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model
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Abstract
The electromechanical coupling property of piezoelectric transducers gives rise to a promising class of structural fault
diagnosis methods often referred to collectively as impedance-based approaches. One active line of research in the
related literature is the development of data-driven methods that can leverage the available experimental impedance
measurements to accurately pinpoint the location and severity of structural faults. In this article, we offer a new perspec-
tive to the problem by casting the impedance-based fault diagnosis into a statistical calibration formulation, which has
gained a wide popularity in the industrial statistics community in the past two decades. Specifically, we decide to estimate
the values of the fault attributes (e.g. location and severity) that achieve the closest match between the outputs from a
finite element model and those experimentally solicited from the host structure. We further propose to couple this sta-
tistical formulation with a pre-screening procedure to reduce the calibration search space and mitigate parameter iden-
tifiability issues. In addition to the merit of capably diagnosing structural faults, the proposed approach extends various
useful concepts from the statistical calibration literature to the structural health monitoring applications, such as the
construction of surrogate models for modeling and predicting impedance changes, the explicit use of a bias function to
correct for inherent inadequacies in finite element models, as well as the ability to produce continuous probability distri-
butions for quantifying a fault’s severity. These additional benefits substantially enhance both the fault diagnosis capability
and computational efficiency. We demonstrate the effectiveness of the proposed approach using two simulated and two
experimental case studies from the literature.
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Introduction

A growing trend in the area of structural health moni-
toring is the use of impedance-based methods for struc-
tural fault diagnosis purposes.1–7 In theory, the electric
impedance signals collected from a piezoelectric trans-
ducer are related to the mechanical impedance of the
structure to which it is attached. Under harmonic vol-
tage excitation, the piezoelectric impedance measure-
ments are collected from the host structure around a
number of structural resonances, resulting in a set of
‘‘impedance curves.’’ These curves can be constantly
monitored, and once a departure from a known healthy
state is observed, a structural fault is signaled, and then,
corrective actions can be recommended. The essence of

impedance-based fault detection methods hinges on this
electromechanical correspondence.

An active research challenge in the literature and
practice is the development of capable data-driven
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procedures that can leverage the available signals from
piezoelectric transducers to accurately pinpoint impor-
tant attributes of structural faults such as the location
and severity, among others.2 Along that line, statistical
indices were proposed in the past to measure the discre-
pancy between the signals collected before and after
damage occurrence and pinpoint the fault attributes.8–10

Data mining techniques such as artificial neural net-
works and support vector machines have also been
employed to detect the changes in impedance measure-
ments resulting from structural damages.3,11–13 The use
of statistical machine learning has also demonstrated
its merit in vibration-based structural health monitor-
ing.14–18 We note, however, that in certain applications,
the high frequency of piezoelectric impedance signals
makes them more suitable to detect moderate- and
small-sized faults, and hence, the focus of this article is
on leveraging the advancements in statistical machine
learning to achieve better signal processing and fault
diagnosis capability using piezoelectric impedance sig-
nals extracted from a target structure.

Model-based approaches, which mostly rely on
finite element (FE) models, have recently emerged as
powerful tools for impedance-based fault detection
purposes. By discretizing the structure into a large
number of segments, one would, in theory, be able to
match the change in piezoelectric impedance measure-
ments to a change in local mechanical properties and,
hence, pinpoint important fault attributes like the
severity and location of structural faults through an
inverse analysis.19–22 A major difficulty standing out in
these approaches is the large number of segments often
associated with a typical FE discretization, which natu-
rally translates into a large number of unknowns in the
inverse analysis. In other words, each segment is
treated as a potential fault candidate, and the severity
of the potential fault at each segment, often expressed
as a percentage change in a local mechanical property,
can continuously vary between 0 and 1; all these render
the problem often underdetermined, and thus practi-
cally difficult to solve.20,23,24

Recent efforts have been devoted toward resolving
that issue, among which an approach was proposed
which combines a pre-screening procedure, in conjunc-
tion with a Bayesian inference analysis, to pinpoint the
fault location and severity using impedance measure-
ments and an FE model.24 The pre-screening step is an
empirical first-principle-based procedure, employed to
reduce the search space into few potential fault loca-
tions. Then, the Bayesian sampling scheme, taking
advantage of the data, results in more refined posterior
estimates of the location and severity of the fault. The
idea of combining a pre-screening procedure with a
refined data-driven search procedure is indeed promis-
ing, but several assumptions can jeopardize the

generalizability of such an approach. Here, we list three
crucial assumptions.

First, the method necessitates the discretization of
the fault severity variable into a finite number of arbi-
trary sampling points, so that both the location and
severity are treated as discrete variables in the formula-
tion. As such, the quality of the final solution can be
dependent on the arbitrary gridding of the severity
variable. This also alters the form of the final solution
generated from the Bayesian inference, which is a dis-
crete distribution that obviously does not correspond
to the continuous nature of the fault severity variable.
Second, the Bayesian sampling scheme often requires a
considerable number of FE model runs, but doing so is
often computationally impractical, especially in
impedance-based FE models where the number of seg-
ments could be large. Third, the method solely relies on
ad hoc pre-tuning and updating techniques to ensure
that the FE model used, a critical component in the
detection procedure, is well calibrated, so that it can
faithfully replicate the behavior of the underlying phys-
ical system. It comes as no surprise that the model-
based detection approaches are sensitive to any inade-
quacies in the FE model employed, and when an inade-
quacy does exist, it is detrimental to the method’s
detection capability.

To address these challenges, we herein propose a
new perspective toward the problem by casting the
impedance-based fault detection into a statistical cali-
bration formulation. The method leverages the
advancements in statistical learning, together with the
power of model-based approaches to achieve accurate
fault diagnosis capability. Furthermore, the method
can be used in conjunction with the pre-screening step
referenced above, which in itself has merit in reducing
the search space of possible fault locations, for a com-
putationally practical and effective implementation.
But first, let us introduce the background of the statisti-
cal calibration and set the stage for how the fault diag-
nosis problem can be cast into a statistical calibration
formulation.

Over the last two decades, statistical calibration has
gained a wide popularity in the computer simulation
and industrial statistics literature.25–28 The use of com-
puter models and simulators to accurately mimic under-
lying physical processes has been an essential part of
designing and operating modern-day engineering sys-
tems. An important step in designing these simulators is
to calibrate the computer model to be used, to ensure
that the computer model in question is an adequate
digital representation of the underlying physical system
it attempts to mimic. Computer model calibration is
formally performed by connecting the outputs from a
computer model and those from a physical experiment
into one linkage model to simultaneously achieve two
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fundamental tasks. The first task is the correction of
the inherent bias and inadequacies often found in most
computer models, arising due to implicit simplifying
assumptions and missing physics. The second task is to
estimate a set of unknown parameters, referred to in lit-
erature as the ‘‘calibration parameters.’’25 Calibration
parameters are model attributes that cannot be physi-
cally observed, controlled, or measured, but whose
effect manifests in the response of physical experiments.

In this article, we propose to formulate the structural
fault detection problem at hand as a statistical calibra-
tion problem. To motivate the essence behind our pro-
posed approach, let us imagine a situation where a
piezoelectric transducer is attached to a structure and
emits electric impedance measurements. In case of fault
occurrence triggered by some change in local mechani-
cal properties, the electric impedance measurements are
also expected to exhibit a proportional change, owing
to the electromechanical coupling of piezoelectric trans-
ducers. Understandably, fault attributes like the loca-
tion and severity of the fault have a notable effect on
the magnitude of that change. Despite their observed
effect on the impedance measurements, these fault attri-
butes are not themselves directly observable in the phys-
ical experiment, and thus, their values are unknown to
the experimenter and have to be inferred.

By establishing the analogy between the setting of a
calibration problem, and that of the impedance-based
fault detection problem at hand, we can think of the
fault attributes such as the location and severity of the
fault as calibration parameters, that is, parameters that
are not physically observed, yet whose effect is notable
on the physical response, and whose presence can be
easily included, and values adjusted, in the computer
code implementing an FE model. Under that setting,
the problem of fault detection is equivalent to that of a
calibration problem, where the goal is to estimate the
values of the calibration parameters (fault location and
severity) that achieve the closest match between the out-
puts from a computer model (simulated impedance data
from the FE model) and those physically collected from
the system (piezoelectric impedance measurements), all
while accounting for any inherent inadequacies that are
associated with the FE model.

The benefits from the proposed approach are multi-
fold and do in fact address the three aforementioned
limiting assumptions of the existing approach that
relies on Bayesian sampling.24 From a broader point of
view, we believe that the proposed approach presents a
contribution to both the calibration and structural
health monitoring fields. From the statistical calibra-
tion literature perspective, we have identified a new
field of applications for the calibration framework.
From the structural health monitoring standpoint, we
offer a new perspective toward formulating fault

detection problems under the statistical calibration
framework. The proposed method aligns itself with a
well-known class of problems known in the structural
health monitoring literature as model updating and/or
tuning,29 in which an FE model is tuned to faithfully
replicate physical experiments and is often cast as a
constrained optimization problem30,31 or in a Bayesian
setting.32,33 While having a similar objective, the statis-
tical computer model calibration framework, proposed
herein, is methodologically distinct by offering a prob-
abilistic statistical based handling of the problem,
which has demonstrated its merit in the industrial sta-
tistics literature.25,27,34,35 The statistical calibration
framework brings in multiple favorable aspects such as
the ability to concurrently estimate the calibration
parameters and model inadequacy, the use of a surro-
gate model to replace often computationally expensive
FE simulations, its ability to produce probabilistic esti-
mates of the fault severity, as well as on-the-fly prob-
abilistic predictions of the physical output at any
combination of inputs. We stress, however, that the sta-
tistical calibration framework does not obviate the need
for pre-tuning/updating the FE model in the design
stage prior to its operational use in fault detection.

The remainder of this article is organized as follows.
Section ‘‘Statistical calibration of computer models and
surrogate modeling’’ provides a review about the statis-
tical calibration literature and surrogate modeling.
Section ‘‘Impedance-based fault diagnosis: a statistical
calibration approach’’ discusses the formulation of the
fault detection problem under the statistical calibration
framework and then proposes a multi-stage algorithm
for practical implementation. In section ‘‘Case studies,’’
we demonstrate the effectiveness of our proposed
approach on two simulated and two experimental case
studies. Finally, we conclude the article in section
‘‘Conclusions and future directions’’ with final remarks
and recommendations for future research.

Statistical calibration of computer models
and surrogate modeling

High-accuracy computer models capable of accurately
replicating and further predicting the behavior of phys-
ical processes are essential to a wide variety of real-
world applications, stretching from coating processes
of food products,26 to nanomanufacturing,35,36 to spot
welding experiments,34 to reliability assessment of pres-
surized storage tanks,37 and many others. The role of
computer model calibration is to ensure a high-
accuracy representation of the physical system by inte-
grating the outputs from the computer model with a set
of physical measurements collected from the actual sys-
tem into a single linkage model.25
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Denote by x 2 R
d , the set of controllable inputs in

the physical experiment, and by zp and zc 2 R as the
response from the physical and computer model,
respectively, where the superscripts p and c hereinafter
denote the physical and computer model, respectively.
Oftentimes, the computer model will take the same set
of input variables x, in addition to a set of calibration
parameters, denoted by Y 2 R

k . These calibration
parameters are not observed, controlled, or measured
in physical experiments but can be modeled and easily
manipulated in the computer model’s code. Denote the
set of computer model outputs by Zc = ½zc(x1,Y1), . . . ,
zc(xnc ,Ync )�T , where nc is the number of computer
experiment data. Likewise, one can use
Zp = ½zp(x1), . . . , zp(xnp )�T to denote the set of physical
experiment responses, where np is the total number of
physical measurements.

The goal of the calibration procedure is then to inte-
grate zp(x) and zc(x,Y) into one linkage model. One
widely accepted formulation for the linkage model,
proposed by Kennedy and O’Hagan,25 is expressed in
equation (1) below

zp xið Þ= zc xi,Yð Þ+ g xið Þ + ei i = 1, :::, np ð1Þ

where g(�) is a bias correction term introduced to expli-
citly correct for any modeling inadequacies in the com-
puter model that arise due to missing physics or
inherent simplifying assumptions and ei is the indepen-
dent and identically distributed zero-mean normally
distributed random variable with its variance denoted
by t2.

In many real-world situations, computer models can
be computationally expensive to run, and therefore,
surrogate models are necessary to construct the
response surface of the computer model based on a
small number of computer model runs. Among the
pool of possible surrogate modeling techniques,
Gaussian process (GP) models arise as a nonparametric
modeling approach that is widely used as the proxy
model for complex unknown functions.38 This is mostly
attributed to their interpolative property which is suit-
able in modeling the response surface of deterministic
simulators, as well as their flexibility to model a wide
spectrum of response functions, from simple linear pat-
terns to complicated surfaces.39

The pillar assumption in GP models is that the joint
distribution of the model output at any finite set of
inputs follows a multivariate normal distribution.
Under this assumption, a GP model is defined by a
mean structure m(�) and a stochastic process term h(�),
as in equation (2)

zc x,Yð Þ = m x,Yð Þ+ h x,Yð Þ ð2Þ

where the exact form of m(�) is left to be determined by
domain knowledge and is designated to capture the
global variations in the underlying response function.
Oftentimes, m(�) is either expressed as a constant, or a
linear function of x and Y, or some other pre-specified
exogenous covariates, such that m(x,Y) = fT (x,Y)b,
where f(x) = ½f1(x,Y), . . . , f‘(x,Y)�T is an ‘31 vector of
known regression functions and b = ½b1, . . . ,b‘�T is the
‘31 vector of corresponding unknown regression coef-
ficients. The term h(x,Y) is assumed to be a zero-mean
GP with its pairwise covariance defined as
sij =Covfh(xi,Yi),h(xj,Yj)g. Let us use S to denote
the resulting nc3nc covariance matrix whose (i, j)th
entry is sij. Under this setting and for the set of inputs
½(x1,Y1), . . . , (xnc ,Ync )�T , the corresponding output is
multivariate normal, that is, Zc;N (Fb,S), where F is
the nc3‘ matrix of covariate values such that its (i, j)th
element is fj(xi,Yi), i = 1, . . . , nc, and j = 1, . . . , ‘.

A key issue in fitting GPs, however, is to determine
the entries of the covariance matrix S, which are often
dictated through the choice of a suitable stationary
parametric covariance function, denoted by K( � , �; Fc),
where Fc represents a set of covariance parameters,
also known as GP hyperparameters. Examples of para-
metric covariance functions include but are not limited
to the squared exponential and the Matérn covariance
functions.40 Similarly, g(�) in equation (1) can as well
be independently modeled as a GP, for which the
hyperparameters are denoted by Fb.

Given the values for the GP hyperparameters, one
can obtain a kriging-based prediction at any unseen
test data point (~x, ~Y), as expressed in equation (3).
Such kriging-based estimate is known to be a best lin-
ear unbiased predictor (BLUP)40

ẑc ~x, ~Y
� �

=E zc ~x, ~Y
� �

Zcj
� �

= fT ~x, ~Y
� �

b + kT S�1
Zc � Fbð Þ

ð3Þ

where the nc31 vector k contains the pairwise covar-
iances between Zc and zc(~x, ~Y), while Zc, f(�), S, F, and
b are defined as in equation (2).

With GPs employed to model zcð:;:Þ and g(�), the
calibration problem reduces to the estimation of the set
of calibration parameters Y, the regression coefficients
b, as well as the GP hyperparameters of the computer
model and the bias term, denoted by Fc and Fb, respec-
tively. Two alternative methods can be used to estimate
these sets of parameters. The first method relies on a
full Bayesian inference to simultaneously and collec-
tively learn Y, b, Fc, and Fb.25 The other method fol-
lows an empirical hierarchical approach and suggests to
first estimate b and Fc using maximum likelihood esti-
mation (MLE) and then plug in the MLE estimates into
a Bayesian inference to estimate Y and Fb.34 While the
former, in theory, should be more superior, because it

4 Structural Health Monitoring 00(0)



takes into account the uncertainty associated with b
and Fc, the latter is more computationally efficient,
and less prone to implementation breakdowns, while
rendering sufficiently close results to the full Bayesian
analysis.34 Therefore, we decide to go with the second
approach in parameter estimation.

Specifically, we first find the MLEs for Fc, which are
estimated in a data-driven way by solving the optimiza-
tion problem in equation (4)

F̂c = argmax � ln Ŝ

��� ���� �
� Zc � Fb̂
� �T

Ŝ
�1

Zc � Fb̂
� �	 


ð4Þ

where F̂c contains the MLE estimates for Fc, Ŝ is the
covariance matrix, for which the entries are computed
using K( � , �; F̂c), and b̂ is the generalized least squares
(GLS) estimation for b, where b̂ = (FT S

�1
F)�1

FT S
�1
Zc. The right-hand side in equation (4) is propor-

tional to the logarithm of the likelihood for a GP. The
optimization problem in equation (4) is numerically
solved using gradient descent-based methods, com-
monly implemented in practice by calling the MATLAB
function rgp, or using the routine nlm in R. Once these
MLEs are obtained, we can plug them into a Bayesian
inference scheme to estimate Y and Fb. The Bayesian
inference starts by assigning noninformative priors to
each parameter and, then, uses a proposal distribution
to update the posterior distribution in an Metropolis–
Hastings (M-H) Markov chain Monte Carlo (MCMC)
algorithm.41 After a sufficient number of iterations, the
M-H algorithm should gradually converge to the
underlying posterior distributions of the parameters in
Y and Fb. In section ‘‘Case studies,’’ we discuss more
details on the implementation of the parameter estima-
tion procedure in the context of the presented case
studies.

Impedance-based fault diagnosis: a
statistical calibration approach

In this section, we elucidate the foundations of the
proposed fault diagnosis formulation following a
statistical calibration-based approach. We first explain
the key concepts, followed by the formulation of the
fault diagnosis problem in a statistical calibration
setting. Finally, we propose a multi-stage algorithm for
a practical implementation of the proposed
methodology.

Modeling of piezoelectric signals

In this work, and without loss of generality, we use the
piezoelectric admittance, which is the inverse of the
electric impedance, as the response of interest. Physical

piezoelectric admittance measurements can be collected,
using a piezoelectric transducer attached to the host
structure, at a set of excitation frequencies, denoted by
v = fv1,v2, . . . ,vnpg. The output from physical experi-
mentation is an ‘‘admittance curve,’’ which shows the
admittance values versus the corresponding excitation
frequencies. Note that we refer to the excitation fre-
quency variable as v and the set of excitation frequen-
cies as v, where the jth element of that set is referred to
as vj, for j = 1, . . . , np.

In conjunction with physical experiment data, an FE
model is employed to mimic the physical system’s beha-
vior and generate a set of computer experiment data. In
a typical FE model, the structure is divided into m seg-
ments, where m is often a sufficiently large number.
Each segment is further composed of a number of ele-
ments, which is the building block of FE models. Under
this discretization, an explicit expression of the admit-
tance signal at any given excitation frequency, denoted
by yc(v), can be derived,21,24,42,43 and is expressed as in
equation (5)

yc vð Þ=
vi

q�QT S� v2M+ ivBð Þ�1
Q

ð5Þ

where i refers to the imaginary unit; q is the inverse of
the capacitance of the piezoelectric transducer; Q is the
electromechanical coupling vector; and S, B, and M

are the stiffness, damping, and mass matrices, respec-
tively. In this research, we define a fault as a percentage
change in stiffness. This definition is physically moti-
vated, since, as shown in equation (5), the piezoelectric
admittance is directly dependent on the stiffness
matrix S.

In an FE model, each of the m segments can be sub-
ject to fault occurrence. Please note that in this
research, we assume that a single fault occurs at a time
in the structure. To simulate a fault occurrence in the
structure, the FE model takes in a number of inputs:
(1) a fault location, expressed as a segment index and
denoted by u1 2 f1, . . . ,mg, (2) a fault severity level,
expressed as a percentage change in stiffness and
denoted by u2 2 ½0, 1�T , and (3) a set of excitation fre-
quencies, v = fv1,v2, . . . ,vnpg. We assume that the set
of excitation frequencies input to the FE model is the
same set at which the physical measurements are col-
lected and is as such indexed by np. Given these inputs,
the FE model outputs a corresponding simulated set of
admittance signals. We reflect this input-output depen-
dency through expressing yc as a function of v, u1, and
u2, therefore denoted by yc(v, u1, u2).

If we set u1 = u2 = 0 and run the FE model at the set
of excitation frequencies, then no fault is simulated in
the structure, and the corresponding set of simulated
signals represents the healthy baseline state, denoted by
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yc
h(v, 0, 0), where the subscript h implies ‘‘healthy.’’ The
difference between the defective and the healthy states
is denoted by Dyc(v, u1, u2) = yc(v, u1, u2)� yc

h(v, 0, 0)
and is used as an indicator of fault occurrence, that is,
the response of interest in this research. The vector of
impedance change generated at the set of excitation fre-
quencies, v = fv1,v2, . . . ,vnpg, is thus referred to as
Dyc(v, u1, u2) = ½Dyc(v1, u1, u2), . . . ,Dyc(vnp , u1, u2)�T .

Similarly, we denote by yp(v) = ½yp(v1), . . . , yp(vnp )�T
the set of piezoelectric measurements that are experi-
mentally collected from a piezoelectric sensor attached
to the target structure at the set of excitation frequen-
cies v. Under the baseline healthy state, where no fault
is known to exist in the structure, the set of physical
measurements are denoted by y

p
h(v). For a test struc-

ture to be monitored, which can potentially contain a
fault, the set of output signals, as mentioned earlier, are
denoted by yp(v). The difference between the test and
healthy signals is denoted by Dyp(v) = yp(v)� y

p
h(v)

and represents the vector of physical responses to be
monitored for fault occurrence, where Dyp(v) =
½Dyp(v1), . . . ,Dyp(vnp )�T .

Statistical calibration-based fault diagnosis

Having a set of physical measurements obtained
through physical experimentation, and a corresponding
set of FE simulation data, one can view the fault loca-
tion and severity, u1 and u2, respectively, as the calibra-
tion parameters. Extending on the statistical calibration
formulation presented in equation (1), we propose to
integrate Dyp and Dyc into one linkage model, as pre-
sented in equation (6)

Dyp við Þ= Dyc vi, u1, u2; Fcð Þ + d vi; Fb
� �

+ ei i = 1, . . . , np

ð6Þ

By comparing equation (6) with the generic formula-
tion in equation (1), we find that the excitation fre-
quency variable represents the observable input to both
the physical and computer experiments, that is, x= fvg.
Furthermore, we find that zp = Dyp, and zc = Dyc, and
Y= fu1, u2g, which are the fault location and severity.
The goal is to estimate the values of u1 and u2 which
achieve the closest match between the physical and
computer model responses.

Impedance-based FE models are often expensive to
run due to computational budget limitations.
Therefore, we decide to replace the computer model
response surface Dyc(v, u1, u2) by its surrogate GP
model Dŷc(v, u1, u2; Fc), as expressed in equation (7).
With the inclusion of a GP surrogate model, it suffices
to conduct a few initial simulation runs of the FE
model and then construct the underlying response sur-
face of the FE model using a GP model. More

implementation details will be deciphered when pre-
senting the case studies

Dyp við Þ= Dŷc vi, u1, u2; Fcð Þ+ d vi; Fb
� �

+ ei

i = 1, . . . , np
ð7Þ

We note that the formulation of equation (7)
assumes that the change in the experimental signals is
explained by a fault occurrence, random noise, or both.
This formulation, nevertheless, can be easily extended
to account for the impact of other exogeneous environ-
mental and operational conditions by regressing the
physical response on the exogeneous variables of inter-
est or by conditioning the formulation in equation (7)
on a set of states within which the operational and/or
environmental conditions are homogeneous.44 This is
beyond the scope of this article but is indeed one poten-
tial research extension to this work, which aligns itself
well with ongoing research in the structural health
monitoring literature.44,45

To summarize, our goal is to pinpoint the true val-
ues of the fault attributes, namely, fault location u1 and
fault severity u2. The true values of these parameters
are unknown and, more importantly, not directly
observable in a physical experiment, but their physical
impact can be observed by an associated signal change.
The essence of our procedure is to leverage the statisti-
cal calibration framework to find the values of u1 and
u2 that produce the best agreement between the simula-
tion outputs (in which u1 and u2 can be easily adjusted)
and those from the physical experiments (in which u1

and u2 are not directly observable).

Practical implementation via a multi-stage algorithm

In practice, solving equation (7) is not straight forward
owing to the size of the solution space for fu1, u2g. In
impedance-based FE models, m, the number of the can-
didate fault locations or that of the FE segments, is
typically large. On top of that, for each candidate loca-
tion, the severity level can vary continuously between 0

and 1. Thus, the search space comprising infinite com-
binations of locations and severities is extremely large.
Directly attempting to estimate one single combination
of fault location and severity from that large search
space is practically cumbersome and can potentially
lead to identifiability problems.46,47 Here, identifiability
refers to the inability to distinguish between the effect
of the calibration parameters and that of the computer
model bias. Given that our goal is to make a correct
inference about the calibration parameters, such issue
ought to be properly addressed.

Instead of attempting to directly solve equation (6),
we therefore propose an empirical multi-stage proce-
dure that goes around these technical challenges. This
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is to say, we introduce some simple, yet effective, steps
to decompose the problem into smaller tractable prob-
lems in a knowledge aggregation fashion. Our pro-
posed multi-stage algorithm comprises three stages,
where in each stage, we accumulate knowledge by fil-
tering out unlikely location–severity combinations and
gradually converge toward the desired solution. The
three stages of the proposed algorithm are the follow-
ing: (1) pre-screening, (2) calibration, and (3) signal
matching; see Figure 1 for an illustration. The first
stage, that is, pre-screening, aims at reducing the search
space into a finite subset of location candidates, with
high likelihood of fault occurrence, along with prelimi-
nary estimates of their correspondent severity levels. In
the second stage, we make use of the pre-screening
location/severity estimates to solve a separate calibra-
tion problem for each candidate fault location using
the pre-screening preliminary estimate as prior infor-
mation, which results in a refined estimated severity.
Then, the goal of the final, third stage is to select the
combination of location and severity, of those elected
and refined by the first two stages, that minimizes a
pre-specified discrepancy measure between the predic-
tions from the final calibrated surrogate model and the
observed physical measurements.

We start off by describing the first step. The pre-
screening stage is, in fact, the same procedure proposed
in a recent fault detection work.24 Our experimental
analysis have revealed that this pre-screening procedure
is effective in eliminating unlikely location–severity
combinations and thus highlighting few potential can-
didates of high likelihood of fault occurrence, as well as
providing preliminary estimates for the severity of these
candidates. We here review the key details of this pre-
screening step for this article to be self-contained; for
more details, please refer to the original paper.24

Let D be an m31 vector defining the fault location
and severity as in equation (8)

D=
½0, . . . , 0, . . . , 0�Tm31, if u2 = 0

½0, . . . , u2, . . . , 0�Tm31, if u2.0

	
ð8Þ

such that the vector D embodies both the fault location
and severity information. For instance, if u1 = 10 and
u2 = :01, then the D vector will contain all zeros except
for the 10th element which will have the value of
u2 = :01.

Based on an inverse sensitivity derivation, the alge-
braic relationship that relates the physical admittance
change vector, Dyp(v), and the D vector can be
derived24 and is expressed as in equation (9)

Dyp(v) =PD ð9Þ

where P is an np3m sensitivity matrix whose entries are
computed by the FE model. In theory, an inverse anal-
ysis of equation (9) can provide the entries of D, which
embodies the solution to the fault detection problem.
Such inverse analysis, as mentioned earlier, is often
infeasible due to the underdetermined nature of the
problem (due to m� np).

The goal of the pre-screening step is then to over-
come that challenge by exploiting the algebraic rela-
tionship in equation (9) and computing a directionality
index between the columns of P and Dyp(v) for each
segment. The motivation behind this directionality
index is inspired by the algebraic relation in equation
(9), where if a single fault occurs at a specific location,
then it is plausible to assume that Dyp(v) will be line-
arly dependent with one of the columns of P, and thus,
the directionality index should be approximately equal
to 0, if not exactly so. By ranking these directionality
indices, the pre-screening step can elect the N� top loca-
tions, denoted by fu1

1, . . . , uN�

1 g for further analysis in
the second stage. In addition, the pre-screening step
computes preliminary estimates of the respective sever-
ity levels as

u
i, pre
2 = 1

n

Pn
j = 1

Dyp wjð Þ
pji

, i = 1, . . . ,N�

where pji is the (j, i)th entry of P and the superscript
pre is to stress that these estimates are preliminary esti-
mates, to be differentiated from the refined estimates
that will be later obtained in the second stage. In fact,
u

pre
2 will guide the selection of the Bayesian prior for
the calibration analysis in the second stage, thereby
ensuring computational efficiency and mitigating the
danger of falling to the aforementioned identifiability
issues.

The second stage, that is, the statistical calibration,
proceeds by solving N� separate calibration problems

Figure 1. Flowchart of the multi-stage algorithm for
impedance-based fault diagnosis.
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formulated as in equation (7) for each candidate fault
location. Unsurprisingly, we start with the most likely
candidate fault location as selected by the pre-screening
stage and fix the value of u1 = u1

1. We then sample t

severity levels around u
1, pre
2 using a Latin hypercube

design (LHD). The sampled severity levels are denoted
by fu1, j

2 g, j = 1, . . . , t. LHDs are space-filling designs
that sample design points in a way to ensure uniform
spread over the space of the design variable.39 For each
sampled severity level, that is, j = 1, . . . , t, we conduct
an FE simulation run to generate the simulated admit-
tance change signals at u1 = u1

1, u2 = u
1, j
2 , and the set of

excitation frequencies v = fv1, . . . ,vnpg. These simula-
tion runs result in a total of nc data points, such that
nc = t (design points) 3 np (excitation frequencies). The
simulation model outputs are then subtracted from the
healthy state model outputs to obtain a difference vec-
tor of nc data points denoted by Dyc(v, u1, u2).

Given the nc data points, a GP model is then fit to
reconstruct the underlying response surface of
Dyc(v, u1, u2) by solving the optimization problem in
equation (4), resulting in an estimated set of GP para-
meters in F̂c. These parameters, together with a set of
priors assigned to u2 and Fb, are plugged into an M-H
random sampling algorithm. For the M-H procedure,
the prior for u2 will be guided by the pre-screening esti-
mate u

1, pre
2 . For instance, a continuous uniform prior

can be assigned to u2 within a sufficiently broad neigh-
borhood of u

1, pre
2 . The Bayesian machinery then gradu-

ally updates the prior information in light of the data,
until convergence to the final continuous posterior dis-
tributions of u2 and Fb. Statistics like posterior mean,
median, and mode can be extracted from the posterior
distributions and then used as the point estimates,
denoted by û2 and F̂c, respectively. Specifically, the
resulting posterior distribution of u2 will represent our
data-informed belief about the fault severity at a partic-
ular location, and û2 can be used as our point estimate
of the fault severity. This procedure is repeated for all
N � candidates, and the output is N� pairs of estimated
severities and locations, which will be fed to the final
stage of the procedure for signal matching and
location–severity decision.

The third and final stage is referred to as signal
matching, in which, given N � pairs of location–severity,
we select one pair which produces the best agreement
between the final calibrated model and the observed
physical measurements. This agreement is measured
using some pre-specified loss function. Different choices
for loss functions can be equally tolerable, but we
choose to select the squared error loss measure due to
its acceptable usage in the calibration literature.47

Similar measures based on the Euclidean distance have
also been proposed and widely used in the structural
health monitoring literature.9 Specifically, the final

signal matching stage finds the pair of location–severity
which minimizes the squared error discrepancy among
the N� candidate pairs, as expressed in equation (10)

u�1, u�2
� �

= argmin

Xnp

i = 1

Dyp við Þ � Dŷc vi, û1, û2; F̂
c

� �
� d vi; F̂

b
� �n o2

ð10Þ

The optimal pair that minimizes equation (10) com-
prises our final detected fault location and severity
estimates.

Case studies

In this section, we demonstrate the effectiveness of our
proposed approach on two simulated and two experi-
mental examples taken from the literature.24

Simulated case studies

The first case study simulates a fault occurring in an
aluminum cantilevered plate that has been employed
extensively in previous investigations,24 with length
0:561 m, width 0:01905 m, thickness 0:004763 m, den-
sity 2700 kg=m3, and Young’s modulus 68:9 GPa. A
piezoelectric transducer is attached at a location that is
0:18 m from the left fixed end. The piezoelectric trans-
ducer has length 0:015 m, width 0:01905 m, thickness
0:0014 m, Young’s moduli (along two directions) 86

and 73 GPa, density 9500 kg=m3, piezoelectric constant
�1:02883109 V=m, and dielectric constant
1:38323108 m=F. This benchmark plate is meshed with
11, 250 (37531532) 20-node hexahedron elements.
The mesh size is smaller than the shortest wavelength
of the response involved. The plate is further divided
into 225 segments, each containing 50 elements. While
self-developed FE code is used in computational analy-
sis to facilitate streamlined process to generate impe-
dance/admittance responses as well as the segmentation
procedure, the plate FE model is fully validated using
ANSYS with mesh density convergence analysis.
Figure 2 shows the dimensions and positions of the
plate and transducer, as well as the segmentation of the
FE model.

Each segment is a possible fault location, and thus,
we have 225 fault location candidates in total. A fault
is simulated in the 110th segment with a severity level
of :0164, which corresponds to 1:64% change in local
stiffness. The piezoelectric impedance measurements
are collected around the 14th and 20th structural reso-
nances, which correspond to excitation frequencies of
1893:18 and 3703:09 Hz, respectively. Specifically, 100

frequency values are uniformly sampled around both
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1893:18 and 3703:09 Hz, resulting in a total of 200

admittance values at 200 frequencies, that is,
v = fv1, . . . ,v200g. For the final model validation, we
reserve a set of the 50 data points to test the predictive
ability of the final calibrated model. The 50 data points
were randomly selected, such that 25 data points are
sampled around the excitation frequency of
1893:18 Hz, and another 25 are sampled around
3703:09 Hz. This leaves np = 150 data points for imple-
menting the proposed steps of the fault detection proce-
dure as outlined in Figure 1.

A single FE model run is conducted first at
u1 = u2 = 0 and v = fv1, . . . ,v150g to simulate the
healthy state signal. Understandably, for simulated
examples, this healthy signal represents both the physi-
cal system and computer model response at the healthy
state such that y

p
h(v) = yc

h(v, 0, 0). Then, another FE
model run is conducted at u1 = 110, u2 = :0164, and
v = fv1, . . . ,v150g to generate the simulated defective
signal. Again, because this is a simulated case study,
yp(v) = yc(v, u1 = 110, u2 = :0164). The difference vector
between the defective and healthy signals is computed
as Dyp(v) = yp(v)� y

p
h(v). For this example,

Dyp(v) = ½Dyp(v1), . . . ,Dyp(v150)�T .
The pre-screening stage takes as input Dyp(v) and P.

Building on the results of a previous study in which the
pre-screening procedure was first proposed,24 a ranked
list of candidate fault locations is produced, for which
we select the top N � = 5 locations for further analysis.
The candidate locations that are elected from the pre-
screening stage are fui

1g
N�

i = 1 = f110, 46, 185, 151, 35g, and
their respective preliminary estimates of severity are
fui, pre

2 gN�

i = 1 = f:01644, :01350, :01616, :00381, :01734g.

Note that the pre-screening step in this example
detected the 110th element as one of the selected candi-
dates, which happens to contain the true fault location.
Also, in this simulated example, the pre-screening stage
was successful in guessing a reasonably accurate esti-
mate for the underlying severity at the 110th element.
One might think that it could be enough to stop at this
stage since the pre-screening procedure was capable of
pinpointing both the location and severity of the fault
with reasonable accuracy. We stress, however, that this
is mainly because of the nature of the simulated case
study which does not involve measurement errors and
bias between the physical system and its computer
model counterpart. In the experimental case studies, on
the other hand, the presence of measurement errors
and FE model inadequacies will naturally affect the
accuracy of the pre-screening stage and necessitates fur-
ther, more capable analysis represented in the later
stages of our proposed algorithm.

The candidate fault locations and preliminary sever-
ity estimates are then fed to the next stage where a cali-
bration problem is solved independently for each
location. As explained earlier, we start with the first
selected location and fix u1 = 110. Then, we generate an
LHD of t = 5 design points around u

1, pre
2 = :01644. The

FE model is then run at these 5 design points, resulting
in a total of nc = t3np = 53150 = 750 admittance values.
The admittance values are then subtracted from the
healthy baseline signals, which results in a 75031 vec-
tor of simulated change signals in Dyc(v, u1, u2).

Please note that piezoelectric admittance values,
whether physically collected or simulated through the
FE model, are complex-valued numbers. To proceed
with the calibration framework in equation (7), we then
compute the Euclidean norm for the real and imagin-
ary parts. Future research can look into generalizing
the approach to complexed-valued variables such as
piezoelectric admittance. We also standardize the
resulting admittance values to facilitate easier GP fit-
ting implementation.

The simulation dataset is then used to fit a zero-
mean two-dimensional GP model which reconstructs
the underlying response surface of Dyc(v, u1, u2). For
the GP, we choose the squared exponential covariance
function with automatic relevance determination
(ARD)40 which assigns different length-scale para-
meters to different input variables and is defined as in
equation (11)

K v, u2ð Þ, v0, u02ð Þð Þ= fc
1 exp �rð Þ

r = fc
2 v� v0ð Þ2 + fc

3 u2 � u02ð Þ2 ð11Þ

where Fc = ffc
1,f

c
2,fc

3g.0 are the three parameters
representing the sill and the two length scales. An MLE
is then implemented to find the parameter values for

Figure 2. Schematic showing the dimensions and positions of
the plate and transducer, as well as the FE segmentation.
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Fc that maximize the GP likelihood through a numeri-
cal optimization of equation (4). Once MLE estimates
are obtained, we now have a surrogate model that rep-
resents the underlying response surface of the computer
model. This surrogate model can be used to generate a
large number of samples, with computation ease, at
any given input combination, using the closed form
expression in equation (3).

Figure 3 illustrates the GP model fit versus the cor-
respondent FE model runs. On the left panel, the GP
output and correspondent FE runs are shown as a
function of excitation frequency v. On the right panel,
the GP output and correspondent FE runs are dis-
played as a function of the fault severity u2 at a fixed
excitation frequency of v = 1839:18 Hz. Owing to its
interpolative ability, the GP fit passes through every
FE run. Notably, the GP fit is able to provide a high-
accuracy representation of the FE response surface and
can therefore be used as a proxy of the FE model in the
statistical calibration analysis. It is worth noting that
we only used t = 5 FE model runs to generate such
high-accuracy representation of the model’s response
surface, which renders a substantial saving in the com-
putational cost when compared to fault detection meth-
ods that require FE model runs at each step of the
search procedure.

The MLE estimates are then plugged into the M-H
algorithm that finds the posterior distributions of u2

and Fb. For the bias term, we use a zero-mean one-
dimensional GP with a squared exponential covariance
function. Thus, the GP for the bias term is only charac-
terized by two parameters corresponding to the sill and
length-scale parameters, respectively, that is,
Fb = ffb

1,f
b
2g.

For the M-H algorithm, we assign the following
Bayesian priors to u2, fb

1, and fb
2, respectively, as in

equation (12)

p u2ð Þ=Unif :01544, :01744ð Þ

p
1

fb
1

 !
=Gamma 1, 10�3

� �

p exp �fb
2

� �� �
=Beta 1,

1

2

� � ð12Þ

where p(�) denotes a prior distribution, Unif ( � , � ),
Beta ( � , � ), and Gamma ( � , � ) denote the continuous
uniform, beta, and gamma distributions, respectively.
The motivation behind the selection of the priors is as
follows. For the fault severity u2, we would like to
reflect our weak belief in the pre-screening estimate.
For that, we use the continuous uniform distribution
but set the uniform distribution parameters to be
within a symmetric broad enough interval around the
pre-screening estimate. A gamma distribution is
selected for the precision (the inverse of the sill in the
squared exponential covariance function) which is a
common choice in the case of a zero-mean GP, while a
beta distribution is selected for the exponential of the
length-scale parameter fb

2 as it has shown to ensure
numerical stability and positivity in our estimation pro-
cedure. In general, the M-H algorithm is agnostic to
the choice of priors as long as a ‘‘proposal distribution’’
is adequately selected (in our context, we choose a nor-
mal distribution) to construct a Markov chain for
which the long-run distribution approximates the pos-
terior distribution. Moreover, there is numerical evi-
dence in the literature that the choice of priors for a
squared exponential covariance function has little

Figure 3. GP fit (red line) versus the FE model runs (black circles) for the first elected fault candidate in the first simulated
example. Left panel: GP fit and correspondent FE runs versus excitation frequency v. Right panel: GP fit and correspondent FE runs
versus fault severity u2 at v = 1893:18 Hz. Note how the change in the signal increases, almost linearly, as the fault severity u2

becomes more pronounced.
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impact on hyperparameter estimation and predictabil-
ity of a GP model.48 The M-H algorithm is run for
3000 MCMC iterations, thinned every 10 observations
to reduce the between-sample autocorrelations. The
above procedure is repeated for all N� locations, and
the final posterior statistics for the posterior distribu-
tions of the severity estimates are shown in Table 1. In
this research, we use the posterior medians as the point
estimates for the severity level, indicated as bold-faced
values in Table 1.

We then proceed to the final step of our proposed
multi-stage procedure. For each candidate fault loca-
tion, we use the final calibrated surrogate model to
issue predictions for the observed physical data points.
The predictions from the N � pairs of location–severity
are compared using the sum of squared errors (SSE)
loss to measure the discrepancy between the physical
outputs from the underlying system and those obtained
using the final calibrated surrogate models. The output
from this comparison is presented in Table 2. The pair
of location–severity which achieves the minimum dis-
crepancy in the signal matching step represents our
final detected pair, which in this case is
(u�1, u�2) = (110, :01639). Unsurprisingly, the true fault
occurs at the 110th element and at a severity level of
:01640, substantially close to the estimates from our
procedure. In Figure 4, the final posterior distribution
of the severity estimate is shown, which shows a peak
almost around the true severity level.

As mentioned earlier, the benefits reaped from the
proposed calibration-based approach are multifold.
First, we were able to produce continuous probabilistic
estimates for the severity level as illustrated in Figure 4.
In other words, we avoided the need for arbitrary dis-
cretization of the severity level variable, a common
undertaking in previous research studies. Second, the
final outcome of the approach is a calibrated surrogate
model that closely replicates the output from the physi-
cal system. More than that, the model is also able to
produce predictions of the signal change at unseen exci-
tation frequencies. In Figure 5, we plot the actual
(scaled) physical data (black circles) around the
1893:18 Hz, along with the model fit of the calibrated
model (dashed blue line). We also plot the reserved test
data points (red triangles), along with the final model
predictions (green crosses) for these test points. Note
how the model fit from the calibrated model is able to
replicate the behavior of the underlying physical sys-
tem, all while producing accurate predictions for
unseen test points.

For the second simulated example, the true fault
location is set at the 115th segment, and the true sever-
ity level is set at :02167. The pre-screening step elects 5

candidate locations: fui
1g

N�

i = 1 = f148, 139, 223, 73, 115g,
along with their respective preliminary estimates:
fui, pre

2 gN�

i = 1 = f:06589, :03050, :06446, :06351, :02144g.
Again, the pre-screening step was able to include the
true fault location among the top 5 candidates,
although not necessarily ranked first, which confirms
the need for more in-depth analysis in the second and
third steps.

Similar to the first simulated example, a separate
calibration problem is solved for each location

Table 1. Final statistics for posterior distributions of severity
estimates.

u1 Mean (u2) Median
(u2)

Mode
(u2)

Standard
deviation

110 :01639 :01639 :01652 9:74310�5

46 :01314 :01316 :01308 2:50310�4

185 :01613 :01614 :01621 3:93310�4

151 :00390 :00391 :00391 2:60310�5

35 :01711 :01695 :01642 6:20310�4

Bold-faced values indicate median point estimates.

Table 2. Final signal matching values.

(u1, u2) SSE

(110, :01639) 4:82310�5

(46, :01316) 5:10310�5

(185, :01614) 4:92310�5

(151, :00391) 7:11310�5

(35, :01694) 6:08310�5

SSE: sum of squared errors.

The value in bold is the smallest.

Figure 4. Posterior distribution for the estimated severity level
for the first simulated example.
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candidate using t = 5 design points, randomly sampled
again via an LHD. The posterior statistics of the sever-
ity estimates for each location are shown in Table 3.
The signal matching step is conducted, and the squared
error discrepancy values are presented in Table 4. Here,
the last pair, (u�1, u

�
2) = (115, :02157), presents the closest

match between the physical outputs and those from the
calibrated surrogate model. Note that the calibration
analysis was able to refine the severity level at the
115th segment from its pre-screening estimate at
u

5, pre
2 = :02144 to a more refined posterior estimate of

u�2 = :02157. Figure 6 shows the posterior distribution
of the estimated severity level at the 115th segment.
Figure 7 shows the calibrated model fit to the available
physical data points, as well as its predictions to the
unseen test points.

Experimental case studies

We now proceed to the experimental case studies using
actual physically collected piezoelectric measurements.

The experimental setup is the same as the simulation
case studies’ setup (shown in Figure 2). One advantage
of piezoelectric impedance/admittance technique is that

Figure 5. Calibrated model fit (dashed blue line), physical data
(black circles), test data (red triangles), and the model
predictions (green crosses) for the first simulated example.

Table 3. Final statistics for posterior distributions of severity
estimates for the second simulated example.

u1 Mean (u2) Median (u2) Mode (u2) Standard
deviation

148 :06592 :06593 :06491 5:72310�4

139 :03055 :03057 :03084 5:24310�4

223 :06441 :06447 :06446 5:84310�4

73 :06321 :06354 :06351 5:77310�4

115 :02152 :02157 :02139 5:21310�4

Bold-faced values indicate median estimates.

Table 4. Final signal matching values for the second simulated
example.

(u1, u2) SSE

(148, :0659) 8:10310�11

(139, :0306) 5:04310�8

(223, :06445) 1:05310�10

(73, :0635) 1:85310�10

(115, :02157) 5:21310�12

SSE: sum of squared errors.

The value in bold is the smallest.

Figure 6. Posterior distribution for the estimated severity level
for the second simulated example.

Figure 7. Calibrated model fit (dashed blue line), physical data
(black circles), test data (red triangles), and the model
predictions (green crosses) for the second simulated example.
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the data acquisition is easy to realize. A signal analyzer
(Agilent 35670A) with a source channel is employed to
generate sinusoidal voltage sent to piezoelectric trans-
ducer Vin. To obtain the piezoelectric admittance, a
resistor of Rs = 100O is connected in series with the
piezoelectric transducer to measure the voltage drop
Vout, which yields the admittance information as Vout

RsVin
.

Frequency sweeping excitations are applied, and then,
the admittance values are measured under a series of
excitation frequency points. In addition, a pre-tuning/
updating procedure is employed prior to the opera-
tional use of the FE model in fault detection where
healthy signals were used to tune the output of the FE
model by solving a numerical optimization procedure
in which the stiffness values at the fixed edge were
determined to minimize the deviation between the
model and physical responses. For the first experimen-
tal case study, a mass of 0:6 g is attached to the struc-
ture at a location corresponding to the 110th segment
in the FE model, which approximately reproduces the
effect of a 1:6% change in local stiffness due to a local
fault. A total of 200 admittance measurements are phy-
sically collected from the structure, before and after the
fault, around the excitation frequencies of 1893:18 and
3703:09 Hz.

Similar to what was done in the simulation case
studies, we reserve 50 data points for evaluating the
final model predictive power. The change in admittance
signals is calculated as the difference between the defec-
tive and healthy admittance vectors and used as input
to the pre-screening stage, which elects the N � = 5 can-
didate locations as the following: fui

1g
N�

i = 1 = f110, 35,
46, 185, 151g, along with their correspondent prelimi-
nary severity estimates: fui, pre

2 gN�

i = 1 = f:01590, :01635,
:01286, :01534, :00363g.

For each location candidate, we generate an LHD
of t = 5 samples around the pre-screening severity esti-
mate. The FE model is run at these 5 design points,
leading to 53150 = 750 data points. A single FE run is
conducted with u1 = u2 = 0 to obtain the model output
under the healthy condition. The change in admittance
is then computed as the difference between the defec-
tive and healthy FE model output vectors. Using these
750 data points, a GP model is fit and used as the com-
putationally cheap high-accuracy proxy for the FE
model response surface. In all experimental examples,
the noise variance is set at t2 = 10�6. We run the M-H
algorithm for 4000 iterations, thinned every 10th sam-
ple. The final posterior statistics for the posterior distri-
butions of the severity level are presented in Table 5.
The discrepancy between the physically collected values
and the predictions from the model is measured using
the SE loss, as presented in Table 6. The final pair with
the minimal squared error discrepancy is
(u�1, u�2) = (110, :01584), while the true location of the

fault is indeed at the 110th segment, with a severity of
:0160. Again, the proposed approach is able to accu-
rately pinpoint the location and severity level of the
fault. Figure 8 illustrates the posterior distribution
of u2.

We test the predictive ability of the final calibrated
model on the unseen test data. Figure 9 shows the
actual data (black circles), along with the surrogate
model fit (dashed blue line) and its predictions (green
crosses) to the test points (red triangles). Different from
the earlier plots, we plot in Figure 9 the predictions
from the uncalibrated surrogate model which was

Table 5. Final statistics for posterior distributions of severity
estimates for the first real-world example.

u1 Mean (u2) Median (u2) Mode (u2) Std-dev

110 :01582 :01584 :01590 1:21310�4

35 :01620 :01622 :01635 1:13310�4

46 :01230 :01221 :01286 2:92310�4

185 :01479 :01483 :01534 3:09310�4

151 :00309 :00304 :00363 3:36310�4

Bold-faced values indicate median estimates.

Table 6. Final signal matching values for the first real-world
example.

(u1, u2) SSE

(110, :01584) :00098
(35, :01622) :00127
(46, :01221) :00113
(185, :01483) :00101
(151, :00304) :02615

SSE: sum of squared errors.

The value in bold is the smallest.

Figure 8. Posterior distribution for the estimated severity level
for the first real-world example.
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constructed solely using the FE runs (purple squares).
It is obvious from Figure 9 that the uncalibrated
response surface exhibits a noticeable bias resulting
from overestimating the change signal in some regions
of the frequency domain. Through the explicit model-
ing of the bias term, d(v), our proposed procedure is
able to account for such model inadequacies, yielding
the final calibrated surrogate model fit (dashed blue
line).

For the second experimental example, the fault is
located at the 115th segment, with a severity level of
:0250. The physical admittance measurements are col-
lected before and after the fault, and the pre-screening
stage yields the following candidate locations:
fui

1g
N�

i = 1 = f139, 224, 74, 149, 115g, along with their cor-
respondent preliminary estimates for the severity levels:
fui, pre

2 gN�

i = 1 = f:03436, :31259, :30981, :32868, :02437g.
After the second and third stages, the posterior statis-
tics for the severity level at each candidate location are
shown in Table 7 and the discrepancy values are shown
in Table 8.

The detected fault location and severity with the
minimal squared error discrepancy is (u�1, u�2) =
(115, :02506) which is rather close to the actual fault
location at the 115th segment and its correspondent
true severity at :0250. Figure 10 shows the posterior
distribution of the detected severity level. The final cali-
brated model fit is illustrated in Figure 11 (the
blue dashed line). Again, the response from the uncali-
brated surrogate model is plotted to make it easier to
appreciate the benefit from the computer model
calibration.

In summary, as demonstrated by the simulated and
experimental case studies, our proposed calibration-
based procedure is able to successfully pinpoint the
location of the fault in all experiments, as well as pro-
vide probabilistic estimates of the fault severity with a
satisfactory degree of accuracy. While an empirical
data-driven approach like the pre-screening method
has value in providing preliminary estimates, it cannot,
by itself, provide a robust detection performance, not
to mention its inability to produce probabilistic esti-
mates for the fault severity, and forward-looking pre-
dictions of the resulting signal change. Table 9 provides

Figure 9. Calibrated model fit (dashed blue line), physical data
(black circles), test data (red triangles), the final calibrated
surrogate model predictions (green crosses), as well as the
uncalibrated surrogate model predictions (purple squares) for
the first real-world example.

Table 7. Final statistics for posterior distributions of severity
estimates for the second real-world example.

u1 Mean (u2) Median (u2) Mode (u2) Standard
deviation

139 :03504 :03505 :03531 1:76310�4

224 :31307 :31308 :31358 2:01310�4

74 :31024 :31025 :31076 2:19310�4

149 :32932 :32935 :32966 2:21310�4

115 :02506 :02506 :02532 1:58310�4

Table 8. Final signal matching values for the second real-world
example.

(u1, u2) SSE

(139, :035) 7:42310�7

(224, :313) 9:70310�7

(74, :310) 8:91310�7

(149, :329) 9:46310�7

(115, :0251) 6:44310�7

SSE: sum of squared errors.

The value in bold is the smallest.

Figure 10. Posterior distribution for the estimated severity
level for the second real-world example.

14 Structural Health Monitoring 00(0)



statistical estimates on the performance of our pro-
posed calibration-based approach relative to the pre-
screening method as a benchmark.

Conclusions and future directions

In this article, we present a new formulation for
impedance-based structural fault detection by casting
the fault detection problem into a computer model cali-
bration framework. Toward enabling a feasible and
practical solution, we propose a multi-stage algorithm,
which starts with a first principle–based pre-screening
step for reducing the search space by electing a few, but
likely, candidate locations, along with the preliminary
estimates for the correspondent severity levels. A cali-
bration problem is then solved independently for each
respective candidate location, providing refined

combinations of location–severity. The final detected
fault location and severity is then decided through a
signal matching step which measures the discrepancy
between the signals collected from the underlying phys-
ical system and those predicted by the final calibrated
surrogate model.

Using two simulated and two experimental case
studies from literature, we have demonstrated the merit
of our proposed approach in terms of its detection
capability and reduced computational demands. The
adoption of the calibration approach brings in multiple
useful features: the use of surrogate models for substan-
tial computational savings, the explicit modeling of bias
correction functions, and the generation of continuous
probabilistic estimates for the fault severity. We hope
that the demonstrated promise of the calibration-based
approach would be a solid step toward more elaborate
studies that leverage the statistical calibration frame-
work in structural health monitoring applications
beyond our proposed multi-stage algorithm.

One opportunity for improving our proposed
method is to devise a systematic procedure to automati-
cally tune some of the method’s inputs such as the
choice of the N� pre-screening locations (in stage 1)
and the number of design samples around each pre-
screening location (in stage 2), as dictated by the risk
utility of the user and the application under consider-
ation. One of our future research directions is to pro-
vide a more general solution approach that may tackle
the formulation in equation (7) directly and hence
would naturally require less user-based decisions.
Additional interesting research extensions of this work
are to consider and distinguish the effect of environ-
mental and operational conditions on the physical sig-
nals apart from the damage effects, which has been a
matter of active research in the structural health moni-
toring literature. Finally, the handling of complex-
valued variables in GP modeling is also a worthy topic,
solution to which may find broader set of applications
beyond structural health monitoring.

Figure 11. Calibrated model fit (dashed blue line), physical
data (black circles), test data (red triangles), the surrogate
model predictions (green crosses), and the uncalibrated model
predictions (purple squares) for the second real-world example.

Table 9. Statistical performance of the calibration-based (CL) method versus the pre-screening (PS) method as a benchmark.

I(u�1 = u1) ju�2 � u2j

CL PS CL PS

Case #1 1.00 1.00 1:00310�5 4:00310�5

Case #2 1.00 0.00 1:00310�4 4:42310�2

Case #3 1.00 1.00 1:60310�4 1:00310�4

Case #4 1.00 0.00 1:00310�4 1:01310�2

CL: calibration-based; PS: pre-screening.

The first two columns show the detection accuracy of the fault location u1, where I( � ) is an indicator function returning 1 if the true location of the

fault is detected. The third and fourth columns show the absolute deviation between the estimated and true fault severity levels (lower the better).

Except for the third case study where the detection performance of both CL and PS are comparable, the CL approach provides superior, and more

importantly, robust performance in detecting the fault location and severity attributes.
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