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Abstract. We present a data-driven distribution tracking system that
is capable of tracking the process quality in a chemical synthesis process
for nanoparticles. In the process, the process quality is defined as a dis-
tribution of particle sizes and shapes, which influence the functionalities
of nanoparticles. A system of tracking the distribution of nanoparticle
sizes and shapes consists of three components: (a) in situ measurement
system, (b) a mathematical model to represent nanoparticle sizes and
shapes, their distributions and the temporal changes in the distributions,
and (c) a statistical algorithm to estimate the model with in situ mea-
surements. We will review the state-of-the-art approaches to tracking the
time-varying distribution of particle sizes and shapes. The advance of the
distribution tracking by combining complementary in situ instruments
based on the DDDAS paradigm is discussed.
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1 Introduction

Nanoparticles are minuscule particles whose dimensions are less than 100 nm.
The functional properties of nanoparticles are heavily influenced by their sizes
and shapes, so one can fine-tune the functionalities by simply changing the sizes
and shapes. The relation of nanoparticles to sizes and shapes has been studied
for many promising applications. For example, the dependency of the surface
plasmon property of metal nanoparticles on the particle’s sizes was studied for
photo-thermal destruction of cancer cells [2], and semiconductor nanoparticles
of various sizes were tested as catalysts to promote carbon nanotube growth [9].

A promising method of producing nanoparticles in large quantities is a chem-
ical growth process, known as the self-assembly process [1]. In the chemical
growth, atoms and molecules are added to a reaction solution, and those small-
scale objects randomly collide in the solution, following a diffusion or a random
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Brownian motion. Some collisions could lead to merging or aggregations. The
small-scale objects are aggregated to become larger nanoparticles through mul-
tiple stages of mergers. The growth process is influenced by many individual-
ized and localized factors, including the movements of individual objects, local
densities of small-scale objects, and the frequency and effectiveness of individ-
ual collisions. Because of all these, every single nanoparticle exhibits a unique
growth, so that the final sizes and shapes of the nanoparticles resulting from
a growth process are unlikely equal but are rather likely form a distribution of
a wide span. Producing nanoparticles with a concentrated distribution in both
size and shape has been long desired by materials scientists [8].

Producing nanoparticles with controlled sizes and shapes has been attempted
experimentally [3], which is to repeat the cycles of trying different chemical
recipes and then check particle outcomes by the means of imaging. However, a
pure checking of the sizes and shapes of the final nanoparticles does not give any
clue on why the outcomes are bad nor guide process improvement. We believe
that tracking the sizes and shapes of nanoparticles in the transient period of
a growth process provides a crucial clue on how the growth progresses. This
paper introduces the problem of tracking the evolution of nanoparticle sizes
and shapes, as represented in a time-varying dynamic distribution, and review
the state-of-the-art approaches. The tracking problem discussed in this paper
is different from the object tracking problem in computer vision [4,5,14], which
seeks the trajectories of individual objects and their characteristics instead of the
distribution of the characteristics. Our review in Sect. 2 is only focused on the
problem of tracking the distribution. The advance of the distribution tracking
by combining complementary in situ instruments based on the dynamic data
driven application system (DDDAS) paradigm is discussed in Sect. 3.

2 Distribution Tracking of Nanoparticles

A system of tracking the time-varying distribution of nanoparticle sizes and
shapes consists of three components: (a) in situ measurement system, (b) a math-
ematical model to represent nanoparticle sizes and shapes, their distributions
and the temporal changes in the distributions, and (c) a statistical algorithm to
estimate, in near real-time, the distribution models with in situ measurements.
Section 2.1 introduces existing approaches on distribution tracking for both size
and shape, and Sect. 2.2 reviews on distribution tracking for size only.

2.1 Shape Distribution Tracking

Measurement Instrument. For tracking nanoparticle shapes in time, an in
situ imaging of nanoparticles at a nanometer spatial resolution is necessary.
There are many microscopic imaging techniques with nano-meter spatial resolu-
tions such as electron microscopes. Most of them had not equipped with in situ
imaging capability, mainly because wet material samples from chemical processes
running in liquid phases cannot be placed on the high vacuum environment of
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a microscope sample chamber. In order to image those wet samples in the con-
ventional microscopes, special sample holders should be attached for adding in
situ capability. For examples, a liquid cell sample holder have a very thin layer
of liquid samples sandwiched by two silicon or graphene windows [18], and the
windows isolate wet samples from the vacuum environment.

As illustrated in Fig. 1-(a), a micro-tubing can be placed to connect in
between a reaction chamber and the liquid cell, through which a reaction solu-
tion is continuously pumped into the liquid cell. Therefore, the liquid cell will
be replenished continuously with reaction solutions taken at different times of
a chemical nanoparticle growth process, and taking microscope images of the
samples in the liquid cell with an imaging interval would generate a sequence of
images containing nanoparticles taken at different stages of the growth process.

Shape Model. Each of the images generated by an in situ microscope are
analyzed to extract the outlines of nanoparticles in the images, using the state-
of-the-art image segmentation approaches [10,12,16,19]. Each of the outlines
does not only the size and shape information of the corresponding nanoparticle
but also includes the pose of the nanoparticle, where the ‘pose’ implies the
orientation and location of the nanoparticle in the image. The size and shape
information can be achieved by discarding the pose information from the outline.

There are quite a few existing works in the shape modeling for nanoparticles.
Here we introduce one modern approach. Park [11] represented the outline as
a closed curve. A closed curve in R

2 has the circular topology S
1. Therefore, a

closed curve can be represented by a parametric curve φ : S1 �→ R
2, where the

parameter θ ∈ S
1 indicates a point on the closed curve, and φ(θ) ∈ R

2 represents
the coordinate of the point. To discard the location information from the curve,
the closed curve is converted to the centroid distance function, r : S1 �→ R

+,

r(θ) = ||φ(θ) − cφ||,
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Fig. 1. In situ electron microscope for measuring nanoparticle sizes and shapes at
different stages of a nanoparticle growth process. Panel (a) shows a flow-through system
attached on a conventional electron microscope that enables a realtime imaging, and
panel (b) shows exemplary images from the system.
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where || · || is the L2-norm, and cφ = 1
2π

∫
S1

φ(θ)dθ represent the centroid of
the closed curve. Let R represent a collection of all such centroid distance func-
tions. The centroid distance function r ∈ R still contains the orientation of the
corresponding closed curve. Let γ : S1 �→ S

1 denote a diffeomorphism from S
1

to S
1 with a constant first derivative, and let Γ denote the space of all such

diffeomorphisms. An γ ∈ Γ defines a group action on r ∈ R in that r ◦γ belongs
to R. In fact, the group action rotates the centroid distance function r ∈ R.
Therefore, the shape of a centroid distance function of r ∈ R can be represented
as all rotational variants of r,

[r] = {r ◦ γ; γ ∈ Γ}, (1)

and the space of shapes can be defined as the quotient space, R/Γ . The rota-
tionally invariant distance of two shapes [r1] and [r2] in R/Γ is defined as

dR/Γ ([r1], [r2]) = min
γ∈Γ

|(r1 ◦ γ) − r2|,

where | · | is the L2-norm in R. A centroid distance function r can be rotationally
aligned to a reference centroid distance function r∗ ∈ R by the partial Procrustes
alignment with the distance dR/Γ , and the aligned r is achieved as r̃ = r ◦ γ̃,
where γ̃ = arg minγ∈Γ ||(ri ◦ γ) − r∗||, and r̃ is used as the shape representation.

The shape of a nanoparticle is represented as a rotation aligned centroid
distance function r̃(θ), and the shape evolution during a chemical growth process
can be represented as a time series r̃(θ, t), which represents the shape observed
at time t. Park [11] used the spline representation of the time series,

r̃(θ, t) =
M∑

m=1

N∑

n=1

αm,nam(t)bn(θ), t ≥ 0 and θ ∈ [0, 2π),

where am(t)’s and bn(θ)’s are uniform B-spline basis functions with correspond-
ing random coefficients αm,n, and M and N are tuning parameters controlling
the number of the spline basis functions used. The vectorial representation of
the model is

r̃(θ, t) = (bT
θ ⊗ aT

t )α,

where α = (α1,1, . . . , αM,1, . . . , α1,N , . . . , αM,N )T , at = (a1(t), . . . , aM (t))T , and
bθ = (b1(θ), . . . , bN (θ))T . Park [11] pointed out that nanoparticles grow in size,
so r̃(θ, t) should monotonically increase in time t. Let Q represent the set of all
α values to ensure the monotonicity given the fixed basis matrix (bT

θ ⊗aT
t ). The

unknown coefficient vector α ∈ Q defines the temporal evolution of a nanoparti-
cle. The variation in the temporal evolution among multiple nanoparticles from
the same growth process can be modeled by posing a probability distribution on
α. The truncated multivariate normal distribution can be defined,

α ∼ NQ(μ,Σ),
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where Q is a support of α, μ is the mean, and Σ is the covariance. More
generally, one can use a nonparametric distribution such as a mixture,

α ∼
K∑

k=1

βkNQ(μk,Σk),

where βk ≥ 0 is the mixture weight satisfying
∑K

k=1 βk = 1. From the probability
model, the probability distribution of r̃(θ, t) can be induced as

r̃(θ, t) ∼
K∑

k=1

βkNQ((bT
θ ⊗ aT

t )μk, (bT
θ ⊗ aT

t )Σk(bθ ⊗ at)). (2)

For a fixed time t, it represents a probability distribution of nanoparticle sizes
and shapes at time t. With the time t varying, it represents the temporal evolu-
tion of the probability distribution.

Statistical Algorithm. Suppose that there are Nt nanoparticles observed from
the microscope image taken at time t = 1, . . . , T . Let r̃jt(θ) represent the rota-
tionally aligned centroid distance function for the outline of the jth nanoparticle
observed at time t. All the observations are D = {r̃jt(θ); j = 1, . . . , Nt, t =
1, . . . , T}. Given the data, we want to estimate the distribution parameters
{(βk,μk,Σk); k = 1, ..,K} of the mixture model (2). The expectation maxi-
mization algorithm would be a natural choice for the mixture model, if K is
known. If K is unknown, a possible solution would be to use a model selection
criterion such AIC and BIC to choose K, or a fully Bayesian approach can be
taken to consider K as an unknown random variable. Park presented the exact
Gibbs sampler for the posterior estimation of K along with the distribution
parameters. For more details, please refer to the original paper [11].

2.2 Size Distribution Tracking

Measurement Instrument. When it comes to particle size, scattering tech-
niques are more convenient and practical than microscope techniques. The scat-
tering light techniques come with simpler sample preparation and data analysis
steps than microscopic imaging. In addition, scattering machines can be loaded
with a much larger volume of nanoparticle solution per each measurement than
microscope techniques. Accordingly, the size distribution attained using the scat-
tering techniques can base on a larger sample, so as to better represent the size
distribution of the whole reaction solution.

One of the most commonly used scattering techniques for particle sizing is
the dynamic light scattering. A sample solution is loaded into a dynamic light
scattering machine, and a beam of lights is shot on the sample solution. The light
beam is scattered by nanoparticles in the sample solution, and the intensities of
the scattered light change in time due to the Brownian motion of nanoparticles
in the solution. The autocorrelation of the temporal changes in the intensities
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is related to the sizes of the nanoparticles in the solution. The autocorrelation
function can be analyzed to reveal the distribution of particle sizes in the form
of a histogram. For more details, please refer to a relevant work [7].

Size Model. Let x ∈ R
+ represents the size of a nanoparticle, and let pt(x)

denote the probability density of the size at time t of a nanoparticle growth
process. A simple and practical model for pt(x) may be a log-normal distribution,

pt(x) =
1

√
2πσ2

t x
exp

{

− (log x − μt)2

2σ2
t

}

,

where μt ≥ 0 and σ2
t ≥ 0 are the mean and variance of log x. It has been popu-

larly used for representing particle size distributions [6]. The simple parametric
model is not good enough when pt(x) has multi-modalities, i.e., the density func-
tion has multiple local maxima. In that case, a non-parametric distribution such
as a histogram can be used. Qian et al. [15] modeled the penalized B-spline model
to represent the log probability density, log pt(x) =

∑n
j=1 αjtBj(xi), where Bj(x)

is the jth B-spline basis function, and αjt is the corresponding B-spline coeffi-
cient. The corresponding density of the size distribution is

pt(x) = qt exp

⎧
⎨

⎩

n∑

j=1

αjtBj(xi)

⎫
⎬

⎭
, (3)

where qt > 0 is a normalizing constant. The unknown coefficient vector, αt =
(α1t, . . . , αnt)T , parameterizes the particle size distribution at time t, and the
temporal change in αt characterizes the temporal evolution of the particle size
distribution. The coefficient vectors can be spatially and temporally correlated.
The consideration of the spatial and temporal correlation will be considered by
means of incorporating the regularization terms in the statistical algorithms that
will be discussed in the next section.

Statistical Algorithm. Suppose that nanoparticles undergoes a nanoparti-
cle growth process, which makes the particle size change following the model
(3), and dynamic light scattering measurements are achieved for the samples of
nanoparticles taken from the process at time t = 1, . . . , T . The measurement
taken at time t can be analyzed by the existing scattering data analysis algo-
rithm [7], and the outcome of the algorithm is a histogram of particle sizes at
time t,

Y t = (Y1t, Y2t, . . . , Ymt),

where Yit represents the number of nanoparticles whose sizes range in the ith
histogram bin, [xi − δ, xi + δ]. Each of the bin counts is naturally modeled as
a Poisson random variable, Yit ∼ Poisson(λit), where the Poisson intensity
λit = pt(xi) is proportional to the sampling density pt. The log likelihood is

L(αt) =
m∑

i=1

Yitpt(xi) −
m∑

i=1

exp(pt(xi)).
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Qian et al. [15] proposed to estimate all distribution parameters {αt; t = 1, ..., T}
jointly by maximizing the penalized log likelihood,

L({αt; t = 1, ..., T}) =
T∑

t=1

L(αt) + λP({αt; t = 1, ..., T}), (4)

where P({αt; t = 1, ..., T}) =
∑T

t=1

∑n
j=1 η(αjt − αj(t+1))2 + (1 − η)(αjt −

α(j+1)t)2 is the smoothness penalty to ensure that the coefficient values do not
have sudden jumps , and λ is a positive constant to determine the degree of the
smoothness penalty. Qian et al. [15] proposed the alternating directional multi-
plier method (ADMM) algorithm to optimize the penalized likelihood function.

The penalized likelihood maximization is solved when the scattering measure-
ments from time t = 1 to T are available. Therefore, the distribution is estimated
after the whole growth process is completed. Qian et al. [17] proposed an online
estimation algorithm to estimate αt incrementally as soon as the measurements
up to time t are available instead of waiting until all the measurements are col-
lected. Qian et al. [17] used an autoregressive model to model the time-varying
coefficient vector, αt = αt−1 + εt, where εt ∼ N (0, σ2

t I). With the autoregres-
sive model, we would have a hidden Markov model linking {αt; t = 1, . . . , T}
with the Poisson observation model (4). The online estimation algorithm of the
Kalman filter type can be used to estimate the hidden Markov model [17].

3 Conclusion

This paper discusses the problem of tracking the time-varying distribution of
particle sizes and shapes at different stages of a chemical growth process of
nanoparticles. If the distribution can be tracked in realtime, it can be exploited
for monitoring the growth process, a prerequisite leading to potential control of
nanoparticle growth that produces nanoparticles with desirable sizes and shapes.
The major challenges in achieving this goal are whether one can take the size
and shape measurements in realtime during a growth process, how one effec-
tively models the distributions of sizes and shapes, and how the mathematical
model can be estimated as fast as the realtime measurements arrive. We review
the recent developments addressing the three challenges. When only the par-
ticle sizes are concerned, quick scattering measurements followed by an online
density estimation algorithm [17] can carry out a near real-time tracking of
particle size distributions. When both shapes and sizes are concerned, realtime
online distribution tracking is not yet available. Addressing this latter problem
appears much more challenging, due to the high complexities in dealing with
shapes. This challenge can be alleviated by a dynamic data-driven application
systems (DDDAS) approach making use of multiple measurement instruments of
complementary spatio-temporal resolutions. With multi-resolution instruments,
one can primarily track the size distribution in realtime using a temporally fast
instrument (e.g., the scattering light techniques), while triggering the estimate
of shape distribution only when it is necessary [13].
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6. Kiss, L., Söderlund, J., Niklasson, G., Granqvist, C.: New approach to the origin
of lognormal size distributions of nanoparticles. Nanotechnology 10(1), 25 (1999)

7. Li, X., Tran, P.H., Liu, T., Park, C.: Simulation-guided regression approach for
estimating the size distribution of nanoparticles with dynamic light scattering data.
IISE Trans. 49(1), 70–83 (2017)

8. Liu, L., Liang, H., Yang, H., Wei, J., Yang, Y.: The size-controlled synthesis of uni-
form mn2o3 octahedra assembled from nanoparticles and their catalytic properties.
Nanotechnology 22(1), 015603 (2010)

9. Nikolaev, P., et al.: Autonomy in materials research: a case study in carbon nan-
otube growth. NPJ Comput. Mater. 2(1), 1–6 (2016)

10. Park, C., Huang, J.Z., Ji, J.X., Ding, Y.: Segmentation, inference and classification
of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell.
35(3), 669–681 (2013)

11. Park, C.: Estimating multiple pathways of object growth using nonlongitudinal
image data. Technometrics 56(2), 186–199 (2014)

12. Park, C., Ding, Y.: Automating material image analysis for material discovery.
MRS Commun. 9(2), 545–555 (2019)

13. Park, C., Ding, Y.: Dynamic data-driven monitoring of nanoparticle self assem-
bly processes. Handbook of Dynamic Data Driven Applications Systems, 2nd eds.
submitted (2020)

14. Park, C., Woehl, T.J., Evans, J.E., Browning, N.D.: Minimum cost multi-way data
association for optimizing multitarget tracking of interacting objects. IEEE Trans.
Pattern Anal. Mach. Intell. 37(3), 611–624 (2014)

15. Qian, Y., Huang, J.Z., Ding, Y.: Identifying multi-stage nanocrystal growth using
in situ TEM video data. IISE Trans. 49(5), 532–543 (2017)

16. Qian, Y., Huang, J.Z., Li, X., Ding, Y.: Robust nanoparticles detection from noisy
background by fusing complementary image information. IEEE Trans. Image Pro-
cess. 25(12), 5713–5726 (2016)

17. Qian, Y., Huang, J.Z., Park, C., Ding, Y.: Fast dynamic nonparametric distribution
tracking in electron microscopic data. Ann. Appl. Stat. 13, 1537–1563 (2019)

18. Ross, F.M.: Liquid Cell Electron Microscopy. Cambridge University Press, Cam-
bridge (2016)

19. Vo, G.D., Park, C.: Robust regression for image binarization under heavy noise
and nonuniform background. Pattern Recogn. 81, 224–239 (2018)




