
Supplementary Material for “Gaussian
process aided function comparison using

noisy scattered data”

S.1 Derivation for c(x,x′)

The predictive mean for f1(.) given D1 is as follows:

f̂1(x) = r1(x)>[KX(1),X(1) + σ2
ε In1 ]

−1y(1).

Similarly, the predictive mean for f2(.) conditioned on D2 is given by:

f̂2(x) = r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1y(2).

Thus c(x,x′) = Cov(f̂2(x)− f̂1(x)) is expressed as follows:

Cov(f̂2(x)− f̂1(x))

= Cov(r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1y(2) − r1(x)>[KX(1),X(1) + σ2
ε In1 ]

−1y(1))

= V ar(r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1y(2)) + V ar(r1(x)>[KX(1),X(1) + σ2
ε In1 ]

−1y(1))

− 2 Cov(r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1y(2), r1(x)>[KX(1),X(1) + σ2
ε In1 ]

−1y(1))

= r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1 V ar(y(2)) [KX(2),X(2) + σ2
ε In2 ]

−1r2(x
′)

+ r1(x)>[KX(1),X(1) + σ2
ε In1 ]

−1 V ar(y(1)) [KX(1),X(1) + σ2
ε In1 ]

−1r1(x
′)

− 2 r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1 Cov(y(2),y(1)) [KX(1),X(1) + σ2
ε In1 ]

−1r1(x
′)

= r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1 r2(x
′) + r1(x)> [KX(1),X(1) + σ2

ε In1 ]
−1r1(x

′)

− 2 r2(x)>[KX(2),X(2) + σ2
ε In2 ]

−1 KX(2),X(1) [KX(1),X(1) + σ2
ε In1 ]

−1r1(x
′).
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S.2 Karhunen-Loève expansion of a Gaussian process

Karhunen-Loève expansion provides a framework to decompose any stochastic process as

an infinite linear combination of orthogonal basis functions. Since, we are interested in

Gaussian processes, we will discuss the KL expansion only for GPs. Let us now consider

that f(x) is a zero mean Gaussian process with k(x,x′) as the covariance function. This

process can decomposed as follows:

f(x) =
∞∑
k=1

√
λkφk(x)zk, (1)

where zk | k = 1, . . . ,∞ are the uncorrelated standard normal random variables, λk | k =

1, . . . ,∞ are the eigenvalues, and φk(.) | k = 1, . . . ,∞ are the basis eigenfunctions. The

values of λk and φk(.) can be obtained by solving the following integral eigenproblem∫
k(x,x′)φ(x′)dx′ = λφ(x). (2)

In practice, Equation (2) can be solved by discretizing the integral. Let us again assume

that we have n data points from the process f(·). Then, we consider the following matrix

eigenproblem

Kuk = λmatk uk, (3)

where K is again the covariance matrix with entries Kij = k(xi,xj) | i, j = 1 . . . n;

λmatk are the eigenvalues of the covariance matrix K;

uk are the normalized unit eigenvectors of the covariance matrix K.

The eigenvalues and eigenfunctions of the integral problem are related to the eigenvalues

and eigenvectors of the matrix problem in the following way:

λk ≈
λmatk

n
, (4)

φk(xj) ≈
√
n(uk)j, (5)

where (uk)j is the jth component of the eigenvector uk. The above approximation reduces

the infinite sum in the KL expansion to a finite sum (truncated KL expansion) as follows:

f(xj) ≈
n∑
k=1

√
λmatk

n

√
n(uk)jzk,

=
n∑
k=1

√
λmatk (uk)jzk.

(6)
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If λk’s decay rapidly, this sum can be be truncated further by considering only m largest

eigenvalues, where m < n. This decomposition can be written compactly in the matrix

form. If we consider a vector, f = (f(x1), f(x2), . . . , f(xn))>, then it can be decomposed

as follows:

f = UΛ
1
2z, (7)

where U is the matrix with columns as eigenvectors of covariance matrix K; Λ is a diagonal

matrix with eigenvalues of K and z is a vector of length n with uncorrelated standard

normal random variables as its components.
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S.3 Details of the simulated functions

Piston simulation function

The piston simulation function, as the name suggests, is used to simulate the motion of

a piston inside an engine. This function was proposed by Kenett and Zacks (1998). The

response is the cycle time in seconds, i.e. the time required to complete one cycle, and is

given by:

f(x) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

,

where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta − A

)
,

A = P0S + 19.62M − kV0
S
,

where M is the weight of the piston (kg), k is the coefficient of the spring, S is the piston

surface area (m2) , P0 is the atmospheric pressure (N/m2), V0 is the initial gas volume

(m3), T0 is the filling gas temperature (K), and Ta is the ambient temperature (K). The

number of input variables in this function are seven. We only choose two of them, V0 and

T0, as input variables. The other variables are fixed at M = 45, S = 0.01, k = 2, 000,

P0 = 100, 000, Ta = 292. A perturbation on the function, g(x), is obtained by changing the

value of the the spring coefficient from k = 2, 000 to k = 2, 500 . The range of the function

is approximately between [0.3, 0.7], so the value of the noise standard deviation is set at

σε = 0.05. Figure 1 presents f(x) and its perturbation, g(x) along with the noisy datasets.

Borehole simulation function

The borehole function is used to model the flow of water through a borehole (Harper and

Gupta, 1983) and has been widely used for computer experiments. See, for example, Morris

et al. (1993). The response for this function is the water flow rate in the unit of m3/year,

given by:

f(x) =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

) ,
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Figure 1: Plots for the piston function. Top left: f(x); Top right: g(x); Bottom left: noisy

responses versus V0; Bottom right: noisy responses versus T0.
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Figure 2: Plots for the borehole function. Top left: f(x); Top right: g(x); Bottom left:

noisy responses versus rw; Bottom right: noisy responses versus r.

where rw is the radius of the borehole (m), r is the radius of the influence ( m), L is the

length of the borehole (m), Tu is the transmissivity of the upper aquifer (m2/year), Tl is

the transmissivity of the lower aquifer (m2/year), Hu is the potentiometric head of the

upper aquifer (m), Hl is the potentiometric head of the lower aquifer (m), and Kw is the

hydraulic conductivity of the borehole (m/year). The number of input variables for the

borehole function is eight. Again, we only consider two input variables (r and rw) while

fixing other variables are fixed at Tu = 78, 000, Hu = 1, 050, Tl = 84, Hl = 760, L = 1, 400,

Kw = 11, 000. In this simulation study, a perturbation, g(x), is obtained by changing the

value of L from 1400 to 1450. The range of this function is approximately between [0, 150],

so we set the value of the noise standard deviation at σε = 10. Figure 2 show the functions

and the noisy data plots.
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