
Shilan Jin
Department of Industrial & Systems Engineering,

Texas A&M University,
College Station, TX 77843
e-mail: jin0541@tamu.edu

Ashif Iquebal
Department of Industrial & Systems Engineering,

Texas A&M University,
College Station, TX 77843

e-mail: ashif_22@tamu.edu

Satish Bukkapatnam
Department of Industrial & Systems Engineering,

Texas A&M University,
College Station, TX 77843
e-mail: satish@tamu.edu

Andrew Gaynor
Design Optimization Team, Weapons and

Materials Research Directorate,
Army Research Lab,

Aberdeen Proving Ground,
Adelphi, MD 21005

e-mail: andrew.t.gaynor2.civ@mail.mil

Yu Ding
Department of Industrial & Systems Engineering,

Texas A&M University,
College Station, TX 77843
e-mail: yuding@tamu.edu

A Gaussian Process Model-
Guided Surface Polishing Process
in Additive Manufacturing
Polishing of additively manufactured products is a multi-stage process, and a different com-
bination of polishing pad and process parameters is employed at each stage. Pad change
decisions and endpoint determination currently rely on practitioners’ experience and sub-
jective visual inspection of surface quality. An automated and objective decision process is
more desired for delivering consistency and reducing variability. Toward that objective, a
model-guided decision-making scheme is developed in this article for the polishing process
of a titanium alloy workpiece. The model used is a series of Gaussian process models, each
established for a polishing stage at which surface data are gathered. The series of Gaussian
process models appear capable of capturing surface changes and variation over the polish-
ing process, resulting in a decision protocol informed by the correlation characteristics
over the sample surface. It is found that low correlations reveal the existence of extreme
roughness that may be deemed surface defects. Making judicious use of the change
pattern in surface correlation provides insights enabling timely actions. Physical polishing
of titanium alloy samples and a simulation of this process are used together to demonstrate
the merit of the proposed method. [DOI: 10.1115/1.4045334]

Keywords: correlation parameters, endpoint, Gaussian process, pad change, polishing
process, additive manufacturing, modeling and simulation

1 Introduction
Polishing plays a critical role in making additive manufacturing

(AM) products practically useful. By the nature of AM, the
surface of its products, without post-processing, are too rough to
meet designed tolerances. For many metal AM products, surface
polishing is inevitable [1]. Studies also show that polished surface
finish significantly enhances the fatigue life of AM products [2].
In practice, polishing is carried out over multiple stages for cre-

ating a desired surface finish [3,4]. Pads of progressively decreasing
grit sizes, oftentimes with increasing pad stiffness, are employed
over these stages. Within each polishing stage, the asperities of par-
ticular sizes (scales) are removed as a result of repetitive relative
motion between asperity and the polishing pad with fixed or loose
abrasive grains [5]. Two decisions regarding pad operations
agonize practitioners in part because they have to be tailored for
each particular polishing process—(1) when to change the polishing
pads and (2) when to stop the entire polishing process.
A pad change is warranted for two reasons. The first reason stems

from pad deterioration, as the action of polishing understandably
deteriorates the surface quality of a polishing pad. The second
reason is to transition from the current grit to a finer grit. The key
trigger for the pad change in this latter case is the cessation of asper-
ities of particular scales being uniformly distributed over a work-
piece surface. Consequently, no matter which reason it is, the use
of a worn-out or ineffective polishing pad could harm the product
surface under polishing, rather than improve it, a phenomenon
known as over-polishing. While prior research has yielded
approaches to automate the detection of pad damage (i.e., the first

reason) [6,7], a systematic approach to decide the end of a polishing
stage based on cessation of a set of asperities (i.e., the second
reason) has not been addressed in the literature.
The current practice for polishing process decision making relies

heavily on practitioners’ visual inspection of the surface roughness
condition. That the polisher’s intuition of when the surface condi-
tion plateaus out and when the pad damage sets in plays a critical
role in deciding when to stop the polishing process. Consequently,
significant process cycle time is consumed by repeated stoppage
and surface inspections (visual or through the use of instruments)
[8,9]. Quantitative surface roughness metrics do exist, and the
most commonly used during polishing in industry is the average
roughness parameter, denoted by Ra for one-dimensional profiles
or Sa for two-dimensional areas [10]. The average roughness
parameter is calculated, using surface measurements taken by a pro-
filometer, as the mean absolute deviation (MAE) about the center
line within the evaluation length or area. Recent advances in
optical imaging and microscopy allow fast estimation of Sa over
vast areas of an AM product [11]. Even so, in our research, we dis-
cover that while the surface roughness measure could be useful as
an average indicator of the rough level of a surface, it does not ade-
quately capture other subtleties of surface textures and may mislead
the decision process.
Let us consider the simple examples in Fig. 1, in which the order

of the Sa values contradicts the intuitive roughness of the respective
surfaces. The three surfaces in Fig. 1 have their roughness values,
respectively, as Sa= 0.036 μm, Sa= 0.034 μm, and Sa=
0.028 μm. The surface in Fig. 1(a) is noticeably smoother than
those in Figs. 1(b) and 1(c). Yet, the three Sa values are close to
each other. Worse, the Sa value associated with Fig. 1(c) is even
smaller than that associated with Fig. 1(a). Apparently, using Sa
to select the best surface could be counterproductive. We will
present in the later section more examples to show the limitation
of the current surface roughness measure.
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In our research, we explore and investigate the strategies and
options of a model-guided decision process for the polishing of
metal AM products. It does not come as a surprise that Gaussian
process (GP) turns out to be a useful modeling tool for this
purpose. GP modeling is widely used in spatial statistics [12] and
later extended for broader purposes of machine learning [13]. If
we treat the measurements taken by a profilometer at multiple loca-
tions on a product surface as if they were spatial measurements taken
over a landscape, then the relevance of GP becomes self-evident.We
discover that the correlation parameters associated with polishing
stages can reveal the subtle features of the surface as well as their
changes during the polishing process. Making judicious use of this
insight leads us to devise a GP model-guided decision protocol for
advising important actions in the polishing processes.
We understand that GP models have been used in the AM appli-

cations but want to stress that their current and previous uses are for
different purposes. Moroni et al. employ a GP model to estimate the
deviation of a real rough surface from the computer-modeling
nominal smooth surface to give the designer a more accurate
preview of the additive manufactured parts [14]. Tapia et al.
develop a GP regression model to predict the part pore generation
during a selective laser melting process and to express the porosity
with respect to certain processing parameters, such as laser power,
scanning speed, and layer thickness [15]. Tapia et al. build a generic
workflow process based on GP regression to understand the uncer-
tainty in the laser powder-bed fusion process [16]. To our best
knowledge, we are the very first to develop a GP model to guide
the decision making in a polishing process of metal AM products.
The rest of the paper unfolds as follows. Section 2 describes the

data collection process and provides a Sa-based preliminary analy-
sis of the surface roughness. Section 3 presents the GP model
devised to reflect the dissimilarity among local areas of the
surface, in order to capture subtle surface features and their
changes over time. The GP model-guided decision rule is then pro-
posed for informing pad change and the endpoint. Section 4 ana-
lyzes the data from two physical polishing experiments, while
Sec. 5 analyzes the data from a simulated polishing process,
together these case studies demonstrate the merit of the proposed
method. Section 6 summarizes our work with some concluding
remarks.

2 Polishing Experiment Data and Preliminary Analysis
In this research, we focus on the polishing process of a metal AM

product and, specifically, the 3D-printed Ti–6Al–4V alloy samples.
The printing process to obtain these samples involves depositing a
50 μm layer of Ti–6Al–4V powder that consists of Ti–6Al–4V par-
ticles of average diameter of 72 μm using a focused beam of 3mA
and a scanning speed of 10m/s [17]. Each of the Ti–6Al–4V alloy
samples is polished from a raw stage (Fig. 2(a)) to a smooth stage
(Fig. 2(e)) with a specular surface finish. Figures 2(b) through 2(d )
show the surfaces at intermediate stages during the polishing
process.
During the polishing process, we pause the polishing action from

time to time and take surface measurements using a ZeGage™ 3D
optical profiler, named “Zygo” after its producer. The polishing
process is therefore discretized at the pausing times, each of
which is referred to as a “stage” and denoted by t∈ {1, …, T},
where T is the total number of stages.
At each stage, a total of M inspection locations are randomly

sampled over the surface of the Ti–6Al–4V alloy sample. Zygo
is used to take measurements at each of the M locations. The
Zygo measurements are not a single scalar output but a profile
image covering a small local area of 800 × 800 μm2. The 800 ×
800 μm2 area is divided into 1024 × 1024 pixels, and Zygo mea-
sures the surface height at each pixel. One can conceptualize the
surface measurements as a collection of M height matrices, each
of which is of 1024 × 1024 dimensions. Please see the illustration
in Fig. 3.
We use x= (x1, x2) to denote the coordinate of a location and use

X, Y to denote the index of pixels within a location, such that X∈
{1, …, 1024} and Y∈ {1, …, 1024}. The pixel height is denoted
by z. In Zygo measurements, z can be either positive or negative.
We refer to a positive height as a peak and a negative height as a
valley.
Within each location, the local surface roughness is characterized

by the three-dimensional data set {(X, Y, z)}. But handling a 3D
dataset can be burdensome. Following what is proposed by
Stewart [18], we choose to convert the 3D response surface to a
2D profile, known as the bearing area curve. The bearing area
curve is basically a quantile curve, i.e., ordering the z values asso-
ciated with the pixels from the largest to the smallest and plot them

Fig. 1 Different surfaces but similar Sa values: (a) Sa=0.036 μm, (b) Sa=0.034 μm, and (c) Sa=0.028 μm

Fig. 2 Illustration of surface roughness of the Ti–6Al–4V sample along the polishing process
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against the quantile values. Figure 4(a) presents an example of the
quantile curves at one of the polishing stages. For the M locations
on the sample at stage t, the surface measurements manifest as
the collection of M quantile curves, as shown in Fig. 4(b).
Based on the surface measurements at each location, Sa can be

calculated for that location as follows:

Sa =
1

1024 × 1024

∑1024
X=1

∑1024
Y=1

|zX,Y − �z| (1)

where �z is the sample average of all z’s associated with the same
location. Over the whole surface, there are M distinct Sa values.
Understandably, the Sa values are different at different locations.
The variation and distribution of Sa’s can be visualized using a
boxplot per stage.
On one of the Ti–6Al–4V alloy samples, we take surface mea-

surements at a total of 22 stages, i.e., T= 22. At each stage, the
number of locations is M= 32. We plot the boxplots of Sa’s over
the 22 stages, as in Fig. 5(a), where the horizontal bar in a box indi-
cates the median of Sa’s for that stage. It is not difficult to notice that
the median of Sa’s sees a sharp decline in the very early stages but
soon plateaus. Figures 5(b) and 5(c) present the Sa boxplots for a
range of stages so that the boxplots are not too much compressed
due to too large a value at the early stages.
The use of median Sa certainly does not inform when to change

the polishing pads. It is difficult to signal when to stop, too. If one
stops after the initial rapid descent, say, at stage 3 or 4, doing that

would be surely premature. If not, when else is a good time to
stop? After the initial descent, the fluctuation in Sa certainly frus-
trates practitioners.
In addition to the lack of clear clues informing decisions in the

polishing process, we also observe that the median Sa value at
stage 10 is smaller than that at stage 11. Let Sat denote the
median of Sa’s at stage t. Then, Sa10 = 0.069 μm and
Sa11 = 0.123 μm. On surface, this may leave an impression that
the surface quality gets worse from stage 10 to stage 11, meaning
that the polishing action in between is harmful rather than
helpful. But a closer look indicates that the opposite is true. At
stage 10, although the overall surface is reasonably flat
(Fig. 6(a)), there exist multiple, isolated surface anomalies like
spikes or scratches (Fig. 6(b)). The polishing process from stage
10 to stage 11 in fact removes many of these surface anomalies
and indeed improves the surface quality. Such subtle surface fea-
tures are not captured by the median Sa values. The limitation of
the current decision metrics calls for new modeling and decision
rule development.

3 Gaussian Process Model for Polishing Decisions
The inconsistent human’s intuition and unsatisfactory Sa repre-

sentation raise the need of developing a model-guided polishing
decision process. Our goal is to find out a simple quantitative
measure that can reflect the surface subtleties, complementing Sa
that represents the average roughness. Based on these two

Fig. 3 An illustration of M inspection locations and the magnified view within an
inspection location

(a) (b)

Fig. 4 Illustration of quantile curves: (a) quantile curve of one inspection location and (b) quantile curves of allM locations on the
sample surface
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measures, a polishing operation decision rule is then developed to
accommodate the need for online measurement and operation of
polishing processes.

3.1 Modeling of the Surface Roughness Data. We model the
responses at each stage individually and then use the estimated
model parameters to draw inference about the status of the polishing
process.
For a given stage t, the surface roughness data are expressed in a

collection ofM quantile curves, each associated with one inspection
location. Denote by s the horizontal axis of the quantile curve plots
in Fig. 4. Recall that the vertical axis is denoted by z. Counting the
location coordinates, (x1, x2), there are three inputs, which we use w
to denote, namely, w= (s, x1, x2)

T.
We devise the following GP model for stage t:

zt(w) = βt0 + τt(w) + ϵt , t = 1, . . . , T (2)

where the superscript “t” signifies the stage dependence. In the
above model, we simplify the general mean trend function by a
constant β0. This is a common treatment in GP modeling [13],
because a GP model is nonparametric in nature and rather flexible
to model a wide variety of nonlinear response surfaces so that a non-
linear mean function may not be necessary. The second term, τt(w),
is the stochastic term of a multivariate Gaussian distribution,
N (0, K), where the covariance matrix K is to be modeled

through a covariance structure as discussed in the sequel. The sto-
chastic term, τt(w), is to capture systematic features over the pol-
ished surface at both scales: the micro-scale within a location
associated with s and the macro-scale between locations associated
with (x1, x2). Rasmussen and Williams [13] analyze how the
smoothness of the sample path curve is affected by the correlation
parameters. In our GP model, the smoothness of the response at a
single location is represented by the micro-scale correlation param-
eter, while the similarity among the response curves is characterized
by the macro-scale parameters. The more dissimilar among the adja-
cent locations over the surface, the more evident that further polish-
ing is needed for the surface. The last term, ϵt, is the independently
and identically distributed (i.e., i.i.d.) random noise of a zero mean
and a stage-dependent variance, (σtϵ)

2. Often the superscript t is
dropped, e.g., the variance is expressed as σ2ϵ , when there is no
danger of ambiguity.
The original surface roughness data at any given stage is a set of

functional responses. A number of past research efforts choose to
model and solve such a problem via a functional GP model [19–
21]. Our treatment is a little different. By discretizing the variable
s, the GP model in (2) can be solved in a regular GP modeling
fashion. This simplifies the modeling and solution procedure and
we believe doing so facilitates the use of the model in engineering
applications. To guide the choice in discretization, a sensitivity
analysis is conducted in Sec. 4.1, Fig. 7, for selecting the proper
sample size.

(a)

(b) (c)

Fig. 5 Overview of the Sa boxplots during the polishing process: (a) Sa boxplots for all stages, (b) Sa boxplots from stages 9 to 14,
and (c) Sa boxplots from stages 14 to 22
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A key issue in GP modeling is to specify the covariance function
for the stochastic term, τt(w). We use a squared-exponential covari-
ance function, arguably the most commonly used one in GP model-
ing [13], as follows:

k(w, w′) = σ2τ · exp −
1
2

x − x′‖ ‖2
θ2x

+
s − s′| |2
θ2s

( ){ }
(3)

Here, we assume that the Gaussian random field over the polishing
surface is isotropic so that there is one common scale parameter, θx,
used for both x1 and x2 directions. The scale parameter for the quan-
tile curve is different, which is denoted by θs. We believe that the
assumption of isotropy over the polishing surface is reasonable,
because the AM part is subject to quasi-random orbital motion as
the polishing process progresses. There is no evidence to suggest
that the surface roughness along one direction differs substantially
from that along another direction. In (3), all terms are stage depen-
dent, but for notational simplicity, the stage superscript t is not
shown explicitly.
Once the covariance function, k, is specified, it can be used to

compute the covariance matrix. Along the s axis of a quantile
curve, there are 1, 048, 576 pixels. To make the computation
easier, we sample a subset of S pixels with their quantile values
and respective roughness heights. In the experiments, this S is
usually kept less than 100, which is numerous enough to represent
a quantile curve. The total number of data points used for this GP
model is then N=M× S. The covariance matrix for the N data
pairs, (wi, zi), i= 1, …, N, is denoted by KNN, whose (i, j)th
element, (KNN)i,j, is simply k(wi, wj).

Under such a model set up, the parameters to be estimated for the
GP model at stage t are Θt = βt0, σtϵ, θ

t
x, θ

t
s, σ

t
τ

{ }
. These parameters

can be estimated for a specific stage by maximizing the
log-likelihood function in (4):

log p(z|Θ) = −
1
2
(z − β0)

T [σ2ϵ · I +KNN]
−1(z − β0)

−
1
2
log σ2ϵ · I +KNN

∣∣ ∣∣ − N

2
log (2π) (4)

where the stage subscript t is omitted for notational simplicity.

3.2 The Gaussian Process-Based Decision Rule. The scale
parameters of the GP model in (2) reflect the strength or weakness
of spatial correlation. Understandably, θx reveals the correlation
among different locations, whereas θs is corresponding to the
smoothness of the quantile curve. As we are more concerned with
the polishing quality over the whole sample surface, θx is of a
greater value to our decision process. The scale parameter, θs,
may be used as a secondary indicator for the purpose of model rep-
resentation verification. In our physical experiments, we found that
for the time being, using θx without consulting θs appears to be
sufficient.
In the initial stages, the workpiece consists of undulations and

defects. Existence of these aberrations increases the spatial hetero-
geneity across the sample, resulting in a smaller θx (i.e., low spatial
correlation). As the polishing progresses, the sample surface gradu-
ally becomes smoother, thereby increasing the spatial correlations
as well as the value of θx. However, due to the presence of noise,

(a) (b)

(c)

Fig. 6 Median Sa misses anomalies in surface roughness: (a) the local surface averaged over all M locations at
stage 10, (b) surface anomalies at certain location at stage 10, and (c) the local surfaces at stage 11: slightly increased
roughness but almost no spikes
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a number of complexities must be accounted for in the decision
process and they are elaborated in the following.
First, the overall roughness of the surface is decreasing, resulting

in a stage-varying reference level for quantifying θx. This means
that what value of θx is considered large and what is small is not
absolute but relative. Second, θx does not increase monotonically.
Rather, it could decrease at some stage. Recall the over-polishing
phenomenon discussed earlier. At certain point, due to the dete-
rioration or ineffectiveness of the polishing pad, a continuing pol-
ishing could introduce pits and scratches (shown as spikes in
Fig. 6) to an otherwise smooth surface. Over-polishing explains
to certain extent the fluctuation in Sa as well as in θx. Our analysis
shows that θx is more sensitive and hence a better indicator.
With these thoughts in mind, when devising a decision rule, it is a

robust practice if we track and check the trend in the change of θx,
rather than compare it with an absolute threshold. Moreover, recall
that the pad change is usually warranted for two causes. To distin-
guish the cause of pad deterioration from the need of grit size tran-
sition, we include an average indicator of the surface quality that
pads of a specific grit size can achieve. We do not intend to intro-
duce unnecessary measurement actions. Practically, the median
Sa value as a loose threshold for distinguishing the causes is sensi-
ble. In the end, the scale parameter, θx, and the median Sa are used
together to advise decision making in the polishing process, i.e., the
rule is that the surface of a high θx and with a median Sa above
the loose threshold is considered for the need of refreshing a pad
of the same grit size, while a high θx and a median Sa below the
threshold is time for changing the pad. Both quantities, the
median Sa and θx, are available from the surface measurements
taken at each stage.
The last consideration is the introduction of an initial phase in

which we do not invoke the use of the GPmodel parameters.We dis-
cover that until the initial, rough morphology of the asperities is pol-
ished off, there is not much a trend in θx and using it does not add
much value to the decision-making process. Clearly, no experienced
engineer would stop in the early polishing stages anyway. There-
fore, our use of the GP model skips the initial phase, which is deter-
mined based on a prescribed median Sa threshold. The following
Algorithm 1 presents the decision-making process for pad change
and polishing endpoint, as advised by the GP model.
In algorithm 1, α is a constant, introduced to signal a change in θx.

Because θx is estimated from noisy data, it is naturally subject to

variation. Using a constant thresholding, e.g., α= 0.9 or 0.95, is a
simple but effective way to avoid being overly sensitive to
changes in the parameters. Too large a value of α (close to 1)
may result in frequent pad changes, while too small a value may
miss detecting timely the formation of additional scratches and
defects. We recommend using α= 0.9 and setting that as the
default value. We tested the use of α= 0.95 and found it will not
make much difference in our application. We want to note that
using 90–95% of the peak value, rather than the peak value itself,
is a rather common engineering practice to combat the adversary
impact of noise and disturbance. As for the median Sa threshold,
we recommend it to be around 0.5 μm for the best result of a
800-grit pad (of abrasive size 13 μm), around 0.2 μm for a
1200-grit one (of abrasive size 8 μm), and around 0.05 μm for a
fine polishing microcloth (with the use of alumina of abrasive
size 0.6 μm suspended in an aqueous solution).

Algorithm 1 GPmodel-guided decision rule for pad change and
endpoint

(1) Initialize t − 1 ← 0 and θ(t−1)
x ← 0.

(2) If θ(t)x < α · θ(t−1)
x , go to step 3; otherwise, go to step 4.

(3) If Sa is greater than the pre-specified Sa threshold, clean the current pad
or use a new pad but of the same grit size; otherwise, change to a pad of
finer grit size.

(4) Set t − 1 ← t and θ(t−1)
x ← θ(t)x and keep polishing to the next stage,

Stage t. Repeat steps 2 and 3, until no finer pad is available when
being suggested for a pad change in step 3.

4 Physical Polishing Experiments
To illustrate the use of Algorithm 1 in polishing processes, we

conduct a Ti–6Al–4V sample polishing experiment, polishing it
from a raw stage to a smooth stage. The polishing stages are
shown in Fig. 10 in Appendix. A second polishing experiment
using another raw Ti–6Al–4V sample is conducted based on polish-
er’s experiences only to contrast the effectiveness with and without
the guidelines of Algorithm 1. Besides, the data preprocessing pro-
cedures are imposed at each polishing stage to accommodate the
accuracy and computational requirement for modeling.

Fig. 7 Sensitivity in the number of pixels used to sample the quantile curve

011003-6 / Vol. 142, JANUARY 2020 Transactions of the ASME



4.1 Data Preprocessing. One data preprocessing action
undertaken is to remove outliers that may be due to measurement
errors and anomalies. The specific action is to rank in a boxplot
the pixel heights, i.e., the z values, for a specific location and at a
specific stage. Then, remove outliers flagged as the observations
outside the two whiskers of the boxplot. The use of a boxplot is
rooted in solid statistical footing and avoids using a fixed percent-
age for outlier removal. Our experience shows that doing so pro-
duces results more consistent and robust.
Recall that we sample a subset of pixels along the s axis to rep-

resent the quantile curves. To ensure the quality of sample represen-
tation of the curves, pixels are selected more densely in the tails of
the curves than in the middle part of the curves. Our choice of the
sample size is S= 70. To investigate whether a larger subset is
needed, we conduct a sensitivity analysis using S from 70 to 120.
Figure 7 presents the curve fitting using different number of pixel
samples. We do not see much additional benefit resulting from sam-
pling a greater number of pixels.

4.2 Polishing Guided by Algorithm 1. In the first experiment
reported here, we follow the general guideline for pad change and
stopping as outlined in Algorithm 1. The experiment comprises a
total of 26 stages, where stage 0 indicates measurements taken
before any polishing action. We have at our disposal three grit
sizes of polishing pad, which are, from coarsest to finest, the
800-grit, 1200-grit, and microcloth. The polishing process setting
is shown in Table 1. The images of the AM part for all the 25
stages (excluding stage 0) are included in Appendix.
We conduct the modeling and parameter estimation at each stage.

The resulting GP model parameters are listed in Table 2. In the last
column of the table, we also include the median Sa values.
Among the GP model parameters, β0 indicates the offset of the

reference plane from zero. For most of the stages, its values are
close to zero. This means that the Zygo machine has a good self-
calibration mechanism to locate the reference plane. The standard
deviation of the noise, σϵ, declines rapidly and then plateaus at a
small magnitude from stage 5 and onward. The standard deviation
of the stochastic term, στ, trend-wise mirrors that of Sa. This makes

sense because Sa is the MAE of the surface, whereas στ is the stan-
dard deviation associated with the variability between locations.
The MAE and standard deviation are not of the same values but
they are related. The two scale parameters, θx and θs, are associated
with between-location (macro-scale) and within-location (micro-
scale) correlations. As discussed earlier, we primarily rely on θx
for decision making.
Our polishing process goes through the following phases, as

advised by Algorithm 1:

(1) The initial phase. Up to stage 4, it is the initial phase. Stage 4
is included in the initial phase because before completing that
stage, one will not know for sure that Sa is below the thresh-
old of 0.5 μm. Looking at Table 2, this breaking point makes
sense if examining the values of σϵ, because after stage 5, σϵ
plateaus at a much smaller magnitude. During this phase,
there is no pad change nor expectation to stop the process
occurring.

(2) The first pad change. Following the decision rule in Algo-
rithm 1, from stage 5 onward, we track the change in θx
and are keen to detect the first substantial decrease in it,
which indicates likely occurrence of over-polishing. The spe-
cific rule used is θ(t)x < α · θ(t−1)x , where α= 0.9. The stage
where the rule is triggered is stage 11, at which point we
switch to the 1200-grit pad.

(3) The second pad change. After the first pad change and fol-
lowing the same logic, we should have changed the pad
again at stage 18 when more than 10% decrease in θx is
detected. Here, we purposely delay the pad change. We
would like to observe what if we do not change the pad—
Will the current pad continue to improve the surface or
not? The 1200-grit pad is used from stage 19 through stage
22. By observing Sa and inspecting the sample surfaces,
we do not find much improvement by the extra steps of pol-
ishing using the same pad. The four extra steps take a total of
390 min. Should the original decision rule be followed, this
much time would have been saved.

(4) The end point. At stage 22, the polishing is switched to using
a microcloth. With that, a change point is detected at stage

Table 1 The physical polishing process settings for experiment #1

From To
Time
(min)

Down
force (lbs)

Head
speed
(rpm)

Base
speed
(rpm) Pad

Alumina
solution

Stage 0 Stage 1 5 10 100 50 800 No
Stage 1 Stage 2 5 10 100 50 800 No
Stage 2 Stage 3 10 10 100 50 800 No
Stage 3 Stage 4 10 10 100 50 800 No
Stage 4 Stage 5 10 10 100 50 800 No
Stage 5 Stage 6 15 10 100 50 800 No
Stage 6 Stage 7 15 10 100 50 800 No
Stage 7 Stage 8 15 10 100 50 800 No
Stage 8 Stage 9 15 10 100 50 800 No
Stage 9 Stage 10 15 10 100 50 800 No
Stage 10 Stage 11 15 10 100 50 800 No
Stage 11 Stage 12 15 10 100 50 1200 No
Stage 12 Stage 13 30 10 100 50 1200 No
Stage 13 Stage 14 30 10 100 50 1200 No
Stage 14 Stage 15 30 10 100 50 1200 No
Stage 15 Stage 16 30 10 100 50 1200 No
Stage 16 Stage 17 30 10 100 50 1200 No
Stage 17 Stage 18 70 10 100 50 1200 No
Stage 18 Stage 19 60 10 100 50 1200 No
Stage 19 Stage 20 60 10 100 50 1200 No
Stage 20 Stage 21 120 10 100 50 1200 No
Stage 21 Stage 22 150 5 100 50 1200 No
Stage 22 Stage 23 120 5 100 50 Microcloth Yes
Stage 23 Stage 24 60 2 100 50 Microcloth Yes
Stage 24 Stage 25 60 1 100 50 Microcloth Yes
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25. Since microcloth is the finest material to polish the
sample surface, this last change point also naturally signals
the endpoint of the polishing process. We therefore stop
the process there.

What if we did not use the GP model parameter for decision
making but rather used Sa and relied on experience? Because the
polishing process is a destructive process, it is impossible to
repeat the same process on the same sample once it has already
been polished. In Sec. 4.3, our team conducts another experiment
largely based on experience. We can garner additional insight
from this control-group experiment. Here, we can nevertheless
take a retrospective look at the sequence of Sa values in Table 2

and see if it offers strong enough clues for pad change and the
endpoint.
The value of Sa sees rapid declines in the initial few steps, but it is

a bit difficult to decide when exactly to change to a finer grit pad.
Too early a change could be detrimental; we will see such a
misstep in the next experiment. After stage 5, Sa fluctuates for a
long stretch without a clear pattern to trigger pad change or the end-
point. Recall the switch to microcloth at stage 22 and is triggered by
using the GP scale parameter and not by a pattern observed in Sa.

4.3 Polishing Based on Experience. To contrast the polishing
effectiveness with and without guidelines in Algorithm 1, we
conduct a control-group experiment, referred to as experiment #2
here, which is largely based on experience. As in experiment #1,
the same three grit sizes of pad are available to the team. The pol-
ishing process setting of experiment #2 is shown in Table 3. Exper-
iment #2 comprises a total of 23 stages.
Although the control-group team does not use the GP parameters

for their decision making, they nonetheless save all the data, which
is later used to fit the GP model retrospectively for comparison pur-
poses. The parameters, together with Sa, are presented in Table 4.
In experiment #2, the control-group team switches the pad too

soon, after observing the first significant decrease in Sa at stage
3. This is after about 10-min operation using the coarsest pad,
and this change is consistent with the typical rule on polishing
time under this grit size.
But the use of 1200-grit pad at this point turns out to be a frustrat-

ing experience because it fails to remove certain surface anomalies
after more than 280min of operation. As a result, Sa is stubbornly
stuck at a high roughness level (above 1 μm). The team changes
back to the 800-grit pad, and that action produces a noticeable
improvement.
The next pad change takes place at stage 13, where the team

changes the pad again to 1200-grit and uses it to polish the
sample for 160min. After that, the pad is changed to microcloth,
which is used for the rest of the operation. All these changes are
based on intuition rather than on quantitative measures because
there is no clear pattern in Sa to advise these actions.
Had the team used the scale parameter to advise pad change, the

first change point would have been at stage 9. In fact, should the
800-grit pad have been applied without going back and forth
between the 800-grit and 1200-grit pads, we believe that it would

Table 2 GP parameter estimates for experiment #1

Stage σϵ θx θs στ β0 Sa

Stage 0 0.2898 0.1141 0.0721 18.4327 −0.1886 25.924
Stage 1 0.0322 0.1316 0.0815 6.9842 −2.5420 11.405
Stage 2 0.0189 0.1215 0.0715 6.1934 −2.1364 6.510
Stage 3 0.0035 0.1026 0.0415 0.9928 −0.1037 1.398
Stage 4 0.0020 0.0820 0.0589 0.5251 −0.1310 0.304
Stage 5 9.09 × 10−5 0.0666 0.0692 0.4426 0.0031 0.118
Stage 6 6.54 × 10−5 0.0944 0.2972 1.4925 −0.2676 0.153
Stage 7 5.28 × 10−5 0.2051 0.1814 0.1790 −0.0220 0.135
Stage 8 5.64 × 10−5 0.2387 0.2266 0.4340 0.0790 0.144
Stage 9 6.46 × 10−5 0.2189 0.1900 0.3116 0.0376 0.163
Stage 10 5.65 × 10−5 0.2170 0.2126 0.3076 0.0392 0.141
Stage 11 7.59 × 10−5 0.1720 0.1888 0.2899 0.0795 0.174
Stage 12 7.13 × 10−5 0.1652 0.1351 0.1454 0.0125 0.180
Stage 13 4.10 × 10−5 0.1738 0.2207 0.1847 −0.0449 0.094
Stage 14 6.22 × 10−5 0.1754 0.1726 0.1496 −0.0063 0.169
Stage 15 5.69 × 10−5 0.2197 0.2106 0.1746 −0.0437 0.171
Stage 16 5.66 × 10−5 0.2350 0.2049 0.1741 −0.0380 0.165
Stage 17 5.21 × 10−5 0.2317 0.2005 0.1545 −0.0376 0.137
Stage 18 7.42 × 10−5 0.1970 0.1555 0.1362 −0.0003 0.207
Stage 19 5.07 × 10−5 0.1825 0.2152 0.1898 −0.0618 0.128
Stage 20 4.81 × 10−5 0.2052 0.2296 0.2707 −0.1172 0.120
Stage 21 4.91 × 10−5 0.2297 0.1945 0.2125 −0.1216 0.116
Stage 22 5.20 × 10−5 0.2000 0.1961 0.1705 −0.0307 0.140
Stage 23 2.87 × 10−5 0.1369 0.1367 0.0591 −0.0006 0.061
Stage 24 2.83 × 10−5 0.1694 0.0982 0.0386 0.0015 0.053
Stage 25 3.16 × 10−5 0.0050 0.1150 0.0560 0.0006 0.054

Table 3 The physical polishing process settings for experiment #2

From To
Time
(min)

Down force
(lbs)

Head speed
(rpm)

Base speed
(rpm) Pad

Alumina
solution

Stage 0 Stage 1 3 10 100 50 800 No
Stage 1 Stage 2 4 10 100 50 800 No
Stage 2 Stage 3 3 10 100 50 800 No
Stage 3 Stage 4 4 10 100 50 1200 No
Stage 4 Stage 5 30 10 100 50 1200 No
Stage 5 Stage 6 40 10 100 50 1200 No
Stage 6 Stage 7 90 10 100 50 1200 No
Stage 7 Stage 8 120 10 100 50 1200 No
Stage 8 Stage 9 10 10 100 50 800 No
Stage 9 Stage 10 15 10 100 50 800 No
Stage 10 Stage 11 30 10 100 50 800 No
Stage 11 Stage 12 60 10 100 50 800 No
Stage 12 Stage 13 70 10 100 50 800 No
Stage 13 Stage 14 160 5 100 50 1200 No
Stage 14 Stage 15 60 5 130 70 Microcloth Yes
Stage 15 Stage 16 110 2 110 60 Microcloth Yes
Stage 16 Stage 17 120 1 120 60 Microcloth Yes
Stage 17 Stage 18 30 1 120 60 Microcloth Yes
Stage 18 Stage 19 30 1 120 60 Microcloth Yes
Stage 19 Stage 20 30 1 120 60 Microcloth Yes
Stage 20 Stage 21 30 1 120 60 Microcloth Yes
Stage 21 Stage 22 30 1 120 60 Microcloth Yes
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not take nine stages to arrive at the change point. The second pad
change point would have taken place at stage 12, and the final
process would have stopped at stage 17, assuming that the scale
parameter trend and pattern remain the same. Approximately 300
min would be saved if the process had been guided by the decision
rule in Algorithm 1.
We would like to articulate two observations supporting our

claim of the merit of using the GP-based guideline and the short-
coming of the experience-based decision process.
The first observation is made when visually comparing the

surface quality at stage 3, stage 8, and stage 9 in Fig. 8. It is not dif-
ficult to understand why the change to the 1200-grit pad is prema-
ture, because there is still noticeable raw roughness left on the
surface at stage 3. The application of the 1200-grit pad helps but
is not effective, as evident by the same pattern of roughness still
observable at stage 8. After applying the 800-grit pad again, it is
apparent that the surface at stage 9 is much smoother and the raw
roughness has been removed to a much greater extent. Therefore,
it is more reasonable to switch to the 1200-grit pad after stage 9.
The second observation is about the significant change in θx from

stages 16 to 17, while Sa is fluctuating rather than showing a clear
pattern. To us, that is a sign of over-polishing, signaling either a pad
change or an endpoint of the process (if the finest pad is being used
already). From stage 17 through stage 22, while the fluctuation
message is confirmed by the plateau in both θx and Sa, the scale
parameter, θx, is apparently more sensitive and can flag the endpoint
sooner.

5 Simulation Experiment
Polishing is an abrasive operation. Once polished, the part cannot

be restored to the original state to conduct a what-if study, such as
“What if we change the pad at an earlier stage?What benefit could it
bring?” To facilitate such studies, we decide to build a simulation
model to mimic the polishing process. The simulation model
attempts to capture the essence of the polishing operation, but con-
sidering all the complexities involved, in its current version it is not
yet capable of precisely replicating the physical outcome. It does
produce a sequence of parameter patterns mimicking what we
observe in the physical experiments; for that, we deem it useful.

5.1 Simulation Procedures. The surface profile obtained
from the actual unpolished surface is used as the initial sample
surface to perform the simulation. Let us call this z0(x, y). The simu-
lation of the polishing operation consists of two elements: first,
modeling the abrasive profile associated with the polishing pad
and second, modeling the action of applying a polishing pad to
the sample surface.

5.1.1 Polishing Pad Abrasiveness Generation. To simulate the
polishing pad, we first define the baseline denoted by μ(t) at stage t
(see Fig. 9). Initially, this is set to the average surface roughness of
the workpiece. Next, spherical abrasives with a fixed radius R and
normally distributed height h (measured from the center) with
mean μ(t) and standard deviation σ(t) are generated. The inter asper-
ity distance, a, is exponentially distributed with a scale parameter of
5R and is determined based on the distribution of abrasives on the
polishing pad as observed from the scanning electron micrographs.
In the (t+ 1)th polishing stage, the baseline is lowered by one unit

height, namely, 1 μm. The new baseline is accordingly updated to
μ(t)− 1. This is not to say that the material removed in the polishing
at every stage is always of 1 μm height. But the actual baseline
height change is difficult to estimate. The use of a constant here
is a simplification. We tried different values of constant and
found that the final result is not sensitive to the choice, as long as
the reduction in height is large enough.

5.1.2 Polishing Process Simulation. The polishing process
simulation is implemented with the following three steps:

(1) The first step involves intersection of the polishing pad with
the workpiece surface (shown as the shaded area in Fig. 9).
This is the amount of material removed in one pass. After t
polishing passes, let the workpiece surface be denoted by
zt(x, y).

(2) Next, we superimpose the pad roughness (zc(x, y)) to the
workpiece surface (zt(x, y)) obtained in the previous step.
This is accomplished by taking the following three actions:
• Generate the height profiles according to an uncorrelated

Gaussian distribution, i.e., zu(x, y) ∼ N (0, 1), where x
and y are coordinates of the 2D surface, zu is the height
of roughness, and the subscript, u, indicates
“uncorrelated.”

Table 4 GP parameter estimates for experiment #2

Stage σϵ θX θs στ β0 Sa

Stage 0 2.4835 0.1750 0.0767 46.7615 −1.7576 24.873
Stage 1 0.7358 0.1859 0.0786 16.4013 0.0475 4.422
Stage 2 1.3406 0.1919 0.0792 56.7901 −20.7301 5.452
Stage 3 1.0424 0.1753 0.0607 22.2674 −4.7154 1.582
Stage 4 0.4503 0.1908 0.0793 20.5310 −9.0351 1.403
Stage 5 0.4583 0.2067 0.0760 15.6656 −6.7286 1.363
Stage 6 0.8649 0.2006 0.0617 10.8910 −1.3232 1.556
Stage 7 0.4107 0.2034 0.0675 8.8720 −2.2710 1.188
Stage 8 0.2472 0.1960 0.0524 5.6581 −1.4584 0.740
Stage 9 0.2488 0.1636 0.0330 2.5462 −0.6953 0.109
Stage 10 0.3032 0.6312 0.0253 3.5086 −0.7442 0.069
Stage 11 0.0569 13.0682 0.0085 0.3262 0.0040 0.123
Stage 12 0.0466 2.2709 0.0189 1.1242 −0.2537 0.130
Stage 13 0.0407 4.7289 0.0393 5.8157 0.3392 0.104
Stage 14 0.0536 3.8895 0.0048 0.1158 −0.0073 0.031
Stage 15 0.1097 1.16E05 0.0045 0.1153 −0.0070 0.023
Stage 16 0.0748 2.93E05 0.0050 0.1035 −0.0074 0.028
Stage 17 0.0453 4.0675 0.0069 0.0859 −0.0020 0.028
Stage 18 0.0359 5.4172 0.0060 0.0931 −0.0003 0.026
Stage 19 0.0236 7.8204 0.0084 0.1309 −0.0031 0.023
Stage 20 0.0851 1.9713 0.0039 0.1624 −0.0103 0.027
Stage 21 0.0377 4.3438 0.0041 0.1265 −0.0054 0.026
Stage 22 0.0203 8.6444 0.0075 0.1188 −0.0031 0.026

Fig. 8 Sample surface quality at stage 3 to stage 8 and stage 9 in experiment #2:
(a) stage 3, (b) stage 8, and (c) stage 9
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• To obtain the Gaussian distributed height profile with
exponential autocovariance, we perform the convolution
of zu(x, y) with an exponentially varying auto-covariance
function given as

zc(x, y) = η

∫∞
−∞

exp −2
|x − x′| + |y − y′|

l

( )
zu(x

′, y′)dx′dy′

where l is the scale length and η controls the amplitude of
the surface zc(x, y). To determine η, it is reasonable to con-
sider that the average surface roughness in the final stage
of the polishing process is indicative of the pad roughness
and is estimated by equating zc(x, y) to the final stage
surface roughness Sa as

η = Sa

∫∞
−∞

exp −2
|x − x′| + |y − y′|

l

( )
zu(x

′, y′)dx′dy′
[ ]−1

The use of the exponential auto-covariance function is
because such choice is well suited for mimicking the
real pad roughness. As polishing ensues, the surface gets
smoother and nearby locations are more and more
similar to each other, thereby increasing the autocorrela-
tion. However, the surface still contains sub-micrometer
aberrations. In this regard, exponential autocovariance
function is better suited to mimic the real pad roughness
as compared to other auto-covariance functions such as
squared exponential that results in ultra-smooth profiles.
To numerically obtain the convolution, we use the convo-
lution theorem that states that the Fourier transform F of
the convolution of two signals is the point-wise product
of the Fourier transform of the two signals, i.e.,
f *g = F−1{F (f ) · F (g)}, where * is the convolution oper-
ator, · is the point-wise product, and F−1 is the inverse
Fourier transform.

• Then, we superimpose the pad roughness zc(x, y) to the
surface zt(x, y) obtained after the first operation.

(3) Finally, random white noise is added to account for
un-modeled system noise and measurement noises.

In the following simulation experiment, polishing pads of dimen-
sion 1024 μm × 1024 μm are used with parameters specification
elaborated in Sec. 5.2.

5.2 Simulation Experiments. We use the simulation to study
the timing and impact of a single pad change action, presumably
from a 800-grit pad to a 1200-grit pad.
In the first version of the simulation experiment, we guide the pad

change purely by Sa. The rule is: change the pad when Sa is at or
below 0.1 μm. Following this rule, the pad change takes place
after stage 7. Before and including stage 7, the pad parameters
used are R= 1 μm, σ(t)= 0.1 μm, and l (in μm)∼ uniform(100,

500). After stage 7, the pad parameters are changed to R=
0.5 μm, σ(t)= 0.01 μm, and l (in μm)∼ uniform(100, 500).
If we look at the value of θx, we notice that following the rule in

Algorithm 1, the pad change would have happened at stage 4, much
sooner than using Sa. Then, a relevant question is what would
happen, had we indeed changed the pad after stage 4.
The simulation experiment allows us to rewind the process by

using the simulation data saved in every step. Therefore, we basi-
cally go back to stage 4 and take the outcome of the simulated pol-
ishing up to that stage but apply a 1200-grit pad instead. The
simulated outcome of the new process is presented in Table 6. In
the old process (Table 5), the polishing action takes eight stages
to reduce the surface roughness to 0.093, whereas in the new
process (Table 6), the polishing action takes six stages to accom-
plish the same. By the eighth stage, the new process polishes the
surface to the roughness level of 0.076, a further 18% reduction
in roughness.

6 Concluding Remarks and Future Work
This work proposes a model-guided polishing process which

alleviates the inconsistency in the decision process of surface

Fig. 9 Schematic showing the modeling of abrasive profile and the convolution of the
sample surface profile (heights z) with the abrasive profile (with heights h). The spheri-
cal asperities are assumed to be embedded on the pad surface. The material removed
during a particular cut is the shaded area.

Table 5 A simulation experiment guided by Sa

Stage σϵ θx θs στ β0 Sa

Stage 1 2.4560 9.6238 3.8 × 10−2 4.7364 −0.5693 0.1705
Stage 2 2.4379 10.4220 3.5 × 10−2 4.5112 −0.5333 0.1552
Stage 3 2.4329 5.00 × 10+4 3.4 × 10−5 4.1452 −0.5132 0.1411
Stage 4 2.4144 356.33 2.5 × 10−3 4.0056 −0.4662 0.1291
Stage 5 2.3985 527.99 2.4 × 10−3 3.8852 −0.4496 0.1180
Stage 6 2.3838 2.43 × 10+4 3.0 × 10−4 3.7736 −0.4526 0.1090
Stage 7 2.3700 1.20 × 10+3 2.3 × 10−3 3.6464 −0.4198 0.1007
Stage 8 2.3581 1.74 × 10+3 2.2 × 10−3 3.5274 −0.4047 0.0933
Stage 9 2.3512 2.52 × 10+3 2.1 × 10−3 3.4321 −0.3911 0.0689
Stage 10 2.3460 2.98 × 10+3 2.1 × 10−3 3.3723 −0.3844 0.0653
Stage 11 2.3411 3.53 × 10+3 2.1 × 10−3 3.3126 −0.3772 0.0623

Table 6 The simulation experiment guided by θx

Stage σϵ θx θs στ β0 Sa

Stage 3 2.4329 5.00 × 104 3.4 × 10−5 4.1452 −0.5132 0.1411
Stage 4 2.4144 356.33 2.5 × 10−3 4.0056 −0.4662 0.1291
Stage 5 2.4029 527.24 2.5 × 10−3 3.9086 −0.4505 0.1048
Stage 6 2.3878 919.14 2.4 × 10−3 3.7890 −0.4346 0.0936
Stage 7 2.3732 1.19 × 103 2.3 × 10−3 3.6691 −0.4201 0.0855
Stage 8 2.3613 1.73 × 103 2.2 × 10−3 3.5491 −0.4055 0.0760
Stage 9 2.3502 2.52 × 103 2.1 × 10−3 3.4298 −0.3910 0.0691
Stage 10 2.3397 3.58 × 103 2.1 × 10−3 3.3107 −0.3771 0.0623
Stage 11 2.3299 4.86 × 103 2.0 × 10−3 3.1921 −0.3632 0.0567

Note: Stages 3 and 4 data are taken from Table 5. Stages 1 and 2 are omitted.
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polishing and can potentially shorten the polishing time com-
pared to the present practice. The essence of the model-guided
decision process is using correlation parameters in GP models
to reveal surface anomalies and to reflect potential over-
polishing. While this work takes titanium alloy as samples in
the polishing experiments to illustrate the judicious use of the
GP models, the proposed modeling framework and GP-based
decision protocol are applicable to a broad array of material pol-
ishing processes.
We take advantage of the surface recovery property in the simu-

lation experiment to verify the what-if scenario. Moreover, the
simulation experiment is a promising approach that may substitute
the expensive physical polishing experiments, especially if more of
the polishing complexities, e.g., the workpiece surface degradation,
can be incorporated.
There are a number of other topics that are worth continuing

attention. The first that comes to mind is the use of a constant,
α = 0.9 or 0.95, in our proposed decision process. While this
empirical choice appears effective in our application, we specu-
late that a more adaptive change point detection procedure may
be beneficial for shortening the polishing time and/or effecting a
better polished surface. The second possibility is to explore
whether the micro-scale correlation parameter, θs, helps the

decision process. We do not use it in the proposed decision
process but wonder if it is useful at all. The third possible exten-
sion is to compare the quantile curves at various locations on the
surface and test the homogeneity among the curves. The homo-
geneity among the quantile curves could serve as a new metric
for signaling pad change or the endpoint. If this idea works out,
it is certainly interesting to see which of the metrics, the corre-
lation parameters or the curve homogeneity test, is a better
metric.
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Appendix: Surface Images of the Additive
Manufacturing Part Throughout the Polishing Process
in Experiment #1

Fig. 10 Sample surface change from stage 1 through the endpoint: (a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4, (e) stage 5, (f) stage 6, (g) stage 7, (h) stage 8, (i) stage 9, (j) stage 10,
(k) stage 11, (l) stage 12, (m) stage 13, (n) stage 14, (o) stage 15, (p) stage 16, (q) stage 17,
(r) stage 18, (s) stage 19, (t) stage 20, (u) stage 21, (v) stage 22, (w) stage 23, (x) stage 24, and
(y) stage 25
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