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ABSTRACT
We develop a discrete event-based simulation framework

that mimics the operations of a commercial size wind farm. Each
turbine is treated as separate module, so that the simulation can
be easily scaled up to more than one hundred turbines for a farm.
Each turbine module includes a structural element sub-module,
degradation sub-module, power generation sub-module, sensing
and maintenance scheduling sub-module. The simulator is spe-
cially designed to handle a large number of unorganized random
events (turbine failures, waiting for parts, weather disruptions)
and reflect in the simulator’s outputs the variation from param-
eters and operations. We report on implementation results and
provide insights into wind farm operations under different main-
tenance strategies.

NOMENCLATURE
XM Set of input ports.
YM Set of output ports.
S Set of sequential states.
δext External transition function.
δint Internal state transition function.
δcon Confluent transition function.
λ Output function.
ta Time advance function.
Q Set of total states.

∗Address all correspondence to this author.

INTRODUCTION
A commercial size wind farm usually houses more than one

hundred turbines spread over a large geographical area located
remotely from any population centers. Caring for this fleet of tur-
bines is not a trivial undertaking. To our best knowledge, the cur-
rent work on wind turbines operation and maintenance (O&M)
primarily focuses within a single turbine, and oftentimes, even
a single component of a turbine [1, 2]. When a farm is consid-
ered, simplified assumptions are commonly used, for example,
assuming that all the turbines are identical not only at the initial
time but also throughout their life time. Such assumptions are
apparently not realistic.

We believe that injecting realism into the modeling and anal-
ysis of a wind farm’s operation is of critical importance. Top on
the needs is the development of wind farm simulation method
that can mimic the operation of a hundred plus turbines, governed
by the models pertaining to the turbines’ stochastic degeneration
and behaviors. Such a simulation platform can be a valuable tool
to test any control logics or maintenance scheduling strategies
for assessing their effectiveness with a good degree of realism in
it.

That is indeed our undertaking in this research, i.e., we de-
velop a discrete event-based simulation framework for represent-
ing the operations of a commercial size wind farm. Establish-
ing the simulation framework entails two major efforts: (1) the
logic framework that interconnects components in wind power
systems (such as turbines) and mimics the execution and oper-
ation in a virtual, cyberspace environment; (2) detailed models
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that characterize turbine’s dynamic responses and deterioration,
maintenance scheduling, and local wind prediction.

A viable approach for modeling complex large-scale wind
power systems is to use the discrete event system specification
(DEVS) formalism [3, 4]. We select DEVS because it allows for
modeling multi-scale (time, space and decisions) complex sys-
tems. DEVS is a formal modeling and simulation framework
based on dynamical systems theory, providing well-defined con-
cepts for coupling atomic and coupled models, hierarchical and
modular model construction, and an object-oriented substrate
supporting repository reuse. DEVS allows us to build a simu-
lation platform for wind power operations at different granular-
ities: wind turbine, wind farm and power grid and network. In
this research, our emphasis is on the turbine and farm level mod-
eling and simulation without getting into the details of how to
connect to the power grid.

Specifically, our development involves the following: (a)
building wind farm DEVS atomic models; (b) coupling the
atomic models to create complex coupled models; (c) building
the experimental frame to allow for a suite of simulation experi-
mental choices; (d) computer implementation of the models; and
(e) testing and validation of the simulation models. The simula-
tor is specially designed to handle a large number of unorganized
random events (turbine failures, waiting for parts, weather dis-
ruptions) and reflect in the simulator’s outputs the stochasticity
from parameters and operations.

The rest of the paper is organized as follows: In the next
section, we review related work on wind turbine and wind farm
simulations. After that, we provide the details on our simula-
tion model. We also present the overall hierarchical structure
and operation of the wind farm simulation. Subsequently, we
discuss alternative maintenance scheduling strategies and prac-
tices. Finally, we discuss the computational results and end the
paper with some concluding remarks and directions for further
research.

LITERATURE REVIEW
The phrase simulation is used broadly in the wind energy

literature. It generally refers to using computational models and
running them on computers as a surrogate or replacement of run-
ning physical experiments and operations. The simulation mod-
els and tools can be categorized into two schools of thought: (a)
Monte Carlo-based simulations, which start with random num-
ber generations and are based on probability distributions of cer-
tain operation characteristics; (b) Numerical simulation based on
physical principles such as Finite Element Analysis (FEA) or
Computational Fluid Dynamics (CFD) models or tools. The two
schools of thought can be in principle combined, even though ac-
tually doing so is not very common, because Monte Carlo-based
simulations required a large number of replications of running a
computer model, while each individual running of a FEA or CFD

model is already computationally expensive. As a result, the two
schools of thought have so far proceeded more or less in parallel.

Our research in this paper is in the line of Monte Carlo-based
simulations rather than of the physics-based numerical simula-
tions. The latter is almost always conducted for individual tur-
bines (more precisely, individual components of a turbine). It is
difficult to imagine, in any foreseeable future, the feasibility of
running a farm size FEA or CFD model. Nonetheless, readers
interested in the physics-based numerical simulation should be
aware that National Renewable Energy Lab in the US and Risø
National Lab in Denmark, the two leading organizations in wind
energy technology, have developed their own aeroelastic com-
puter simulation tools [5–7].

Monte Carlo-based simulations are based, quite naturally,
on collecting and analyzing of the historical failure and opera-
tion data to elucidate a turbine’s failure probability and operation
characteristics. The idea is to use the historical data to fit cer-
tain probability distributions, which then yield a number of com-
monly used statistics such as the mean time to failure (MTTF)
[8–14] . The popular distribution here, as in other reliability
analysis, is the Weibull distribution. Recent work by Tavner et
al. [15, 16] and Guo et al. [17] used the non-homogeneous Pois-
son process to handle the cases where the number of failures is
provided but the actual time when a failure takes place is miss-
ing. Existing simulations were conducted generally for study-
ing a specific objective, including evaluating the effectiveness of
maintenance actions [18–20], assessing the impact of turbine re-
liability on power generation [21, 22], comparing turbine siting
choices [23], and validating operational strategies [11, 18].

The limitations of the current Monte Carlo-based simula-
tion can be summarized as: (a) The current models are generally
oversimplified. Most were performed on a single turbine, or a
farm but with the assumption of identical turbines. Stochastic-
ity resulting from different weather profiles, wind turbine types,
operational strategies were generally not considered but should
have been. (b) The existing work lacks decision-making ability
inside the simulation models. That is to say, there is no integrated
framework for wind farm operations in which simulations can
interact with decision-making modules during simulation runs.
As a result, people can evaluate the impact of a fixed schedule
maintenance which does not change throughout the turbine’s life
cycle but could not do so for anything more sophisticated. To our
best knowledge, the only exception is our most recent work, at-
tempting on modeling with sufficient granualarity a wind farm’s
operation [24]. The limitation of that work, since it is the first of
this kind, is that each turbine was simplified to the consideration
of a single component, or equivalently, assuming that only one
major component deteriorates over the time, while other compo-
nents remain unchanged.

In this paper, we extend our previous work by modeling four
major components for each turbine, a much more realistic treat-
ment than that in [24]. Not only are extra models needed for
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representing the additional components, more importantly, the
corresponding atomic models for maintenance scheduling and
dispatch are different and need to be developed in this paper.

SIMULATION MODEL
DEVS allows for building complex models using a bottom-

up approach, starting with atomic models and then coupling them
to create coupled models. Each atomic model has input ports and
output ports through which the couplings are done. These cou-
plings allow for exchange of messages between coupled models.
The inputs ports allow for the atomic model to receive inputs
from outside the model, process the inputs, and generate out-
put through the output ports. The dynamic behavior is captured
within the atomic model using a set of states and functions. We
use Parallel DEVS which allows for processing multiple inputs
simultaneous. More formally, a Parallel DEVS atomic model is
a structure and is defined as follows:

DEV S = (X ,Y,S,δext ,δint ,δcon,λ , ta), (1)

where

X = {(p,v)|p∈ IPorts,v∈ Xp} is the set of input ports and
values, where IPorts is the set of input ports;

Y = {(p,v)|p ∈ OPorts,v ∈ Yp} is the set of output ports
and values;

S is the set of sequential states;

δext : Q×Xb→ S is the external transition function, where
Xb is a set of bags over elements in X and Q is the set of
total states;

δint : S→ S is the internal state transition function;

δcon : Q×Xb→ S is the confluent transition function;

λ : S→ Y b is the output function;

ta : S→ R+
0,∞ is the time advance function; and

Q := {(s,e)|s ∈ S,0 ≤ e ≤ ta(s)} is the set of total states,
where s is the state and e is the elapsed time.

At any given time, a DEVS atomic model is in some state s
and if no external events occur, the model remains in state s for
a time ta(s) ∈ [0,∞]. When this time elapses the system outputs
the value, λ (s), and transitions to a state s′ = δint(s). The model
remains in the current state for ever (passive) if ta(s) = ∞. In
a DEVS atomic model an output can only be generated after an
internal transition. If an external event x ∈ X occurs when the
model is state (s,e) with e ≤ ta(s), it transitions to state s′ =
δext(s,e,x). The external transition function determines the new
state when an external event occurs, while the internal transition
function determines new state when no events occur since the last

transition. The confluent function decides the next state in cases
when there is a collision, that is, when there is an external event
exactly when an internal transition has to occur.

The DEVS specification includes external interface, compo-
nents (atomic or coupled models), and the coupling relations to
enable constructing models from components. Formally, let EIC,
EOC and IC respectively denote the external input coupling, ex-
ternal output coupling and internal coupling. Then a coupled
model N is defined mathematically as follows:

N = (X ,Y,D,{Md | d ∈ D},EIC,EOC, IC), (2)

where D is the set of component names, and for each d ∈ D,

Md = (Xd ,Yd ,S,δext ,δint ,δcon,λ , ta)

is a DEVS model with

Xd = {(p,v)|p ∈ IPortsd ,v ∈ Xp}

and

Yd = {(p,v)|p ∈ OPortsd ,v ∈ Yp}.

The external input coupling, EIC, connect external inputs to
component inputs:

EIC⊆{((N, ipN),(d, ipd)) | ipN ∈ IPorts,d ∈D, ipd ∈ IPortsd}.

Similarly, the external output coupling, EOC, connect external
outputs to component outputs:

EOC⊆{((N,opd),(N,opN)) | opN ∈OPorts,d ∈D,opd ∈OPortsd}.

Finally, the internal coupling, IC, connect component outputs to
component inputs:

IC⊆{((a,opa),(b, ipb)) | a,b∈D,opa ∈OPortsa, ipb ∈ IPortsb}.

DEVS does not allow for an output port of a component to be
connected to an input port of the same component. Thus in
DEVS ((a,opa),(b, ipb) ∈ IC implies a 6= b. In other words, no
direct feedback loops are allowed for each component.

Using the characterizations of DEVS atomic and coupled
models in (1) and (2), we abstract a wind farm as a dynamical
system with components that interact to produce wind power. To
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FIGURE 1. DEVS wind farm simulation model

build a simulation model of a wind farm, we consider all the crit-
ical components associated with wind farm operations and main-
tenance. Our DEVS wind farm simulation model is depicted in
Figure 1. This model comprises three coupled models: wind
farm (WF), operations maintenance (OPMNT) and experimental
frame (EF). The wind farm coupled model has n wind turbines,
labeled WTURBINE(1) to WTURBINE(n) in the figure. Each
wind turbine has m components (labeled CMP(1) to CMP(m))
that make up the wind turbine. In particular, we model a wind
turbine as having four (m= 4) components: a gearbox (CMP(1)),
power generator (CMP(2)), blades (CMP(3)), and a control sys-
tem (CMP(4)). We model these components as DEVS atomic
models with a set of states and state transition functions based
on the actual operations of each component.

Since we are considering condition-based monitoring, we
assume that each wind turbine also has smart sensors that allow
for evaluating the state/condition of each of the four turbine com-
ponents. So we use a state evaluation (STEVAL) atomic model
to capture this behavior. Finally, each turbine has a power pro-
duction (PWR PROD) atomic model to compute the power gen-
erated by the wind turbine based on the prevailing wind speed,
and the conditions of all the turbine components.

To model turbine maintenance activities, we use an op-
erations maintenance coupled model OPMNT. This model
comprises two atomic models: the maintenance scheduler

(MSCHEDR) and maintenance generator (MGENR). As the
name implies, MSCHEDR implements different algorithms for
scheduling maintenance operations. In particular, we study
both scheduled maintenance and condition-based maintenance.
The MSCHEDR atomic model communicates with the MGENR
atomic model when a maintenance procedure is scheduled. The
MGENR atomic model is responsible for generating mainte-
nance jobs at the scheduled times.

The experimental frame EF is a coupled model and is an
important part of the simulation model. It is coupled to both
WTURBINE and OPMNT and is used for designing and running
experiments of interest by the user/modeler. For example, EF
allows the user to specify experimental parameters and perfor-
mance measures to compute. During simulation runs, the EF col-
lects information of interest such as the amount of power gener-
ated, capacity factor, availability and turbine failures. As shown
in Figure 1, the EF model is composed of two atomic models:
a wind generator (WGENR) and a transducer (TRANSD). The
WGENR atomic model is in charge of generating wind speed
information for each one of the turbines the wind farm model
WF. It allows to compute the wind speed for each WTURBINE
based on its location in the wind farm and its height. Finally,
the TRANSD atomic model collects information of interest from
both WTURBINE and OPMNT, and computes and reports the
performance measures specified by the user.
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Due to limitation in space, we skip details of the operation of
each component of our wind farm simulation model and simply
provide a description of the operation of one of the components,
the power generator atomic model. This is component CMP(2)
and its block diagram is shown in Figure 2. This model has two
input ports, “prev mnt” and “corr mnt”; and four output ports,
“on off”, “fixed”, “failed”, and “status”. CMP(2) is coupled to
STEVAL and PWR PROD to enable component status verifica-
tion and calculation of power produced, respectively.

The degrading behavior of CMP(2) is illustrated using the
state transition diagram in Figure 3. For any given turbine com-
ponent, its health status is categorized at four levels: “normal”,
the perfect operation state; “alert”, a deteriorated state but still
safe to operate; “alarm”, a deteriorated state that could fail soon;
and “fail”, the state that the turbine component is no longer func-
tioning. CMP(2) is initialized in state “normal”, and its stochas-
tic deterioration is characterized by a probability transition ma-
trix P2 calculated based on historical data of a wind turbine gen-
erator (similar approach is used in weather forecast to charac-
terize the transition from “sunny” to “cloudy” to “overcast” to
“raining” etc.):

P2 =


0.995 0.004 0.001 0.000
0.000 0.985 0.010 0.005
0.000 0.000 0.985 0.015
0.000 0.000 0.000 1.000

 .

Assuming no maintenance is performed, the transition ma-
trix shows that after some stochastic time duration the model
remains in state “normal” with probability 0.995, or transitions
from “normal” to “alert” with probability 0.004, or to “alarm”
with probability 0.001. When in state “alert”, the model re-
mains in this state with probability 0.985, or transitions to either
“alarm” or “fail”, with probability 0.010 and 0.005, respectively.
The model remains in “alarm” state with probability 0.985 and
transitions from “alarm” to “fail” with probability 0.015. Once
in the “fail” state, the model remains in this state with probabil-
ity one. Only after corrective maintenance will the model be re-
initialized to “normal” state. While in the operational states “nor-
mal”, “alert” and “alarm”, the model transitions to “off” when
the wind speed reaches the cut out limit. When the wind speed is
within the turbine operational limits, the model transitions from
the “off” state to “checkSate”, and then returns to the state it was
in before.

Preventive maintenance can be performed while the model
is in any of the operational states. In this case, the model tran-
sitions to “preventiveM”. After preventive maintenance is com-
pleted, the model goes to “off”, then to “checkState”, and finally
restarted as new in the “normal” state. Corrective maintenance
can only be performed after failure. Thus the model transitions
from “fail” to “correctiveM”, and is restarted as new in the “nor-
mal” state only after corrective maintenance is completed.

 
CMP   

 

prev_mnt 
on_off 

failed 

fixed 

status 

corr_mnt 

FIGURE 2. CMP block diagram
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FIGURE 3. CMP state transition diagram

Please note that since we now model four major components
within a turbine, there are three other transition matrices, P1, P3,
and P4, affiliating with CMP(1), CMP(3), and CMP(4), respec-
tively. The structures of P1 and P3 are the same as P2, namely that
they have also four deterioration status and therefore the matri-
ces have a dimension of 4×4. The specific transition probabili-
ties between the states are different, though, for different compo-
nents, but can still be calculated by using historical operational
data. The structure of P4 (for the control system) is different –
it has only two states, either working or failure. As such, the
transition matrix P4 is of dimension 2× 2. This different transi-
tion matrix is used for the control systems because its hardware
is generally reliable and does not exhibit a gradual decline pat-
tern. Rather sudden failures are the predominant failure mode
observed for the control system.

In terms of maintenance scheduling, we considered the op-
eration of the wind farm model under two maintenance strate-
gies: scheduled maintenance (SM) and condition-based moni-
toring (CBM). Under SM, maintenance preventive actions are
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scheduled before hand and are performed twice a year. In addi-
tion, corrective maintenance corrective actions are performed for
unanticipated breakdowns. CBM strategy conducts maintenance
preventive actions only when condition monitoring equipment
report alarm signals and corrective actions when unanticipated
breakdowns occur.

APPLICATION
The simulation model was implemented in DEVS-JAVA

which is a java based platform for DEVS. The model simulated
a 100-unit wind farm located in West Texas. The wind behavior
was modeled using the parameters obtained from the West Texas
Mesonet [25].

A computational study was performed to gain management
insight regarding wind farm operations and maintenance. Our
experiments compared the two maintenance strategies using four
performance measurement: systems availability, power gener-
ated, capacity factor, and number of failures. The capacity fac-
tor is a measurement of the productivity of the wind farm which
compares the wind farm production over a given period of time
with amount of power the wind farm would have produced at full
capacity under ideal condition over the same period of time. We
run twenty simulation replications for each maintenance strategy
using a time horizon of twenty years. Twenty years is the esti-
mated average lifespan of a wind turbine.

Table 1 reports the simulation results for the average power
generation and capacity factor for both maintenance strategies
SM and CBM. The mean, standard deviation (Std. Dev.), and
95% confidence interval bounds are reported for each perfor-
mance measure. The table shows that CBM provides on aver-
age a 6.78% higher power generation and capacity factor for the
20-year period compare to SM. In terms of computational run
time, the simulation for both maintenance strategies lasted about
0.9 hours on average for a 20-year planning horizon. The experi-
ments were conducted on a Dell X5355 computer with 2 Intel(R)
Xeon(R) X processors at 2.66 GHz each with 12.0 GB of RAM.

The average power generated per year for both SM and
CBM is depicted in Figure 4. Under CBM the system is able
to generate more power every year. The figure shows an initial
decreasing pattern for both maintenance strategies. The highest
power generation for both strategies occur on the first year be-
cause all wind turbines are new and maintenance interruption are
limited. CBM achieves a more steady pattern after the fifth year
keeping the power generation per year around 640,000 MW.

Table 2 shows the simulation results for the wind farm avail-
ability, failures, and maintenance costs under SM and CBM,
respectively. The results indicate that CBM provides a 6.75%
higher availability of the wind farm for the 20 years time pe-
riod. The table also shows a lower average number of failures
per turbine under CBM. Figure 5 shows the average availability
per wind turbine for the 20-year time period. The graphs shows
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that all the turbines were available for a longer period of time
under the CBM. The average availability per turbine under CBM
was about 94% for the 20-year period. Figure 6 shows the av-
erage number of failures per year experienced by the wind farm
under both maintenance strategies. An non-decreasing pattern
is observed for both maintenance strategies during the first five
years. This can be explained by the fact that turbines are new
at the beginning of the time period. After five years the average
number of failures achieve a steady state and under CBM a lower
average number of failures is achieved.

We compared our results to those reported in the literature
in Table 3. It seems that our capacity factor are slightly higher
than the industry upper bound, and our availability is slightly
lower. We believe this difference is caused by still a number of
simplifications used in our simulation, for instance, we used the
ideal (published) power curve to calculate the power generation
under a given wind speed, we so far account for the failures from
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TABLE 1. Simulation results for power generation and capacity factor

SM CBM

Mean StDev Mean StDev

Generated Power (MW) 12,165,137.72 8,701.08 12,989,792.63 7,688.64

Capacity Factor 0.427 0.001 0.456 0.001

CPU Time (secs) 3,290.05 50.55 3,219.47 41.05

TABLE 2. Simulation results for availability and failures

SM CBM

Performance measure Mean StDev Mean StDev

Availability 0.877 0.001 0.936 0.001

Failures per wind turbine per year 0.545 0.004 0.232 0.011
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FIGURE 6. Average number of failures per year

only four major turbine components, and we did not consider the
possibility of curtailment yet.

DISCUSSION AND CONCLUSIONS
Wind farms contain a group of individual wind turbines

which use wind power to generate electricity and provide a
source of clean and renewable energy. A commercial wind farm
usually accommodates more than one hundred turbine in a re-
motely located area with high speed winds throughout the year.
Due to rough weather conditions and seasonal variations, wind
turbines experience stochastic forces that lead to components
degradation and failures which lead to costly repairs. Conse-
quently, scheduling maintenance actions to avoid wind turbine
component failures is very critical.

In this paper we present a DEVS wind farm simulation
model. This simulation consider the degradation of multiple
component within the wind turbine model and consider mul-
tiple turbines. The simulation allows for computing several
performance measures such as power generation, capacity fac-
tor, wind farm availability, and failure rates. The simulation
model provides a useful tool for selecting effective operation and
maintenance actions based on scheduled maintenance (SM) and
condition-based maintenance (CBM), respectively. Computa-
tional results based on a real setting using historical wind data are
consistent with the values encountered in practice. Our computa-
tional study shows that CBM provides on average 6.78% higher
generation and capacity factor over a 20-year period compared
to SM.

The extra power generated presents the benefit of using
CBM for wind farm maintenance. Of course, people need to
be aware that using CBM is usually a little more expensive. So
the ultimate economic benefit will have to be decided when the
extra cost is also accounted for. This cost-benefit analysis can be
done as long as the cost data are available. So far the type of data
is scarce in the public domain or in the literature. We hope that
this analysis can be addressed in the future work.
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