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Phase | analysis of nonlinear profiles aims at identifying the data from an in-control process as accurately

as possible so that quality engineers can have a good reference to establish the control charts for a

future process. Unlike linear profiles, which can be represented by a linear regression model with its model
parameters used for monitoring and detection, nonlinear profiles are often sampled into high-dimensional
data vectors and analyzed by nonparametric methods. Meanwhile, automatic in-process data-collection
devices generate huge historical data sets, which must be analyzed for the presence of observations from

out-of-control process conditions. The high dimensionality and data contamination present a challenge

to the Phase | analysis of nonlinear profiles. This paper presents a strategy that consists of two major
components: a data-reduction component that projects the original data into a lower dimension subspace
while preserving the data-clustering structure and a data-separation technique that can detect single and

multiple shifts as well as outliers in the data. Simulated data sets as well as nonlinear profile signals from

a forging process are used to illustrate the effectiveness of the proposed strategy.
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HIS PAPER investigates a strategy for Phase [ anal-
Tysis of nonlinear profile data. Phase I analysis,
also called retrospective analysis in statistical pro-
cess control (SPC), is applied to the set of histor-
ical process data, which is often a combination of
data from the in-control condition (loosely called in-
control data) and out-of-control conditions (loosely
called out-of-control data). Phase I analysis attempts
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to identify the data from the in-control condition as
accurately as possible so that quality engineers can
have a good reference to establish the monitoring
charts for a future process. For more discussions re-
garding the difference between analyses for Phase I
and Phase IT in SPC, please refer to Mahmoud and
Woodall (2004) and Sullivan (2002).

As pointed out in Mahmoud and Woodall (2004),
the collection of profile data for process monitoring
appears to be increasingly common in industry prac-
tices. The focus of Mahmoud and Woodall (2004) is
on the set of linear profiles, which can be represented
by a model like those used in linear regression analy-
sis. Based on the linear structured model, one usually
uses a T control chart monitoring the regression pa-
rameters in the model for the purpose of monitoring
and detecting the changes in linear profiles. Section
1 of Mahmoud and Woodall (2004) presents a com-
prehensive account of state-of-the-art treatments for

www.asq.org



200 YU DING, LI ZENG, AND SHIYU ZHOU

1801

1600

1%t Cycle

2™ Cycle
1400

Tonnage (ton)
S ™
[=] (=3
[ =]

(= ]
=2~
oSO

400}

34 Cycle 4% Cycle

360

720

1080 1500

Crank Angle (degree)

FIGURE 1. A Typical Nonlinear Profile Signal: the Forging Tonnage Signal.

linear profile data; interested readers please refer to
the references therein for more details.

In this paper, we are concerned with a different
class of profile data that cannot be adequately repre-
sented by a linear structured model and are generally
labeled as nonlinear profiles. Figure 1 shows an exam-
ple of such a nonlinear profile, which is the tonnage
(i.e., forming force) signal of a forging process. The
tonnage signal is obtained by strain sensors mounted
on the supporting pillars of a forging press. Figure 1
shows a total of four cycles of tonnage signals from
a crankshaft forging process, where the vertical axis
is the forming force measured in tons, and the hor-
izontal axis is the crank angle of the press. (The
crank rotates 360° in every cycle.) A few other ex-
amples include a forming-force profile in a stamping
process, a spatial profile constituted by the dimen-
sional deviations measured at different locations on
an automobile body, and a multistage quality pro-
file constituted by the surface-finish measurements
of a machined part that are tracked over a series of
stages and operations. The profiles of Figure 1 are
fairly smooth, but other nonlinear profiles, such as
the spatial profile or the multistage profile, may not
be inherently smooth. In this paper, we are concerned
with the general category of nonlinear profiles, and

the proposed method is not limited to smooth pro-
files.

Effective monitoring of nonlinear profiles is gener-
ally challenging. One immediate difficulty would be
how to characterize a nonlinear profile. In practice,
people have used some simple descriptive statistics
to characterize the profiles, such as the maximum
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magnitude, the average value, and the separation be-
tween the 10% and 90% times on the waveform rise as
well as on the fall (Knussmann and Rose (1993), Bar-
nett et al. (1998)). When simple statistics are used,
a great deal of information, especially those related
to local characteristics and fine features in the origi-
nal profile, may be ignored. For this reason, a mon-
itoring system based merely on the simple statistics
often suffers from a high false-alarm rate and/or a
high miss-detection rate.

Nowdays, due to the fast development of comput-
erized data-acquisition systems, a nonlinear profile
can be sampled at very high frequency into a high-
dimensional data vector. One could use this data vec-
tor for the monitoring purpose because it represents
the profile well and captures necessary subtlety and
fine features. As such, monitoring nonlinear profiles
can be considered a particular application of multi-
variate process-control problems.

As for the Phase I analysis of nonlinear profiles,
there are primarily two challenges to be addressed.
The first challenge is the high data dimensionality re-
sulting from the discretization of nonlinear profiles.
In most cases, the profile signal could contain as high
as several hundred data points, e.g., each cycle of the
profile in Figure 1 contains 224 data points. Because
of the curse of dimensionality, it will be ineffective to
analyze such high-dimensional multivariate data di-
rectly. Even though linear profiles are also sampled
into high-dimensionality data vectors, when it comes
to analyzing the signals, the parameters of a linear
model instead of the sampled data are used. In con-
trast, methods for analyzing nonlinear profiles are
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almost exclusively nonparametric, and thus the data
dimensionality involved in nonlinear profiles analysis
is far greater than the parameter dimensionality in
the case of linear profiles.

The second challenge is how to recognize the pres-
ence of data from out-of-control conditions and ex-
tract the data from the in-control condition. Includ-
ing out-of-control Phase I data can lead to a biased
estimation of the process mean and/or an inflated
estimation of process variability, which will in turn
affect the control limits, and thus eventually result
in more false alarms and/or more missed detections
in future monitoring.

This paper presents a strategy of Phase I analy-
sis for nonlinear profiles monitoring. In light of the
above discussion, the proposed strategy is naturally
an integration of a data-reduction component and a
data-separation/clustering component.

The most popular method employed to reduce the
dimensionality of multivariate data is the princi-
pal components analysis (PCA) (Jackson (1991),
Carreira-Perpinan  (1997)). Basically, PCA will
transform the original data and project them onto
a lower dimensional space that preserves the major-
ity of the variability in the original data. However,
one limitation of PCA is that it does not guarantee
to project the original data into a subspace that can
maximize the separation of any clustering structure
that may exist in the original data. In other words,
even if the original data possess a distinct structure
separating the in-control data from the out-of-control
ones, the structure could become blurred if too few
principal components are retained. Then, no mat-
ter how powerful the subsequent data-clustering al-
gorithm is, the in-control data may not be able to be

separated from the out-of-control ones. To bridge this
gap, we will investigate an alternative data-reduction
technique: independent component analysis (ICA)
(Hyvarinen et al., 2001), with the objective of trans-
forming the data into a subspace where the distinc-
tion of any existing structures in the data will be
maximized in the resulting independent components
(ICs). In the subsequent sections, we will discuss the
conditions under which ICA can outperform PCA
during the data reduction.

In analyzing Phase I data, people will investigate
the data points outside a control limit initially estab-
lished from the whole Phase I data set to see whether
they correspond to the out-of-control conditions; if
this seems likely, then the point is removed from the
Phase T data set. As for data clustering and sepa-
ration, traditional SPC also suggests applying this
two-step procedure recursively to the rest of the data
until no out-of-control data are detected. The final
set of data points is treated as the representatives of
the in-control process condition and is used to set up
the control limits for future monitoring (Montgomery
2004). Tt will be shown later that this simple recursive
procedure is mainly effective for the cases when scat-
ter outliers constitute the out-of-control data points.
But it is not effective with sustained shifts. This pa-
per recommends a more sophisticated change-point
detection algorithm, recently developed by Sullivan
(2002), as the data-clustering tool, which is able to
effectively detect single and multiple shifts as well as
outliers.

The relationship of the proposed Phase I analysis
to the entire process-monitoring procedure is illus-
trated in Figure 2. Because our goal is the Phase I
analysis, we choose not to specify the type of moni-
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FIGURE 2. An Overview of Phase | Analysis.
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toring chart to be used when a newly observed signal
x becomes available. That is why a nonspecific “data
processing” is used for Phase II in Figure 2.

The remainder of this article is organized as fol-
lows. In the subsequent sections, we first define the
notation and assumptions used in the paper. Then
we discuss the techniques used as the data-reduction
and data-separation components, respectively. After-
ward, we present two numerical examples: the first
one uses a simulated data set to demonstrate the
effectiveness of the recommended procedure versus
other available methods; the second one is to apply
the Phase I analysis to the profile signals obtained
from a forging process. Finally, we will summarize
the paper and include some concluding remarks.

Notation and Assumptions

We denote an individual data point of the non-
linear profile by z;;, ¢ = 1,...,nand j = 1,...,p,
where ¢ is the cycle index, 5 is the index for the data
point within a cycle, n is the total number of cycles,
and p is the dimension of the data vector for each
cycle.

We can arrange the entire historical data set in a
matrix X of dimension n x p, each row of which is the
data vector associated with one cycle. Meanwhile, we
denote by x; the transpose of the ith row of X, of
dimension p x 1 and corresponding to the ith cycle
of a sampled profile. For the tonnage signal in the
forging process, the historical data set has n = 530
and p = 224.

Denote by S the sample covariance matrix of data
matrix X, i.e.,

where X = (1/n)Y 5, x; and we assume S posi-
tive definite. Denote by {Ag,ex} the kth eigenvalue—
eigenvector pair of S. Without loss of generality, we
will generally arrange the eigenvalues in descending
order, i.e,, Ay > Ay > --- > Ap. We refer to ey as the
kth eigenvector of S, meaning that it is the eigenvec-
tor associated with the kth eigenvalue of S.

As we mentioned in the introduction, the n his-
torical samples of a nonlinear profile may be a com-
bination of both in-control and out-of-control condi-
tions. In this paper, we make the following assump-
tions: (A1) A process switches between the in-control
and out-of-control conditions infrequently. (A2) The
data samples associated with the out-of-control con-
dition will be the minority among all the historical
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samples. (A3) The measurements obtained under a
specific process condition (the in-control condition
or a specific out-of-control condition) are assumed
to follow a multivariate normal distribution. We feel
that the first two assumptions on the occurrence of
out-of-control conditions are not restrictive. Actu-
ally, they quite reasonably reflect our observations of
the behavior of a discrete-part manufacturing pro-
cess, which usually has slow between-sample dynam-
ics. The last assumption is not a surprise, either,
because the multivariate normal distribution is ar-
guably the most commonly used distribution in the
practice of SPC (Montgomery 2004).

Data Reduction: PCA Versus ICA

Difference between PCA and ICA

The objectives of PCA do not include separating
the existing data structure or clusters; PCA merely
looks for the projection direction corresponding to
large variations. A classical example that can be com-
monly found in the literature of ICA (e.g., Hyvarinen
2001) is shown in Figure 3. Suppose that there are
two clusters of data in a two-dimensional space, rep-
resenting the in-control data and the out-of-control
one, each of which is depicted by an ellipse represent-
ing a distribution contour of a bivariate normal dis-
tribution. When PCA is performed on the whole data
set, it will project the data into axis €7, which is par-
allel to the direction of the largest variability in the
data. After such-a projection, the distinct structure
of the original data clusters will not be preserved.
ICA uses a different criterion, loosely defined as in-
terestingness, when it chooses the projection direc-
tion. ICA will actually project the two-dimensional
data into axis ez, where the distinction of the struc-
tures in the original data is maximized.

The question is what defines the interestingness.

Ya 614
1}

[

FIGURE 3. Difference Between PCA and ICA.

Vol. 38, No. 3, July 2006




PHASE | ANALYSIS FOR MONITORING NONLINEAR PROFILES IN MANUFACTURING PROCESSES 203

The general consensus (please refer to Huber (1985)
and Jones and Sibson (1987)) is that the Gaussian
distribution is the least interesting one, or that the
interesting one should be non-Gaussian. The entropy
definition measuring the non-Gaussianity for any
continuous random variable Y with density fy (y) is

HY) = — / fr (9) log f (y)dy = —Ey llog(fy (9)))-
(1)

One can optimize the entropy by varying the prob-
ability density function f, and the entropy is maxi-
mized when f is Gaussian density and strictly smaller
otherwise.

The above definition of interestingness appears
to be well aligned with our objective of separating
in-control data from the out-of-control ones. From
assumption A3, the process outputs under a spe-
cific process condition follow a Gaussian distribution.
Then, for combined data from both in-control and
out-of-control conditions, the resulting distribution
will be non-Gaussian. The projection directions for
which the interesting features (or non-Gaussianity)
of the data are in fact equivalent to the directions
where the distinction of data clusters is obvious, e.g.,
the e; axis in Figure 3.

Of course, the projection for non-Gaussianity and
that for the largest variability could coincide. When
that happens, the resulting projection subspace from
PCA and ICA will also coincide, which implies that
using PCA for data reduction may be able to preserve
the data-clustering structure as well in the reduced
data. As illustrated in Figure 3, the clustering struc-
tures in the combined data manifest along the di-
rection associated with the mean difference between
the data samples—this direction is represented by
v, which will be defined later. An ideal projection
method should project the original data onto the
direction associated with the mean difference. The
question of whether PCA will be able to preserve
the data-clustering structure depends on whether the
subspace spanned by its first several eigenvectors in-
cludes the direction of the mean difference.

In the sequel, we try to provide a general under-
standing of the aforementioned question by consider-
ing combined data from two Gaussian distributions:
X, has n, data samples with sample mean X, and
sample covariance matrix S,, and X, has n; data
samples with sample mean X, and sample covari-
ance matrix Sp. The total number of data samples
is n = ng +mnp. Without loss of generality, we assume
X, is the in-control data, and hence n, > n;. Our
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purpose here is to facilitate conceptual understand-
ing so that we consider a simple case that allows us
to see the results clearly. For this reason, we assume
that S, = A%I (S,’s eigenvalues are all equal) and S,
is diagonal with {\¢}?_, as its eigenvalues. Denote by
v the mean difference between the two data samples,
ie,v=X,—Xp and S as the sample covariance ma-
trix of the combined data. Then, the ith eigenvalue
A; of Sis

(ng — 1) (np—1) NaNb

A = A® A7 ———|v||?

t n—1 + n—1 1—i_ml(n—1)n“v”’
(2)

where || - || is @ 2-norm and m; is a constant, satis-

fying 0 < m; <1 and Y%, m; = 1. (The derivation
is included in Appendix I.) The procedure for deter-
mining m; is given in Wilkinson (1965, pp. 97-98),
but it is algebraically involved.

When the elements in v are roughly the same,
corresponding to a mean difference between data
samples along a general direction in the original
data space, we call it a whole-space mean difference.
Under this circumstance, the subspace spanned by
the major eigenvectors corresponding to the largest
eigenvalues will include a substantial amount of the
mean difference, meaning that the resulting PCs will
be able to preserve the clustering data structure in
the projected subspace. According to Equation (2),
the order of the resulting A; will be primarily decided
by the order of the Ab.

When the mean difference is more prominent in
certain direction, i.e., a few elements in v are non-
zero while the others are zero, we call this v a
subspace mean difference. Suppose that we have r
nonzero elements in v and p — r zero elements. Then
the eigenvalues of S consist of two groups: the first
group is associated with the (p — r)-dimensional sub-
space, where there is no mean difference and the
eigenvalues correspond to m; = 0 in Equation (2);
the second group is associated with the r-dimensional
subspace, where there is a mean difference, and the
eigenvalues correspond to a nonzero m;, and all the
nonzero m; will still sum to unity, i.e., > ;_; m; =1.

Now suppose that the elements in v along the
direction of originally large variability are zero, say
v1 = 0. We are interested in knowing when an eigen-
value of S in the second group will be larger than the
eigenvalues in the first group because of the mean dif-
ference existing in that subspace. Denote by A; the
largest eigenvalue in the first group and by A; an
eigenvalue in the second group. If A; > A;, it implies
that the direction of the largest PC will not align
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with the direction of v. For A\; > );, we have

—1 —1
P e
g — 1 np—1.p T Mp 9
A% A P
n_1" Th_1 Z—i_ml(n—l)n“v”’
=
np—1,.4 b e Mp 9
A —=A) > my———
=

nw<%%%§%—m- )

If both n, and n; are much greater than 1, and let
ny, = kn, then 0 < k < 0.5 because we postulate
ng > np. As such, Equation (3) becomes

<\ O @

suggesting that when the mean difference is smaller
than the right-hand side (RHS) amount in the above
inequality, the projection output to the largest PC
will miss the mean difference. Equation (4) can
be further simplified for the case when there is
only one nonzero element in v, say v; # 0. Then
m; = 1, so that Equation (4) becomes v; <
VIL/(1— K)](A} — AP). Because many PCA users
likely keep a few largest PCs, this can be extended to
more than one PC by replacing A! with the smallest
eigenvalue retained.

According to Equation (4), when the combined
historical data has nearly the same amount of ob-
servations from out-of-control conditions as the in-
control ones, i.e., n, & np, the mean difference can
go as large as v/2(AY — A?)/m; without being pro-
jected onto the major PC’s direction. The mean dif-
ference allowing Ay > A; decreases when the amount
of out-of-control data decreases; the other extreme
approaches /(A8 — A\?)/m; when ng > ny.

Equation (4) holds for n, much greater than one.
When n; is close to one, it corresponds to the sce-
nario of outliers, and then Equation (3) is more ap-
propriately approximated as

|M<¢%i?0%ﬁ% (5)

under which circumstance, the allowed mean differ-

ence for A\; > A; will be smaller than /(X2 — X?)/m,.

When n; is 1 (a single outlier), the projected sub-
space associated with the major PCs will be able to
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capture the outlier, almost regardless of the magni-
tude of v.

Combining the above points, for this simple case,
we can conclude that PCA upon retaining a few
largest eigenvalues will likely miss the data clustering
structure when there is a subspace mean difference of
mild magnitude. On the other hand, PCA is likely to
preserve the data-clustering structure in its projec-
tion subspace for a whole-space mean difference, or a
mean difference of large magnitude, or when the out-
of-control data are merely some outliers. PCA will be
worse off when the out-of-control data are nearly as
numerous as the in-control data and be better off
when there are many more in-control observations.
Later, with the help of numerical examples, we show
that these generalizations are still reasonable with
more complicated covariance matrix structures.

The fact that the subspace created by PCA may
not be sensitive to a mean difference has been noted
in prior research. Runger (1996) proposed a U? chart
for detecting a subspace mean shift (equivalent to the
subspace mean difference in our case). In his paper,
Runger assumed that the subspace within which a
mean shift is likely to occur is known. A U? chart
is simply a multivariate x? for the projected data
in a predefined subspace that may be different from
the PC’s subspace. Following a similar idea, Runger
et al. (2005) later presents a POBREP framework
for monitoring multivariate fault patterns appearing
only in a subspace; the U? chart can be considered
as a special case of the more general POBREP ap-
proach. Again, the subspace within which the fault
pattern appears is known. In our case, we do not
know the subspace in which a mean difference lies;
an ICA algorithm is an attempt to automatically find
such a subspace by optimizing a linear transforma-
tion.

Numerical Routine for ICA

Similar to PCA, ICA is also based on a linear
transformation of the original data, but its compu-
tation procedure is far more complicated than that
for PCA. Fortunately, ICA algorithms are available
in commercial software language such as the MAT-
LAB and R. We use the fastICA function in MAT-
LAB to perform the data transformation in our im-
plementation. One thing to note is that, in most ef-
ficient algorithms for finding ICs, an approximation
has been used to replace the difficult-to-compute en-
tropy, which is

J(z;) = [E{g(z:)} — E{9(2)})?, (6)
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where z; is the ith component in %, z is a standard-
ized Gaussian, and g(-) is a smooth, nonlinear func-
tion. The objective function is solved through numer-
ical optimization routines.

Even though ICA theoretically should do no worse
than PCA in terms of finding the subspace of the
data with clustering structures, the numerical rou-
tine of ICA may not be able to find the global opti-
mum and thus could perform worse than PCA. This
suggests the necessity of further research for better
objective functions and more powerful, robust solu-
tion procedures to realize ICA, which is indeed an
on-going pursuit. Among four versions of g(-) and
two optimization procedures provided by the cur-
rent MATLAB fastICA function, our empirical ex-
periences indicate that using the Gaussian density
function as g(-) together with a parallel (instead of a
sequential) procedure to estimate ICs appears to be
a better combination than the other options.

Determining the Number of ICs and PCs

To utilize ICA or PCA for dimensionality reduc-
tion, we need also to decide the number of signifi-
cant ICs or PCs to retain. In other words, we need
to identify the number of significant variation direc-
tions in the data set. Different methods to solve this
problem have been studied and compared through
simulation by Apley and Shi (2001). This problem
can be formulated as a hypothesis-testing problem:
to determine if & major variation directions exist in
the system, we can test the hypothesis testing of
M > > >N > 0% = Apgq =+ = )y, where
Xi, © = 1,...,p are the eigenvalues of the covari-
ance matrix of the profile data, and o2 represents the
background noise level. Several asymptotic testing
procedures are available. Apley and Shi (2001) rec-
ommended using either the Akaike information crite-
ria (AIC) or the minimum description length (MDL)
information criteria to estimate the number of signif-
icant variation directions, equivalent to the number
of significant ICs or PCs to retain. In this paper, we
choose the MDL criterion, which is defined as

MDL(l) = n(p—1) log(a/9:) +1(2p—1) log(n) /2, (7)

where a; and g; are the arithmetic mean and the ge-
ometric mean of the p — [ smallest eigenvalues of the
sample covariance matrix of the profile data, respec-
tively. To use this criteria, MDL(l) is evaluated for
[ =0,...,p—1. The number of significant ICs or PCs
to retain is chosen as the ! that minimizes MDL(I).

When the MDL test retains a relatively large num-
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ber of PCs, which may in turn cause difficulty in
subsequent analyses, a visual aid such as a scree plot
(i.e., a pareto plot) suggested by Johnson and Wich-
ern (2002, p. 441) can be used to facilitate in deciding
a more appropriate number of eigenvalues to retain.

Apply PCA or ICA to the Wavelet
Coeflicients of Original Data

For analyzing nonlinear profiles, another widely
used method is to perform a wavelet transformation
and then work on the wavelet coefficients that pre-
sumably represent the original data. However, the
number of the resulting nonzero wavelet coefficients
is usually too many to enable effective decision mak-
ing. Hence, dimensionality reduction is still a neces-
sary step.

Prior work has been reported in using different
methods to select a subset of wavelet coefficients
from the whole set (Jin and Shi (1999, 2001), Koh
et al. (1999a, b), Zhou et al. (2004), Pittner and Ka-
marthi (1999), Lada et al. (2002)). But it comes as no
surprise that PCA is still the most commonly used
method if an aggressive dimension reduction is re-
quired (e.g., Kosanovich and Piovoso (1997), Bakshi
(1998)). It is our belief that ICA can also be applied
to the wavelet coefficients, just as PCA, to help re-
duce the data dimensionality because our previous
discussion is based on generic multivariate data. We
are not yet certain about when it is helpful to in-
clude a wavelet transform to preprocess the profile
data. That issue is out of the scope of this article
but certainly warrants some future research.

Data Clustering and Separation

Because of the independence among the resulting
ICs, the data-separation task can be applied to each
IC individually. We will treat a data sample as the
in-control data if all corresponding ICs so indicate.

There are a few available alternatives to fulfill the
data-separation task for an individual, univariate IC.
The most commonly used procedure is a recursive ap-
plication of a control chart, which removes any out-
of-control point iteratively, namely, a control chart
will be established using the entire data set; second,
the data points outside the control limits will be re-
moved. Then, the control limits will be revised using
the rest of the data and be applied to the new data
set. The procedure will be repeated until no out-of-
control data point is found.

Another idea is to apply a clustering method to
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the original data set to separate the data into differ-
ent clusters, each of which presumably corresponds
to different conditions (a different mean and/or a dif-
ferent variance). Suppose that, under the in-control
condition, the process follows N({ug,02) and, un-
der out-of-control conditions, the process follows
N(ps,02), where p; # pg or 02 #0,i=1,---, K,
and K is the cluster number. Then, the resulting
data may be modeled by a mixture model. An EM-
MIX (expectation-maximization mixture) clustering
method (McLachlan and Peel, 2000) is available for
separating the clusters in mixture data. Once the
original data set is clustered by the EMMIX method,
it would not be difficult to extract out the in-control
data by utilizing assumption A2 that the in-control
data are more numerous.

The third alternative is to use a change-point
detection algorithm. A change-point detection algo-
rithm detects the instances in an ordered sequence
of observations when the distribution (characterized
by its first two moments) undergoes a change. If all
the change points in the original data set can be per-
fectly detected, the in-control data can then be eas-
ily separated. Sullivan (2002) recently developed a
change-point detection algorithm, which can detect
single/multiple change points as well as outliers very
effectively and thus meets our needs here; a proce-
dure for implementing Sullivan’s method is outlined
in Appendix II.

The question is which procedure will be the most
effective in terms of data separation. Conceptually,
the latter two procedures are more sophisticated than
the recursive use of a control chart. The problem with
the recursive use of a control chart is that the con-
trol limits used to remove the out-of-control data are
contaminated by the out-of-control data themselves.
Unless there exist only scattered outliers, the recur-
sive use of control charts is unlikely to be effective.

Between the EMMIX clustering method and the
change-point detection algorithm, the latter is likely
to be more effective for the manufacturing processes
of concern, of which we have assumed that the
switches between the in-control and out-of-control
conditions happen infrequently. It means that the in-
control and out-of-control data will form reasonably
long time-sequence segments, and outliers will not
occur often. For example, given 10 data points, it is
unlikely for the process to be that {1,3,5,7,9,10} are
the in-control data points and {2, 4, 6,8} are the out-
of-control data points. This type of data is similar to
the mixture data but also different in the sense that,
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once there is a change to a distribution, the successive
observations are likely to be from the same distribu-
tion. Obviously, the combined data from the man-
ufacturing process are better modeled by a change-
point model than a traditional clustering model that
does not consider this ordered sequence information.
As a result, the change-point detection utilizing the
ordered sequence information can more effectively
detect infrequent process changes. By contrast, the
EMMIX clustering method does not consider the or-
dered sequence information at all and is more likely
to assign a data point in the middle of a long segment
to a different cluster.

Although the conceptual understanding points to
the change-point detection algorithm for our applica-
tion, the effectiveness of the three procedures has not
been compared in the literature. In Sullivan (2002),
the change-point detection algorithm was compared
with the X-chart and the CUSUM chart. However,
the comparison was performed only for the cases of
a mean shift, while the variance was assumed un-
changed. We perform a more comprehensive numer-
ical comparison among the three procedures for a
collection of 15 scenarios, including mean shifts, vari-
ance changes, and outliers.

In the following numerical comparison, we con-
sider a univariate normally distributed sequence of
100 data points. For simplicity, we assume there is
only one change point or one outlier, and the in-
control observations are 60% of the data. Without
loss of generality, the in-control distribution is taken
to be zero mean (o = 0) and unit variance (oo = 1).
At a change point, four types of mean shifts (small,
medium, large, and very large) and three types of
variance change (decreasing, none, and increasing)
are considered, which give a total of 12 combinations.
Together with three different magnitudes for an out-
lier, we compare the three algorithms for a total of
15 scenarios.

The detailed scenario information is summarized
in Table 1. The S; to Si» denote the 12 combina-
tions of mean shifts and variance changes associated
with a change point. Under each scenario, two mean
shifts (denoted by §) are simulated and the average
of their performance data will be used in the compar-
ison. In the meanwhile, the variance after a change
point, denoted by o1, is also indicated under each
category. For example, under S1, two mean shifts of
0.50¢ and 1og, respectively, are used to represent the
scenario with a small mean shift. Under S7, the vari-
ance gets smaller (o) = 0.50¢) after the change point.
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TABLE 1. The Scenarios for Numerical Comparison

S; (small shift,
decreased variance)

Sy (medium shift,
decreased variance)

S3 (large shift,
decreased variance)

S5 (small shift,
same variance)

Sy (very large shift,
decreased variance)

& = 0.500; 0 = log;
and o1 = 0.509

0= 1.50’0; 6= 20’0;
and o, = 0.50¢

d = 2.509; 6 = 309;
and gy = 0.50’0

& = 3.500; 6 = 4oy;
and o = 0.50¢

6 = 0.500; 6 = log;
and 01 = g

Se (medium shift,
same variance)

S7 (large shift,
same variance)

Sg (very large shift, Sy (small shift,
same variance)

S10 (medium shift,

increased variance) increased variance)

6 = 1.500; 6 = 209;
and 01 = 09

d = 2.500; § = 300;
and o1 = gg

d = 3.500; 6 = 4oy;
and o1 = g9

d = 0.509; 6 = loy;
and g = 20’0

d = 1.50¢9; 6 = 200;
and g1 = 209

S11 (large shift,
increased variance)

S12 (very large shift,
increased variance)

O Os

§ = 2.50¢; 6 = 30y¢;
and 01 = 209

6 = 3.50¢; 6 = 4oy;
and o = 209

magnitude = 30¢

magnitude = 6oy magnitude = 90y;

Thus, S; corresponds to the case of small mean shift
and a decreased variance. The other scenarios follow
the same interpretation. For the three types of out-
liers, their magnitudes are indicated in Table 1 as a
multiple of og.

In order to compare the alternative procedures,
we need to define a set of performance indices. Our
thinking is as follows. In Phase I analysis, when the
historical data is a combination of in-control and out-
of-control data, the objective is to extract the in-
control data as accurately as possible. The ideal case
is where all in-control observations are correctly iden-
tified. We hence use it as a benchmarking reference.
In reality, there are always misclassifications, either
treating out-of-control as in-control or the other way
around. Thus, a sensible performance measure should
be able to evaluate the impact of misclassifications
in Phase I analysis on the performance of a control
chart used in Phase II.

In other words, when a data-separation algorithm
is used to identify the in-control data, the output
from each data-separation algorithm is actually a
combination of some in-control data and some out-
of-control data; we label the output as the contam-
inated data. The contaminated data are then used
to set up the control limits to be used in Phase II.
The performance of such a control chart in Phase II,
characterized by its average run length (ARL), can-
not be the same as the ideal case—they will gener-
ally do worse, either have a shorter ARLq (i.e., more
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frequent false alarms) or a larger ARL; (i.e., longer
delayed detection),-or both.

Obviously, the data-separation algorithm that
achieves the smallest adverse change from the ideal
case in both ARLy and ARL; measures is considered
the best method. For this reason, we choose to use
the changes in ARLy and ARL;, as compared with
the ideal case, to benchmark the performance of the
three data-separation procedures. Please note that
nonadverse changes, i.e., an increased ARLg or a de-
creased ARL; when using the contaminated data, are
treated the same as no change.

First, consider the future monitoring on an actual
in-control process in Phase II. We define the index
for the change of ARL; as

maX(ARLO,ideal - ARLO,contama 0)

AARLy =
Rlo ARLg ideal > (®

where ARLg jdea is the ARLg in the ideal case when
the control limits are determined by the true in-
control data, and ARLy contam is the ARLg when the
control limits are determined by the contaminated
data. The numerator in Equation (8) is nonnegative,
meaning that, when the ARLq is longer than the ideal
ARLg, the resulting numerator is zero.

Second, consider the future monitoring on a mean
shift in Phase II. We define the index for the change
of ARL; under specific mean-shift magnitudes. We
adopt three AARL,’s, corresponding to the cases of
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FIGURE 4. The Change of ARLy for the Three Separa-
tion Procedures.

when the mean shift of § = 0.50¢, og, 209, respec-
tively, exists in the process during Phase II. So we
define

AARL,(6)
o max(ARLl,contam((S) - ARLl,ideal((s), 0)
B ARLl,ideal (6) ’

©)

where the notation generally follows that for ARLy,
except that § indicates a specific mean shift. Note
that because we are concerned with a longer ARL,
the order of ARL; jdea1(9) and ARL1 contam(6) in the
numerator of Equation (9) is flipped as compared
with that in Equation (8).

Using the performance indices in Equations (8)
and (9), we perform numerical simulations (with
5,000 replications) to compare the three data-
separation procedures in the context of the 15 sce-
narios as defined in Table 1. The results of changes
in ARLy and ARL; are displayed in Figures 4 and 5,
respectively. In Figure 4, the vertical axis is the per-
centage of the AR Ly change. The ideal is no change,
and the smaller, the better the performance. For ex-
ample, with Sullivan’s algorithm for Sy, the ARLq is
50% shorter than the ideal case but it is worse (80%
shorter) with the use of the EMMIX algorithm or the
X-chart. In Figure 5(a)—(c), the vertical axis is the
logarithm of the percentage changes in ARL;, mean-
ing that a zero on this axis actually corresponds to a
100% increase in ARL; instead of no change. In Fig-
ure 5(b), for example, with Sullivan’s method for Ss,
the ARL; will increase about 1072 x 100% = 1%
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(the reading from Figure 5(b) is about —2); with
the EMMIX algorithm, the ARL, will increase about
107! x 100% = 10% (the reading from Figure 5(b) is
about —1), and with the X-chart, the ARL; will in-
crease 10° x 100% = 100% (the reading from Figure
5(b) is about 0), all as compared with the ideal case.

Figures 4 and 5 clearly demonstrate that the Sulli-
van’s change-point detection algorithm outperforms
(in terms of a smaller decrease in ARLy or a smaller
increase in ARL;) the other two methods for a vast
majority of the scenarios. Only for outliers with a
very large magnitude (609 and 90¢) does the recur-
sive use of an X-chart or the EMMIX method demon-
strate some advantage. This verifies our conceptual
understanding outlined before. As such, in our Phase
I analysis, we choose Sullivan’s change-point detec-
tion algorithm as the data separation tool.

Numerical Examples

This section presents two examples. The first one
is a simulated process, where we know when the pro-
cess distribution changes. It will be used to compare
the proposed Phase I analysis with other alternatives.
The second example is a Phase I analysis on the ton-
nage signal from a forging process.

Simulation Scenarios

The simulated data set consists of 1,000 samples
of 20 variables, i.e., n = 1,000 and p = 20. The in-
control distribution is a normal distribution of zero
mean and variance around .5. Two process changes
are injected into z; — z4 and z5 — zg at different
time instances. The first change occurs to z; — z4 at
sample #101 and it has ny; samples. The first out-
of-control observations follow a normal distribution
with p; and

4 15 13 8

15 4 12 .7
Xy = 1.3 1.2 4 86|’

8 7 6 N

where mp1, Ap, and p1 are to be determined for six
different scenarios. The second change occurs to x5 —
zg at sample #651. The out-of-control data follow a
normal distribution of
9 1.9
—_ T _
we=[=3 017, % {1.9 2 ]

and have nyo samples.

This simulation aims at verifying the general un-
derstanding of the difference among available meth-
ods presented in the previous sections. As such, six
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FIGURE 5. The Change of ARL; for the Three Separation Procedures.

simulation scenarios are created by changing the pa-
rameter values. The choices of parameters and the

interpretations for the six scenarios are summarized
in Table 2.

Compared with Alternative Procedures

Our proposed Phase I analysis procedure inte-
grates ICA and the change-point detection, and the
combined procedure will be called ICA+CPD below.
Two other alternatives are compared. One is to per-
form PCA to reduce the data dimension and then to
apply the change-point detection algorithm directly
to the resulting PCs, a procedure called PCA+CPD.
Another alternative is the commonly used method
that applies a multivariate Hotelling 72 chart to a
much reduced number of PCs. In other words, PCA
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will reduce the data dimension first, and then the
Hotelling T2 chart will be established for the result-
ing PCs to detect any points outside the control limit
as out-of-control. Similar to other control charts, this
procedure will be recursively applied to the data set

until no out-of-control point occurs. This procedure
is called PCA+T72.

Toward our goal for Phase I analysis, which is to
identify the in-control data accurately, we consider
the following performance indexes. The first index is
the percentage of in-control data correctly identified:

prp = # of in-control data correctly identified/
# of total in-control data. (11)

The second index indicates the rate of misclassifica-
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TABLE 2. Summary for Six Simulation Scenarios
Case Parameters Interpretation
1 np1 = 450, npe = 50, Ay = .5, Subspace mean difference of a mild magnitude;
pr=[-2 -1 -1 2]F mean difference aligns with a small eigenvalue (X = .5);
a relatively large number of out-of-control data, x = .45.
2 npy =5, Npz = 1, Ap = .5, Outliers
p=[-2 -1 —1 2|T
3 ny1 = 450, npe = 50, Ay = 2.5, Subspace mean difference of a mild magnitude;
pr=[-2 -1 -1 2jF mean difference aligns with a large eigenvalue (A = 2.5);
a relatively large number of out-of-control data, k = .45.
4 np1 = 150, npe = 50, Ay = .5, Subspace mean difference of a mild magnitude;
pr=[-2 -1 -1 2]F mean difference aligns with a large eigenvalue (X, = .5);
a relatively large number of out-of-control data, £ = .15.
5 np1 = 350, nye = 50, Ay = .5, Subspace mean difference of a large magnitude;
pr=[—-2 -1 —1 4]T mean difference aligns with a large eigenvalue (A = .5);
a moderate number of out-of-control data, x = .35.
6 ny1 = 250, npg = 150, Ay = .5, Whole-space mean difference of a small magnitude;
pr=[15 0 0 —4]T a relatively large number of out-of-control data.
tions: distribution (the distribution parameters are the true

puis = # of out-of-control data identified as
in-control data/
# of total in-control data. (12)

Ideally, one would want p;p = 100% and parrs = 0.
Generally, a big value in p;p and a small value
in pprs are preferable. The above two indices will
ultimately indicate how well the in-control mean
vector and variance—covariance matrix can be esti-
mated. The estimation of in-control mean vector and
variance—covariance matrix will in turn affect the two
types of errors for future monitoring.

We also use an alternative index that may measure
more directly the accuracy of the estimation of in-
control mean and covariance matrix. To that end, we
employ a Bayesian-type model-validation procedure
as outlined in Gelman et al. (2003, p. 162) by treat-
ing the estimated mean vector and covariance matrix
as the parameters of a multivariate normal distribu-
tion. Draw a large number of samples, say 10,000,
from the above normal distribution. For each mul-
tivariate sample vector x,, compare it with the true
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mean vector and true covariance matrix) for a preset
o, say o = 1%. If (x, — 110) 725" (x, — po) < X2(0),
where po and Xg are the true mean and true covari-
ance, then the corresponding sample is not ruled out
for being from the true distribution; otherwise, it is
considered not from the true distribution. Comput-
ing the percentage of samples that do not satisfy the
above test gives us an empirical o value. If the sam-
ples are indeed from the same distribution as the true
distribution, the empirical o will match the preset «
value. We can establish the significance of how the
estimated distribution is different from the true dis-
tribution by calculating the p-value of the empiric-
al a.

We implement the three procedures to perform
Phase T analysis on the simulated data set, respec-
tively. The upper control limit (UCL) used in Sulli-
van’s change-point detection algorithm is chosen to
correspond to 0.0027 false-detection probability for
a sequence of 1,000 observations. Given the decision
rule for the first two procedures is that one observa-
tion is considered out-of-control if any univariate IC
or PC is classified as out-of-control, the equivalent
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TABLE 3. Comparison of the Alternative Phase | Analysis Procedures
ICA+CPD PCA+CPD PCA+4T?
Case pip  pumrs o« (%) pvalue pip  pumis o« (%) p-value prp pumrs o« (%) povalue
1 931  .016 1.130 .108 705 175 6.117 .0 997  .867 8.450 .0
2 1.00 .005 1.043 .323 1.00 .005 1.047 323 993  .005 .998 516
3 663  .029 1.906 .0 771 039 1.864 .0 998  .836 9.360 .0
4 959 011 1.045 322 083 .012 1.077 225 990 148 1.440 .0
5 993 012 1.042 321 885  .020 1.210 .017 997 511 13.70 .0
6 938 021 1.132 .090 991 .007 1.036 .356 997 441 9.078 .0

false-detection probability for the whole procedure is
1 — (1 —0.0027)%, where k is the number of PCs or
ICs retained. This equivalent false-detection proba-
bility is used to set the UCL for the T2 chart in
the PCA+T? procedure. In the Bayesian validation
of the estimated distribution, « is chosen to be 1%.
The distribution of « is established empirically via a
100,000-replicate simulation.

Table 3 summarizes the performance comparison
results using the three competing methods. The val-
ues of prp, pmrs, and empirical @ are the average
of 1,000 trials. The p-value is determined using the
average empirical « and the distribution of a upon
sampling. :

From Table 3, we observe the following:

(1) Using the combination of PCA+T? chart for
Phase I analysis is not appropriate unless there
exist only a few outliers in the historical data
set. Our experience indicates that the histori-
cal data set is much less clean than expected
and usually contaminated by several groups
of long runs of out-of-control data in a rel-
atively large number. As such, the procedure
of PCA+T? falls short of removing those out-
of-control data and thus the estimation of the
in-control distribution is significantly different
from the true distribution, as indicated by a
near-zero p-value. The other two procedures us-
ing the change-point detection will do equally
well as the PCA+T? for the outlier case but
much better when np; and npe are greater.

(2) According to our previous discussion about the
difference between ICA and PCA, Case 1 is the
scenario when ICA is supposed to do better
than PCA, and it in fact does. Both pyp and
pamrs from ICA are much better than those ob-
tained by PCA. The resulting in-control data
extracted by ICA will lead to an estimation of
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distribution closer to the true distribution (p-
value = .108), while that obtained by PCA does
not.

(3) For Cases 2-6, ICA does not always perform
better than PCA. For Cases 2, 4, 5, both per-
form almost equally well. For some cases, e.g.,
Case 5, ICA performs better than PCA, as
judged by the absolute value of o and the p-
value. But, PCA apparently performs better
than ICA for Case 6, which is the scenario of
a whole-space mean difference. But ICA still
manages to have a good enough identification
of the in-control data so that the estimation of
in-control distribution is not statistically differ-
ent from the true value, as judged using a 5%
significance level.

(4) Neither of the algorithms performs satisfacto-
rily for Case 3, which has a subspace mean dif-
ference aligning with a relatively large eigen-
value. Both algorithms suffer from a relatively
low identification rate (p;p of .663 and .771, re-
spectively, much smaller than that for the other
five cases), which causes inaccurate estimation
of the in-control distribution. But in a relative
sense, ICA performs similarly to PCA—the av-
erage empirical « is 1.906 versus 1.864.

Based on this comparison, we recommend using
the procedure combining ICA and change-point de-
tection for the Phase I analysis of nonlinear profiles.
This combined procedure does best when expected
and it also has a robust performance across many
different scenarios.

Application of the Phase I Analysis to Forging
Process Data

The data set contains 530 profile signals, each of
which is sampled into a 224-dimension vector, i.e.,
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FIGURE 6. Phase | Analysis for the Profile Signals in the Forging Process; the Left Panel Is from the Procedure ICA+CPD,

and the Right Panel Is from PCA+CPD.

n = 530 and p = 224. The same data set has been
studied in Zhou and Jin (2004) for a different pur-
pose. Interested readers may want to refer to Zhou
and Jin (2004) for a more detailed background de-
scription of the forging process.

We suspect that this data set is contaminated by
data from out-of-control conditions. We would like
to see how the recommended procedure for Phase
I analysis can help us find process change points
rapidly.

The procedure combining ICA and change-point
detection is executed the same as before. In this
particular example, the MDL test retains up to 30
eigenvalues, which certainly makes the phase I anal-
ysis difficult. A scree plot indicates that the eigen-
values flat out from the fourth one onward. Hence,
the first three eigenvalues and their eigenvectors are
used. The UCL for Sullivan’s algorithm is set in a
way such that the false-detection probability for the
whole procedure is 0.0027. The data separation is
shown in Figure 6, where a “e” represents the in-
control data point and a “+” indicates an out-of-
control data point.

The left panel of Figure 6 is the result from
ICA+CPD, indicating that there are five change
points in the data set, partitioning the data set into
six segments. The first suspected process change hap-
pens at sample #14, the second one at sample #65,
the third one at sample #80, the fourth one at sam-
ple #241, and the fifth one at #480. It is reasonable
that the first segment of roughly 13 samples is differ-
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ent from the rest of the process because each machine
will usually have a transition period when it starts
working. Careful reviews of the process history also
confirm the authenticity of the fifth change point,
where the last data segment of 50 samples has obvi-
ously undergone a mean shift from the previous data.
It turns out that the coolant for the forging press was
changed at that instance. There is no clear reason to
explain the second to the fifth change points. After
consulting the engineers, we believe that a collection
of uncontrollable or hard-to-control factors, such as
temperature and humidity, may have contributed to
these changes. Since during an actual forging fabri-
cation process, the process is considered to be in-
control under such conditions, we will combine the
second to the fifth data segments to form the in-
control data set. That gives us a total of 467 ob-
servations for the in-control process condition, which
should be used for setting up the monitoring scheme
for future observations.

The right panel of Figure 6 is the result from
PCA+CPD. Apparently, the data segments in the
PCs are more than those in ICs, and the last segment
of the data is not seen as clearly shifting away from
the main stream in the PCs as it is seen in the ICs.
Had the original shift been of a little smaller mag-
nitude, using the first three PCs could have missed
the important process change. Also, using the PCs,
the majority of the data will be classified as out-of-
control and the common ground from the in-control
process condition is not so easy to be established.

In Figure 7, we plot the functional responses of
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FIGURE 7. Functional Responses of the Segments in Figure 6.

three data segments detected in Figure 6: the first
segment, the in-control data that combine the sec-
ond to the fifth segment, and the sixth segment. The
curves in Figure 7 are the average of the profiles
within each one of the three segments. Apparently,
the three segments demonstrate a noticeable devia-
tion from each other, primarily around the peak area.
This seems consistent with our understanding from
Figure 6.

It is also worth noting that the recommended pro-
cedure for Phase I analysis can be recursively ap-
plied to the historical data, especially when there
exist some outliers with large magnitudes that may
overshadow other process changes. It would not be
difficult to apply the recommended procedure to re-
move the outliers first and then to detect other pro-
cess changes so as to extract the in-control data as
accurately as possible.

It turns out that the change-point analysis splits
the data sequence into subsequences, some of which
apparently do not seem to be interestingly different
(such as segments #2 to #5 in the left panel of Fig-
ure 6). This may be due to the fact that real pro-
cess data rarely satisfy the model assumptions per-
fectly. The model of processes gives successive read-
ings that, while all is well, are independently and
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identically distributed. This of course is seldom ac-
tually true, and real data sets always contain some
apparently statistically real structure that we may
not care to notice.

Concluding Remarks

This paper investigates a strategy for perform-
ing Phase I analysis for high-dimensional nonlinear
profiles. The presented Phase I analysis procedure
consists of two major components: a data-reduction
tagk, realized by the method of independent compo-
nents analysis, and a data-separation task, realized
by the change-point detection algorithm described
in Sullivan (2002). Inclusion of the ICA plays a cen-
tral role in the recommended procedure. The ICA
finds the subspace in which the distinction of any
existing structures in the data is maximized. This
helps the latter algorithm to separate the in-control
data from out-of-control observations. Moreover, the
change-point detection algorithm can detect multiple
change points effectively. Our study leads to the gen-
eral conclusion that Sullivan’s change-point detection
algorithm is more effective than a clustering method
for an ordered sequence. This conclusion seems to be
applicable to broader application domains.

In this paper, we assume that the in-control data
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represent the preponderance of the historical data set
when developing the strategy for Phase I analysis.
The question could be how one might know if there
are too many out-of-control observations. From our
experience, we believe the fraction of nonconforming
of products (Montgomery, 2004) can be used as a rule
of thumb to check if there are too many out-of-control
cases. When the process is in control, the product it
produces will often be conforming (not always true,
though). Thus, a low fraction of nonconforming gen-
erally indicates a dominance of in-control data.

Many nonlinear profiles may possess a smooth-
ness property, which motivates the research in the
area of functional data analysis (Ramsey and Silver-
man 2002). For those nonlinear profiles, using a func-
tional data analysis to preprocess the data and to
find a more concise and robust representation could
help the latter analysis, especially when the measure-
ments themselves are noisy. Our current study is in-
tended for a general category of nonlinear profiles
that may or may not be inherently smooth. We have
not explored how to combine the functional data
analysis with the subsequent data reduction and clus-
tering procedures. It is certainly a valuable aspect
that is worth future research efforts.

One referee also points out that, to perform clus-
tering on mixture data, a computationally much
faster algorithm than the EMMIX algorithm we used
is the hard allocation approach proposed in Fraley
and Raftery (2002). We would like to share this valu-
able reference with the readers because it should def-
initely help in the cases of large-size data sets when
computation becomes crucial.
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Appendix I
Derivation of Equation (2)

Given the set of data as the combination of X,
and X, the sample mean of the combined data is

Na np
g x7 + g xg
i=1 i=1  _ TeXg + pXp

Ng + Np n

X =

7

where x? and x¢ are the values in samples a and b,
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respectively. The sample covariance matrix of x is

1 Na+np B T
S n—l{ > (i —R)(xi — %) }

-1 {fxxz - Rt~ %)
3ot -0t -2}

i
3
| =
=
—
3
HM“
~~
>
=0
|
3|8
X
2
|
3|8
»
o
~

n n
o n n
a b
+ g (xi-J — —Xg — ——xb>
- n
i=1

(n—1)n

Because both S, and S, are diagonal matrices, the
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eigenvalues of

(na—l)s
n—1

(np —1)

S
n—1 b

a

are simply

{(na_1>Aa <;_1>Ab}i:1_

Also notice that vvT is a matrix of unit rank. Ac-
cording to Theorem 8.1.8 in Golub and Van Loan
(1996, p. 397), the ith eigenvalue of S is

(ne — 1) (e —1) 1y Nallh 2
A¢ A+
n—1 + n—1 (n—l)n”v” ’

N =

where |||} is a 2-norm and m; is a constant, satisfying
that 0 <m; <land >0  m; =1

Appendix 11
Sullivan’s Algorithm for
Change-Point Detection

Suppose there are m independent observations,
Z1,Z2,.--,Lm, from one or more univariate normal
distributions. There are R shifts in the mean, and
the shift locations are T,., r = 1,..., R, such that
O<h < -<Tgr <m. Sulhvan S algorlthm con-
sists of three steps:

Step 1: This step includes m — 1 substeps. At
each substep of K = 1,...,m — 1, the observations
are separated into m — K + 1 clusters with m — K
boundaries indexed by k, k =1,2,...,m — K. Asso-
ciated with each boundary is a location I, the last
observation in the cluster, and a distance di, which
measures the dissimilarity of the means of its adja-
cent clusters by

|Zr — Tht1]
s mi + Me41

V MEMEg41
where my, and my; are the numbers of observations
in the adjacent clusters, Zx and Zy41 are the sample
means, and s is an estimate of the common standard
deviation of all clusters. Without loss of generality,
the value s = 1 is used. Remove k* that corresponds
to the smallest distance and save its location and
distance as I, = lg» and d¥,_ x = di-. Meanwhile,
update the remaining distances for the next substep.
Finally, we can get two m — 1-dimensional sequences,

{17} and {d;}.

Step 2: Calculate the robust estimator at the

dy =
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point where 0.2m boundaries remain by

K+1 Ty

"m— K—lz Z i = 7R)"

k=1 i=14+T%_1

where K = 0.2m, rounded to the nearest integer, and
the mean of cluster k& is
T

1
Bo=g g D, T
k k=1, T,

1<k<K+1.

Then calculate the updated distances
{di'} ={di/s:}.

Step 3: Build the control chart of {d}'}. If no
out-of-control point exists, the process is determined
to be in control. Otherwise, the index of the last
out-of-control point, n, denotes the number of shifts
or outliers and the first n elements in {l*}, corre-
spondingly, indicate their locations. The upper con-
trol limit of the control chart can be estimated in ad-
vance with numerical simulations as follows. In the
jth, 5 =1,..., M, simulation: (1) generate a set of m
random observations following standard normal dis-
tribution. (2) Apply Steps 1 and 2 on that set and
save d; = max{d},d5'}. If the false-detection proba-
bility is set to be -, then UCL equals the 100(1—+)th
percentile of {d;}}Z,.
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