mathbf{F}_t^{-1}$$

At last we update the estimator of state α_t and its covariance matrix as:

(B.5)
$$\hat{\boldsymbol{\alpha}}_t = \hat{\boldsymbol{\alpha}}_t^- + \mathbf{K}_t \boldsymbol{\nu}_t, \\ \mathbf{P}_t = \mathbf{P}_t^- (\mathbf{I} - \mathbf{K}_t \mathbf{B})^T,$$

where $\hat{\boldsymbol{\alpha}}_t$ is called the posterior estimator and \mathbf{P}_t^- is the posterior covariance matrix. Those equations can be derived from the distribution of $p(\boldsymbol{\alpha}_t | \mathbf{Y}_1, \cdots, \mathbf{Y}_t)$ (Durbin and Koopman, 2012).

APPENDIX C: POSTERIOR DISTRIBUTION OF σ_{α}^2 AND σ_{ϵ}^2

Here we want to show the derivation of the posterior distribution of σ_{α}^2 and σ_{ϵ}^2 in our Bayesian model:

(C.1)
$$Y_{it} \sim \text{Poisson}\{(\exp[\mathbf{B}\mathbf{C}\boldsymbol{\gamma}_t])_i\}, \\ \boldsymbol{\gamma}_{t+1} - \boldsymbol{\gamma}_t = \mathbf{w}_t \sim \text{normal}(\mathbf{0}, \mathbf{Q}), \ \mathbf{Q} = \text{diag}(\sigma_{\alpha}^2, \sigma_{\alpha}^2, \sigma_{\epsilon}^2, \cdots, \sigma_{\epsilon}^2), \\ \sigma_{\alpha}^2 \sim \text{inverse-gamma}(a_1, b_1), \ \sigma_{\epsilon}^2 \sim \text{inverse-gamma}(a_2, b_2).$$

APPENDICES

Since \mathbf{Q} is a covariance matrix, we can rewrite the second layer of the model (C.1) as:

(C.2)
$$\gamma_{jt} - \gamma_{j(t-1)} \sim \text{normal}(0, \sigma_{\alpha}^2), \ j = 1, 2, \ t = 2, \cdots, T,$$

and

(C.3)
$$\gamma_{jt} - \gamma_{j(t-1)} \sim \operatorname{normal}(0, \sigma_{\epsilon}^2), \ j = 3, \cdots, n, \ t = 2, \cdots, T.$$

For $j = 1, 2, \gamma_{jt} - \gamma_{j(t-1)}$ are regarded as 2(T-1) i.i.d variables following normal $(0, \sigma_{\alpha}^2)$. Since we choose the conjugate prior $\sigma_{\alpha}^2 \sim \text{inverse-gamma}(a_1, b_1)$, its posterior distribution has the same formation as inverse-gamma $(a_1^{\text{post}}, b_1^{\text{post}})$. As derived in Bolstad and Curran (2016), a_1^{post} and b_1^{post} are calculated as:

(C.4)
$$a_1^{\text{post}} = a_1 + \frac{1}{2}2(T-1) = a_1 + (T-1),$$

and

(C.5)
$$b_1^{\text{post}} = b_1 + \frac{1}{2} \sum_{j=1}^2 \sum_{t=2}^T [\gamma_{jt} - \gamma_{j(t-1)}]^2.$$

For $j = 3, \dots, n, \gamma_{jt} - \gamma_{j(t-1)}$ are regarded as (n-2)(T-1) i.i.d variables following normal $(0, \sigma_{\epsilon}^2)$. Following the same derivation, the posterior distribution of σ_{ϵ}^2 is written as inverse-gamma $(a_2^{\text{post}}, b_2^{\text{post}})$ with

(C.6)
$$a_2^{\text{post}} = a_2 + \frac{1}{2}(n-2)(T-1),$$

and

(C.7)
$$b_2^{\text{post}} = b_2 + \frac{1}{2} \sum_{j=3}^n \sum_{t=2}^T [\gamma_{jt} - \gamma_{j(t-1)}]^2.$$

REFERENCES

- Bolstad, W. M. and J. M. Curran (2016). Introduction to Bayesian Statistics. John Wiley & Sons.
- Durbin, J. and S. J. Koopman (1997). Monte Carlo maximum likelihood estimation for non-Gaussian state space models. *Biometrika* 84 (3), 669–684.

Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space Methods. Oxford University Press.

YANJUN QIAN JIANHUA Z. HUANG DEPARTMENT OF STATISTICAL SCIENCES Department of Statistics & Operations Research Texas A & M University VIRGINIA COMMONWEALTH UNIVERSITY College Station, TX 77843 RICHMOND, VA 23220 E-MAIL: jianhua@stat.tamu.edu E-MAIL: yqian3@vcu.edu Chiwoo Park YU DING Department of Industrial & Department of Industrial & MANUFACTURING ENGINEERING Systems Engineering FLORIDA STATE UNIVERSITY TEXAS A & M UNIVERSITY TALLAHASSEE, FL 32301 College Station, TX 77843 E-MAIL: chiwoo.park@eng.famu.fsu.edu E-MAIL: yuding@tamu.edu