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Linear models of multistation manufacturing processes are commonly used for variation reduction and other quality improvement
purposes. Yet the nonlinear nature of variation propagation in multistation manufacturing processes makes people inevitably wonder
at what point does the linear model cease to provide a reasonable approximation of the nonlinear system. This paper presents a
data mining method to study the significance of nonlinearity effects in a multistation process. The data mining method consists of
two major components: (i) an aggressive factor covering design, which uses a design set of affordable size to assess the significance
of nonlinearity in a multistation process with hundreds of variables; (ii) a multiple-additive-regression-tree-based predictive model,
which can help identify the critical, influential factors and partial dependence relationships among the factors and the response.
Using the data mining approach, insights are garnered about how these critical factors affect the significance of nonlinearity in a
multistation process. Decision guidelines are provided to help users decide when a nonlinear model, instead of a linear one, should be
applied.

1. Introduction

Dimensional-variation control is very important for qual-
ity improvement in discrete-part manufacturing systems,
which typically consist of multiple stations and operations
to create sophisticated features on a product or to assem-
ble numerous components into a complex product. Prior
research (Ceglarek and Shi, 1995; Hu, 1997) has identified
that dimensional variation can be caused by the fixture or
other tooling elements at the stations, and that the variation
increases as a product moves down a production line. The
term, “stream of variation,” is used to describe the prop-
agation of variation, and it is generally accepted that the
stream of variation significantly affects a product’s dimen-
sional quality.

In order to ensure the dimensional integrity of products
in a multistation manufacturing system, the first step is to
model the variation propagation of the process. Doing so
is quite challenging because a multistation manufacturing
process is usually complicated. For instance, a typical mul-
tistation assembly process in an automotive body shop will
use 50 to 75 stations to assemble 150 to 250 parts into a car
body (Jin and Shi, 1999).

In fact, extensive efforts have been devoted to model the
stream of variation in multistation manufacturing systems.
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Figure 1 illustrates a typical N-station manufacturing pro-
cess, where k is the station index, uk and xk are the tooling
deviation and the part accumulated deviation at station k,
respectively, yk is the dimensional measurement obtained
by sensors on station k, and wk and vk represent process and
sensor noises. A station-indexed linear state space model is
often used to represent the variation propagation as:

xk = Ak−1xk−1 + Bkuk + wk k = 1, 2, . . . , N, (1)
yk = Ckxk + vk, k ∈ {1, 2, . . . , N}, (2)

where Ak is the state transition matrix which links the part
deviation states on adjacent stations, Bk is the input ma-
trix which represents the effects of fixture and other tooling
elements, and Ck is the observation matrix corresponding
to the number and locations of sensors. This type of linear
state space model has been applied to various manufac-
turing processes, such as rigid-part assembly processes (Jin
and Shi, 1999; Ding et al., 2000), compliant-part assembly
processes (Camelio et al., 2003), and machining processes
(Djurdjanovic and Ni, 2003; Huang et al., 2003; Zhou et al.,
2003). Preliminary validations of the state space models
have been conducted for some processes involving a rela-
tively small number of stations (Ding et al., 2000; Huang
et al., 2003; Zhou et al., 2003).

Although linear-structured models are widely used,
they are actually an approximation of the true manufac-
turing systems, since variation propagation is inherently
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Fig. 1. A typical N-station manufacturing process.

nonlinear. The difference between the linear approxima-
tion and the nonlinear system can be significant when the
total variation is the sum of the variations of a large number
of stations and/or when the deviations associated with fix-
ture locators are large relative to the size of the assemblies:
this difference is known as the linearization error. There-
fore, in order to guide the appropriate use of the linear state
space model, a process nonlinearity study is highly desir-
able. Ideally, such a study should yield guidelines that spec-
ify the process conditions under which the linear model
is a good approximation and those for which the model
may no longer be adequate. Moreover, these guidelines
should preferably be expressed in terms of a set of easy-to-
determine parameters for a multistation process, e.g., the
number of stations, the average magnitude of deviations,
and the average between-locator distance.

The nonlinearity studies reported in the literature gener-
ally adopt analytical approaches such as a Taylor’s expan-
sion, a differential vector operator, or a homogenous trans-
formation to obtain the linearization error. For example,
Carlson (2001) used a second-order Taylor approximation
of the sensitivity equation instead of the linear approxi-
mation, and provided numerical examples to show that the
second-order approximation is valid in the presence of large
fixture errors. Wang et al. (2003) studied the nonlinear sur-
face geometry of both a workpiece and locators, and devel-
oped a differential representation of a kinematic model to
aid fixture designs. However, both these models only con-
sider single-station manufacturing processes. For multista-
tion assembly processes, Xiong et al. (2002) developed a
nonlinear analytical model for error coupling and stacking-
up using a homogeneous transformation. For the assembly
of multiple parts in a robotics application, Veitschegger and
Wu (1986) proposed a matrix transformation model, which
holds up to second-order nonlinearity. Whitney et al. (1994)
developed a tolerance representation and variation analy-
sis for a sequential assembly process using the second-order
model proposed in Veitschegger and Wu (1986).

All these nonlinear models are capable of providing
a more accurate approximation of the true manufactur-
ing/assembly systems than a linear model. However, there
are some limitations of these methods, which make them
less applicable to our objective of studying nonlinearity in
multistation processes. The major obstacle is that for a mul-

tistation process with a relatively large number of stations
(say, N > 10), an analytical approach will inevitably lead to
a highly complicated mathematical representation, which
expresses the difference between the linear and nonlinear
models using tens or even hundreds of parameters (such as
the deviations associated with each of the locators). It is
extremely difficult, if not impossible, to make the resulting
mathematical representation simple enough so that it can
offer useful guidelines. Another limitation of current non-
linear studies is that most of them only incorporate up to
second-order nonlinearity effects. However, a second-order
model may not accurately represent the true nonlinearity
in a general multistation process. Neglecting higher-order
terms might result in inaccuracies yet including them will
make the mathematical expression even more difficult to
derive.

Given the intractability of an analytical approach to an-
alyze a multistation system, we choose to employ a data-
mining-based empirical approach. The basic idea is as fol-
lows. For a given design of a multistation process, i.e., given
a specific set of design parameters, we can calculate the lin-
earization error as the difference between an accurate non-
linear model and the linear state space model. As such, we
can explore as many of the combinations of alternative de-
sign parameters and the corresponding linearization errors
as possible, and then save the results as a training dataset.
Suppose the combinations of design alternatives we explore
represent the relationship between the linearization errors
and the parameters. Applying a data mining method (e.g.,
a classification method) may be possible to reveal valuable
structures in the dataset, which in turn will offer useful
guidelines on what kind of parameter combinations will
lead to a significant linearization error and what kind will
not.

In developing a systematic data mining methodology for
nonlinearity analysis we face two major challenges. The first
one is how to effectively deal with the exponentially increas-
ing number of design parameter combinations when the
number of stations increases. For a typical setting of an N-
station assembly process as described in Jin and Shi (1999),
the number of design parameters, including the locator de-
viations and the between-locator distances, is about 7N−
3 (we will show how this number is obtained in Section 2).
For a 30-station process, this translates into 207 variables.
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Fig. 2. Flowchart for our nonlinearity study.

If we choose five levels for each variable, there will be a total
of 5207 design parameter combination, too large a number
to be evaluated by virtually any known method. A viable
approach is to select a relatively small subset of the full
factorials as a representative sample. In our approach, we
choose an aggressive design method that is often applied
in software reliability testing (Dalal and Mallows, 1998).
The method is labeled as a factor covering design, which is
more efficient than the traditional Orthogonal Array (OA)
method in dealing with cases with a large number of factors
and multiple levels for each factor.

After the design stage, the second challenge is how to
generate useful guidelines or unbiased conclusions based
on a small set of design cases scattered in the design space.
A sensible approach is to develop a predictive model that
is able to fill the response surface for the untried parameter
combinations. Moreover, one would also like to isolate a
few critical factors from the design dataset and express any
potential insights or guidelines for practical applications
in terms of the critical factors instead of the hundreds of
original design parameters. To that end, Hastie et al. (2001)
and Chen et al. (2003) highlight that the Multiple Additive
Regression Tree (MART) approach has clear advantages
over other current alternatives. In fact, Hastie et al. (2001,
p. 314) stated that the MART approach is the best approach
among the off-the-shelf data mining methods. After com-
paring the performances of the predictive models obtained
from various data mining techniques, we choose MART as
the predictive model to fulfill our data analysis objective.

Based on the descriptions above, these two components,
data extraction using a factor-covering design and the sub-
sequent data analysis using MART, constitute our data-
mining-based nonlinearity study. Figure 2 shows the gen-
eral procedure of our method. A final note is that the linear
model used in this paper follows the state space model in Jin
and Shi (1999), and the nonlinear variation results are gen-
erated using a commercial variation simulation software,
3DCS (Anon, 2004).

Our paper is organized as follows. Section 2 discusses the
problem formulation of our nonlinearity study. Section 3
discusses the application of a factor-covering design to se-
lect representatives from a full-factorial analysis of combi-
nations. Section 4 presents the application of a predictive
MART model to quantify the significance of the nonlin-
earity. Section 5 elaborates the resulting nonlinear study.
Finally, conclusions are drawn in Section 6.

2. Problem formulation of the nonlinearity study

Since the data mining method is an empirical approach,
we need to specify a prototypical process for our study. We
choose to base our study under the same problem setting
as in Jin and Shi (1999). The reason for this is that their
problem setting is a generalization of multistation assem-
bly processes and can be easily implemented. Using their
generic setting enables us to produce a general approach
to study the significance of nonlinearity in other types of
multistation systems.

The assembly process considered in Jin and Shi (1999) is
to assemble two-dimensional (2-D) rigid-body parts using
a 3-2-1 fixture mechanism. Considering the 3-2-1 fixture
mechanism in a 2-D process, Fig. 3 illustrates the fixture
layout of a single part, which consists of a 4-way pin P1,
constraining the part motions in both the X and Z direc-
tions, and a 2-way pin P2, constraining the part motion in
the Z direction. The N-station assembly process considered
in Jin and Shi (1999) proceeds as follows: (i) at the first sta-
tion, part 1 and part 2 are assembled; (ii) at the kth station
(k = 2, 3, . . . , N − 1), the subassembly consisting of parts
1 to k receives part k+1; and (iii) at the Nth station, no
assembly operation is performed but the key dimensional
features of the final assembly are measured. Therefore, there
is only one subassembly at the Nth station, while there are
two subassemblies (a subassembly could be a multipart as-
sembly or an individual part) on station 1 to station N − 1.
At every station, each subassembly or the new part is po-
sitioned by the aforementioned 3-2-1 mechanism. For the
multipart subassembly, the pair of locators is chosen so that
they are farthest apart on that particular subassembly, e.g.,
the 4-way pin of part 1 and the 2-way pin of part k at station

Fig. 3. X–Z plane fixture layout.
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k. For more details, interested readers should refer to Jin
and Shi (1999).

Under the given process setting, dimensional variation is
mainly affected by the distances between the two locators on
each subassembly and the fixture errors associated with the
locators. As illustrated in Fig. 3, we denote by l the distance
between the two locators, by δ1 and δ2 the locating errors
for the 4-way pin P1 in the X direction and the Z direction,
respectively, and by δ3 the locating error for the 2-way pin P2
in the Z direction. As such, we need to consider eight quan-
tities at each station, which are the two distance variables
(one for each subassembly) and six error variables (three
for each subassembly). Since the distance between the two
locators that support a multipart subassembly can be deter-
mined in terms of the locator distance associated with each
individual part, we will have only N independent locator-
distance variables, each one of which is associated with an
individual part, denoted by lr , r = 1, 2, . . . , N. Meanwhile,
we denote by l ′k1 and l ′k2 the distance between the two lo-
cators of the multipart subassembly and the new part on
station k, respectively. For the process considered in Jin and
Shi (1999), l ′k1 = �k

r=1lr and l ′k2 = lk+1. The locating error
of the ith subassembly on the kth station is denoted by δkij,
k = 1, 2, . . ., N, where j is the index of locating errors for
each subassembly. Since there are two subassemblies on sta-
tion k and three locating errors are associated with the pair
of locators for each assembly, we have i = 1, 2, and j = 1,
2, 3. Denote by L ≡ [l1, l2, . . . , lN ] and δ ≡ [δ111, δ112, δ113,
δ121, δ122, δ123, . . . , δN11, δN12, δN13], and then L ∈ RN×l and
δ ∈ R(6N−3)×1.

3. Selecting a design representative using factor
covering design

3.1. Factor covering design

One knows that the factors contributing to the lineariza-
tion error include the number of stations (N), the locator
deviations (δ), and the between-locator distances (L). From
Section 2, we know that the total number of elements in δ
and L is 7N-3. Ideally, we wish to examine the lineariza-
tion errors under all parameter combinations. However, if
we choose five levels for each parameter, as we mentioned
before, a full-factorial analysis will involve 57N−3 designs,
which are usually too many design cases to evaluate. Thus,
the first step in our approach is to generate an affordably
sized design subset, which serves as a reasonable set of de-
sign representatives for subsequent analysis.

In addition to these three factors, according to our pre-
vious experiences with multistation assembly processes, we
know that the sequence order of how the locator devia-
tions appear on the stations (in descending order or as-
cending order) can also have a significant effect on the vari-
ation accumulation. Intuitively, large deviations occurring
on upstream stations will cause larger linearization errors

than the case where the same large deviations occur on
downstream stations. However, this sequence order appears
to be a function of, rather than independent of, the factors
δ and L. Including the sequence order directly in a design is
very difficult. In order to consider the influence of sequence
order, we choose the following strategy: first, come up with
an initial design for N, δ, and L, and second, augment the
initial designs so that the sequence orders will have a nearly
uniform distribution so as to avoid biased conclusions in
later analysis. The sequence order will be quantified and
the design augmentation procedure presented in Section
3.3.

The objective of the initial design for N, δ, and L is dif-
ferent from the traditional factorial designs, where a linear-
regression model is usually used, and the main and inter-
action effects are estimated from experimental data. In our
application, however, we are not interested in estimating
the main and interaction effects of the factors represented
by L and δ. One obvious reason is that given the hundreds
of elements in L and δ, the estimations of their main and
interactions effects are unlikely to be insightful because an
overcomplicated model is likely to be produced and intu-
itive insights are hard to isolate.

For this reason, our interest lies in selecting representative
design cases that might guide us to isolate what may have
caused the significant linearization errors. Since we do not
have much knowledge about the relationship between the
linearization errors and the process parameters, L and δ, a
safe way is to generate a design subset so as to cover the
design space as completely as possible.

It is certainly possible to use the traditional design meth-
ods, for example, the OA design. An OA of strength two ex-
hibits all pairwise factor-level combinations in a balanced
way, i.e., each factor-level combination appears in the de-
sign the same number of times. This balance property leads
to an excellent coverage of the entire design space defined
by the factors. However, given the fact that we may need
to evaluate a process with up to 50 stations, the challenge
is that the number of factors is so large that an OA de-
sign method may fall short of reducing the design number
to an “affordable” level. Given mOA factors, each of which
has qOA levels, Bose and Bush (1952) stated that an OA of
strength two has to satisfy the following inequality for its
minimum size, nOA:

nOA ≥ mOA(qOA − 1) + 1. (3)

We will show later in Table 1 that a minimum-sized OA
of strength two will still result in a large design number
(above 4000) for the initial design. After the design augmen-
tation in Section 3.3, the total design number could be over
10 000.

In our application, maintaining the balance property (as
in an OA design) might be unhelpful and wasteful. We cal-
culate the linearization errors by using deterministic com-
puter simulations. Hence, the same design setting will pro-
duce identical outputs, and, repeating a design setting in
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Table 1. Comparison of 2-covering design and OA of strength
two

Number of
design cases Number of

Number of Number for 2-covering design cases
stations of factors from RPC∗ for OA

10 67 65 ≥269
20 137 65 ≥549
30 207 85 ≥829
40 277 85 ≥1109
50 347 85 ≥1389
Total number of design cases 385 ≥4145

∗RPC stands for the reduced product construction method.

order to balance the factor-level combination does not pro-
vide extra information. Giving up the balance property
might allow us to reduce the design size dramatically. That is
actually the idea behind the factor covering design method,
which is commonly used to solve problems such as software
reliability testing (Dalal and Mallows, 1998) and hardware
testing (Tang and Woo, 1983).

Our problem and the testing problem bear a strong simi-
larity in terms of the objective, which is to find what type of
factor-level combination will lead to an anomaly that could
be either a significant linearization error in our problem or a
system failure in software testing. The input arguments for a
software program are equivalent to factors in experimental
designs, typically existing in large numbers, and each argu-
ment being able to take multiple values, equivalent to the
levels that a factor can take. Orthogonal arrays of strength
two have actually been used in software testing (Brownlie
et al., 1992). But a factor covering design (Dalal and
Mallows, 1998) appears to be more effective in terms of
design size reduction: it focuses only on the coverage prop-
erty – any factor-level combination required to appear in
the design at least once – and gives up the balance property
required by an OA. As a result, Dalal and Mallows (1998)
stated that the size of a factor covering design grows only
at a logarithmic rate with the number of factors, while that
of an OA grows at least linearly.

A factor covering design is able to cover all pairwise,
or higher t-degree factor-level combinations, in order to
guarantee the capture of an anomaly (i.e., a significant
linearization error or a system failure) due to the inter-
actions of at most t factors. Hence, a factor covering de-
sign with a larger value of t covers the design space more
completely. However, the design size increases very quickly
with the value of t (Godbole et al., 1996). One needs to
strike a balance between the comprehensiveness of the cov-
erage and the design size. The coverage properties of a
factor covering design have been investigated and it has
been shown that pairwise coverage works fairly well for
many practical cases (please see, for example, Smith et al.
(2000), Wallace and Kuhn (2001), and Kuhn and Reilly

(2002), where 70–98% of anomalies were reportedly cap-
tured using pairwise factor-level combinations). It should
be noted that the most widely used OAs are of strength two
which only uses pairwise coverage. Hence, we consider it
reasonable to focus on covering pairwise factor-level com-
binations in the problem at hand. It is certainly possible
to use a covering design with a higher degree of cover-
age as long as one feels that the resulting design size is
affordable.

Next we show the advantage of the covering design in
terms of design size reduction as compared to the OA
method. Suppose we have n design cases and m factors,
and the ith factor has qi levels, then we call the design an
(n, q1 × q2 × · · · × qm) design. A t-covering design refers to
an (n, q1 × q2 × · · · × qm) design with the property that the
projection onto any t coordinates exhibits all �t

i=1qi pos-
sible combinations. Because we will consider only pairwise
factor interactions in this paper, we set t = 2 so the de-
sign is called a 2-covering design. We also have q1 = q2 =
. . . = qm = q. As such, we denote a design Q by (|Q|, qm),
where |Q| is the design size. Furthermore, denote the value
space of a design by V = {1, 2, . . . , q}, i.e., each factor can
take any element in V as its value, and denote by P the set of
prime power numbers, namely each element e in P satisfies
e = gj for a prime number g and an integer j ≥ 1. Kobayashi
et al. (2002) have proved that the size |Q| of a 2-covering
design Q constructed by the reduced product construction
method (will be described in Section 3.2) is:

|Q| = 2u − u2 + u(u − 1)�logu{m(u − 1) + 1}�, (4)

where u = min {e ∈ P : e ≥ q}, and �c� is the smallest pos-
sible integer greater than or equal to c.

For the problem at hand, we consider five levels for each
factor, i.e., q = 5, and five processes with the number of
stations N = 10, 20, 30, 40, 50, respectively. Table 1 sum-
marizes the sizes of the initial designs for the cases needed
by a 2-covering design and an OA of strength two. The ad-
vantage of the covering design method is evident. Please
bear in mind that this initial design will be augmented af-
terwards. The eventual design size saving is actually more
remarkable.

Other known designs that might be suitable for our de-
sign selection problem include random design and random
balance design (Satterthwaite, 1959). As to the coverage
property, they perform as well as the covering designs as
long as a complete t-covering is not required (Dalal and
Mallows, 1998). However, the efficiency of the random and
random balance designs is not satisfactory (Box, 1959;
Hunter, 1959; Kempthorne, 1959; Tukey, 1959; Youden,
1959). Dalal and Mallows (1998) provided numerical com-
parisons and showed that the random balance designs are
slightly more efficient than complete random designs but
they are still less efficient than designs such as the OA and
covering designs.
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3.2. Design generation using 2-covering design

We are going to use the reduced product construction ap-
proach proposed by Cohen and Fredman (1998) to con-
struct a 2-covering design. This method works in a sequen-
tial manner and enables us to obtain the eventual 2-covering
design that covers a large number of factors from a series
of small 2-covering designs. Kobayashi et al. (2002) have
used this procedure to construct a 2-covering design for a
software testing problem.

A 2-covering design Q with m factors can be said to
be block structured, if it can be partitioned into several
blocks, where each block consists of q translates, (j + x1,
j + x2, . . . , j + xm), j ∈ {1, 2, . . . , q}, of some representa-
tive design case (x1, x2, . . . , xm) in the block (Cohen and
Fredman, 1998). Note that within a translate, once the value
of j + xi exceeds q for i =1, 2, . . . , m, it becomes j + xi − q.
For example, if we have a design with q = 3, and (1, 2, 3)
represents the block, then three design cases, (1, 2, 3), (2, 3,
1), and (3, 1, 2), constitute the block. Because each block
consists of q translates, it is easy to see that each block can
cover q factor-level combinations of two distinct factors in
a block-structured 2-covering design. In order to cover all
q2 possible pairwise combinations, there should be at least
q blocks.

There are two ways to expand a small design to a
larger design. The first way is to extend any existing block-
structured 2-covering design to cover one more factor(s) by
doing the following. For the jth block in Q, j = 1, 2,. . . , q, if
we add element j of V to every design case in that block, and
add an arbitrary element of V to the design cases in the re-
maining blocks if there are more than q blocks in the design,
then we can extend a block-structured 2-covering design
(|Q|, qm) to a 2-covering design (|Q|, qm+1). In Fig. 4(a–c),

Fig. 4. (a) Q1 = (9, 34); (b) Q2 = (9, 33); and (c) Q3 = Q1 × Q2.

we give an example of expanding a (9, 33) design to a (9, 34)
design.

Another way of expanding existing 2-covering designs is
applying the reduced product construction method, which
combines two existing 2-covering designs to cover more fac-
tors. Let Q1 and Q2 be the 2-covering designs for (|Q1|, qm)
and (|Q2|, qm′

) with m and m′ factors, respectively, and
Q2 is block structured. It proceeds as follows (Cohen and
Fredman, 1998).

Step 1. For the first q blocks of Q2, label the ith block by
i, and label the remaining blocks, if any, by any
number between one and q. Then remove the first
block from Q2 and denote the new design by Q′

2.
Hence, |Q′

2| = |Q2| − q.
Step 2. The reduced product, Q1 × Q2, consists of two

types of design cases. The first |Q1| design cases, in
the form of (x1, x2, . . . , xm, x1, x2, . . . , xm, . . . , x1,
x2, . . . , xm, 1), are obtained by replicating m′ times
each design case (x1, x2, . . . , xm) in Q1 and adding
a one as the last element.

Step 3. The remaining |Q2| − q design cases, in the form
of:

(x1, x1 . . . , x1︸ ︷︷ ︸
m

, x2, x2 . . . , x2︸ ︷︷ ︸
m

, . . . , xm′, xm′ . . . , xm′︸ ︷︷ ︸
m

, i),

are obtained by replicating each element of each de-
sign case (x1, x2, . . . , xm′) in Q′

2 m times and adding
i as the last element, where i denotes the label as-
signed to the block that contains the design case.

The resulting reduced product, Q1 × Q2, is a 2-covering
design (|Q1| + |Q2| − q, qmm′+1).
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Fig. 5. The 2-covering design (25, 55).

Figure 4(a–c) gives an example of constructing a 2-
covering design Q3(15, 313) from two designs, Q1(9, 34) and
Q2(9, 33), where Q2 is block structured. In this case Q2 has
q = 3 blocks. Following the above procedure, we label the
blocks in design Q2 by integers “1”, “2”, and “3”. The sec-
ond and third blocks of Q2 are called Q′

2. The first nine
design cases of Q3 are obtained by replicating each design
case in Q1 three times and adding a one to each design case
(see the last column in Q3). The remaining six design cases
of Q3 are obtained by replicating each element of each de-
sign case in Q′

2 four times and adding the corresponding
labels (“2” for the first three design cases in Q′

2 and “3” for
the other three in the last column).

The above design procedure can be easily applied to our
application, where the number of levels for each factor is
five. First we get a block structured design Q1(5) = (25,
55) as shown in Fig. 5. Then we expand Q1(5) to Q2(5) =
(25, 56), which covers one more factor. Afterwards, we can
get Q3(5) = Q1(5) × Q2(5), which covers 31 factors with 45
design cases; then, Q4(5) = Q1(5) ×Q3(5), which is able
to cover 156 factors with only 65 design cases. As such,
Q4(5) can be used for the 10-station and 20-station assembly
processes. If we keep going with the same procedure, we can
get the 2-covering designs for a larger number of factors.

As to the first step of constructing Q1(5), we generate it
through iterations, which is feasible because the size of this
design is small. First, randomly generate five distinct design
cases as the representatives of the five blocks. In Fig. 5, the
five design cases are the first column of each block. Then,
complete each block by adding a one to each element in
the previous column. This procedure guarantees that the
resulting design is block structured. If the resulting design
is able to cover all pairwise factor-level combinations, then
our objective of constructing Q1(5) is achieved; otherwise
we repeat this procedure until we find one.

3.3. Considering sequence pattern in δ/L

As mentioned in Section 3.1, the sequence order of how
the elements in δ and L appear on a series of stations may
have a significant effect on the linearization errors. We ex-
press the combined effect of δ and L using δ/L since the

magnitudes of δ and L have opposite effects on the sig-
nificance of the linearization errors. Mathematically, δ/L
is defined as a (6N− 3) × 1 vector with its elements as
δkij/l ′ki, k = 1, . . . , N, i = 1, 2, j = 1, 2, 3, where l ′ki follows
the same meaning as explained in Section 2, and as such:

δ/L =
[
δ111

l ′11

,
δ112

l ′11

,
δ113

l ′11

,
δ121

l ′12

,
δ122

l ′12

,
δ123

l ′12

, . . . ,

× δN11

l ′N1

,
δN12

l ′N1

,
δN13

l ′N1

]
.

As illustrated in Fig. 6(a), when relatively large values of
δkij/l ′ki occur on the upstream stations and relatively small
values on the downstream stations, it may lead to a larger
linearization error than the opposite type of pattern in Fig.
6(b). Thus, we label the order of magnitude of elements in
δ/L as its sequence pattern.

We want to quantify the sequence pattern of δ/L. The
graphs in Fig. 6(a and b) remind us of the concept of skew-
ness used to characterize the shape of a distribution func-
tion. Given a univariate dataset, {αi}K

i=1, the skewness of the
distribution of αi can be calculated by:

skewness =
∑K

i=1 (αi − ᾱ)3

(K − 1) σ 3
, (5)

where σ is the standard deviation of α1, α2, . . . , αK . Please
note that Equation (5) calculates the skewness of the distri-
bution of αi and not the skewness of the sequence αi. Hence,
Equation (5) cannot be directly applied to the sequence of
δ/L unless the sequence itself is equivalent to a probability
mass function (pmf). For instance, suppose that we have
two sequences {1, 2, 3, 4, 5} and {5, 4, 3, 2, 1}. Applying
Equation (5), we will get the same skewness value (which
is zero) for both sequences, while they actually have the
opposite sequence patterns.

Then, the idea to quantify the sequence pattern for w =
{w1,w2, . . . , wK} is that if we can generate a discrete random
variable β that takes w as its pmf, we can then characterize
the sequence pattern of w by calculating the skewness of the
distribution of β using Equation (5). Following this idea,
we propose to calculate the sequence pattern of w as follows
(the resulting sequence pattern value is defined as the pattern
factor p). First, we draw samples β1, . . . , βh from the set
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Fig. 6. Sequence pattern of δ/L when: (a) relatively large values of δkij/ l ′ki occur on the upstream stations and relatively small values
on the downstream stations; and (b) the reverse case.

{1, 2, . . . , K} with replacement with probability:

P(β = i) = wi∑K
j=1 wj

, i = 1, 2, . . . , K. (6)

Thus β1, . . . , βh has a discrete distribution function defined
by Equation (6) and h is the sample size. Then we can cal-
culate the p of a sequence w by:

p =
∑h

i=1 (βi − β)3

(h − 1)σ 3
β

, (7)

where σβ is the sample standard deviation of β1, . . . , βh.
Apparently, the pattern factor p will be positive if the “right
tail” of the sequence is heavier than the “left tail” (as in
Fig. 6(a)), and negative if the “left tail” is heavier than the
“right tail” (as in Fig. 6(b)). The larger the p, the heavier the
tail, and p = 0 indicates that the elements of the sequence
are symmetrically distributed.

There is a δ/L sequence associated with each of the 2-
covering designs obtained in Section 3.2. We denote by
pi the value of the pattern factors for the ith design case
and by p the vector containing all the pattern factors,
namely p = [p1, p2, . . . , pM ]T , where M is the total num-
ber of design cases (M = 385 in Table 1). Figure 7(a) shows
a histogram of p. We see that most p values are around

Fig. 7. Histograms of p: (a) histogram of p for the original design; (b) histogram of p for the final design.

zero, and a much smaller number of p values are around
±1.

Using such a design case for exploration may lead to bi-
ased conclusions due to the uneven number of design cases
with different pattern values. Yet, incorporating the pat-
tern factor directly into the factor covering design is very
difficult because p is actually a function of the elements
in δ and L, and thus its level cannot be chosen indepen-
dently. We feel that a reasonable trade-off is to have the
distribution of p as uniform as possible among the design
cases so that the aforementioned bias can be alleviated. We
thus devise the following heuristic procedure to improve the
uniformity of the distribution of p. The procedure will start
with the currently available design cases from a 2-covering
design and then augment the current design by adding de-
signs whose p values are now in the tails of the histogram
in Fig. 6(a). The detailed steps of the heuristic procedure
are:

Step 1. Take out the first half of the design, and sort the
elements in L into ascending order and the ele-
ments in δ into descending order. Then, add the
new design cases into the original design. This will
account for the pattern factors with values around
one.
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Step 2. Take out the second half of the design, and sort
the elements in L into descending order and the
elements in δ into ascending order. Then, add the
new design cases into the original design. This will
account for the pattern factors with values around
“−1”.

Step 3. Take out the first half of the design, and only sort
the elements in δ into descending order. Then, add
the new design cases into the original design. This
will account for the pattern factors with values be-
tween zero and one.

Step 4. Take out the second half of the design, and only
sort the elements in L into ascending order. Then,
add the new design cases into the original design.
This will account for the pattern factors with values
between “−1” and zero.

The final design ends up with 1155 design cases, i.e.,
the updated M = 1155. The histogram of updated p =
[p1, p2, . . . , pM ]T in Fig. 7(b) is nearly flat and the num-
ber of cases where the pattern factors are nonzero has been
remarkably increased. Although there are still more cases
whose pattern factor is around zero, we have covered all the
values in [−1, 1] with sufficient cases. Of course we can add
more design cases so that the histogram looks even more
flat, but it will make the final design much larger.

4. Data analysis by gradient boosting regression trees

4.1. Define the feature vector

After generating all the 1155 design cases, we can calculate
the responses using the linear and nonlinear models, respec-
tively. The dimensional measurements of the final assembly
at the Nth station are the outputs of the linear and nonlin-
ear models. Two measurement points are assigned to each
part and each measurement point returns the deviations of
that part in both the X and Z directions. Thus, we will have
4N measurements in the output. Denote by dL

ij and dNL
ij ,

i = 1, 2, . . . , M, j = 1, 2, . . . , 4N, the jth measurement in
the ith design case for the linear and nonlinear models, re-
spectively. We characterize the linearization error by the
largest difference among all measurement points between
the two models. As such, di, representing the linearization
error for the ith design case, is defined as:

di = max
j∈{1,...,4N}

{∣∣∣∣dNL
ij − dL

ij

dNL
ij

∣∣∣∣ × 100%
}
, i = 1, 2, . . . , M.

(8)

Now the problem of studying the significance of nonlin-
earity in the multistation assembly processes boils down to
a supervised learning problem, which has d as the response
variable, θ = [LT , δT ]T as the predictive variable, and they
may be related through a function of the type d = fθ(θ).
Given the large number of factors involved here, it is ap-

parent that using θ as the predictive variable will unlikely
lead to any convenient model for practical use. For this rea-
son, instead of using θ, we seek a set of feature functions
to represent the whole factor space.

A feature function maps the original factor space to an
easy-to-calculate feature. After a transformation, the fea-
tures can hopefully form an effective representation of the
original factor space. A good selection of feature functions
often occurs as a result of a detailed understanding of the
physical system under investigation. For the multistation
process, our prior knowledge indicates that the number of
stations is a feature that will affect the linearization error:
this factor actually motivates this study. From Section 2,
we know that the ratio of δ/L and pattern factor p are also
critical. Here we choose to represent δ/L by its distribu-
tion. Five percentile points (min, 0.25, 0.50, 0.75, max) are
used to approximate the distribution of δ/L. Combining all
these features, we finally have the following seven quantities
as predictors:

1. N = the number of stations;
2. (δ/L)min = the minimum element in δ/L;
3. (δ/L)0.25 = the 25th percentile of the elements in δ/L;
4. (δ/L)0.50 = the 50th percentile of the elements in δ/L;
5. (δ/L)0.75 = the 75th percentile of the elements in δ/L;
6. (δ/L)max = the maximum element in δ/L;
7. p = the pattern factor.

Denote by s the feature vector, i.e., s = [N, (δ/L)min,
(δ/L)0.25, (δ/L)0.50, (δ/L)0.75, (δ/L)max, p]T . We will try
to evaluate d = f (s) instead of d = fθ(θ).

4.2. Data analysis algorithm

Many supervised learning approaches can be found in the
existing literature. Generalized linear models are commonly
used in response surface methods, and can be easily imple-
mented. However, they are not flexible enough to model the
complex structures in response surfaces, because they usu-
ally adopt a first-order or second-order polynomial model.
A Kriging model, which consists of a linear-regression
model component and a stochastic component, can pro-
vide a better flexibility in modeling complicated responses
(Sacks et al., 1989). Additionally, a Support Vector Ma-
chine (SVM), that extends linear models by using various
kernels so as to fit nonlinear models (Vapnik, 1996), of-
ten performs well. Unfortunately, the result obtained using
a SVM is often difficult to interpret. The Artificial Neu-
ral Network (ANN) approach mimics connections between
neurons in the brain, and it is generally capable of model-
ing nonlinear responses. However, ANNs are computation-
ally intensive and involve an overly large set of coefficients,
which also makes interpretation difficult (Tsui et al., 2005).
Lazy learning methods such as the k-Nearest-Neighbor
(kNN) with generalized distance functions is also popu-
lar in data mining applications (Witten and Frank, 2005),
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but it is also computationally expensive and not scalable to
large datasets.

Of the well-known learning methods or predictive mod-
els, tree-based methods possess many advantages over the
other alternative predictive learning methods in terms of
computational efficiency, interpretation simplicity, and ro-
bustness to the inclusion of irrelevant predictor variables
or outliers. They are also easy to implement. These advan-
tages make decision trees one of the most popular methods
for data mining purposes. However, one disadvantage of
the classification and regression tree (CART) approach is
its relatively poor prediction accuracy. But a modification
of CART, the MART approach, can significantly improve
the prediction accuracy, while retaining the advantages as-
sociated with CART. Hastie et al. (2001, p. 312) give a com-
prehensive review of tree-based methods and also compare
several commonly used off-the-shelf data mining methods,
including ANN, SVM, kNN, and the kernel methods. They
highly recommend MART as an effective and accurate pro-
cedure for data mining.

We use the data from the 2-covering design to com-
pare the predictive performance of different data mining
methods. We randomly select 80% of the data to train the
model and the remaining 20% as the test dataset to eval-
uate the model’s performance. Suppose there are Mt data
in the test set. The predictive performance is evaluated in
terms of the Average Absolute Error (AAE), defined as
�

Mt
i=1|di − f̂ (si)|/Mt , where (si, di) is the data in the test set,

and f̂ (si) is the prediction of the linearization error. Be-
sides obtaining the prediction values of di in the test set, we
classify the prediction values into three classes, i.e., the dif-
ference between the linear and nonlinear models: (i) % less
than 5% (designated as not significant); (ii) between 5 and
10% (designated as marginal significant); and (iii) larger
than 10% (designated as significant). Then, we define the
Misclassification rate (MIS) as the percentage of data si

whose prediction value f̂ (si) is misclassified over the data in
the test set, and use MIS as the second model performance
index.

We show in Table 2 the comparative results of model pre-
diction accuracy of the Kriging method, SVM, ANN, kNN,
CART, and MART, respectively. They are applied on the
same training and test datasets. Apparently, MART per-
forms better than other methods for the problem at hand.
Had MART simply performed at the same level as the other
methods, we would still recommend using MART because
of its robustness to irrelevant inputs or outliers, computa-
tional efficiency, and interpretation capability.

The algorithm for implementing MART can be found
in Hastie et al. (2001, p. 322). In our application, the pa-
rameters used in the MART algorithm were chosen as fol-
lows. The number of terminal nodes in each boosting tree,
Jb, is one of the tuning parameters. We control Jb to be
between four and eight, because empirical evidence so far
indicates that 4 ≤ Jb ≤ 8 works well in the context of boost-

Table 2. Predictive models prediction accuracy comparison

Model

Criteria Kriging∗ kNN SVM ANN CART MART

AAE (%) 2.67 2.56 1.86 2.42 2.70 1.34
MIS 0.20 0.19 0.14 0.13 0.23 0.11

∗A Gaussian correlation function is used. The best performance is pre-
sented, chosen from using a constant, a linear, or a quadratic regression
model.

ing (Hastie et al., 2001). The MART algorithm also uses a
shrinkage coefficient, v, to avoid overfit. Hastie et al. (2001)
recommend choosing a small v (e.g., v < 0.1), which leads
to considerable improvements over the case with no shrink-
age v = 1. We thus use v = 0.1 for our application. The
number of boosting iterations can be selected according to
the resulting model’s predictive performance by using a test
dataset.

5. Results and discussion

5.1. Interpretations

MART provides strong interpretative tools to explore the
relative importance of predictor variables (i.e., the seven
features), enabling us to identify the most critical ones. This
section demonstrates how the following tools associated
with MART can facilitate our nonlinearity study.

5.1.1. Relative importance of the predictor variables
We select the critical predictive variables by evaluating the
relative importance of each predictor variable. Breiman
et al. (1984) proposed a criterion to measure the relative
importance of a predictor in a single tree by summing
the squared error improvements over all internal nodes of
the tree model when the associated predictor is chosen to
be the splitting variable. For the MART models, this rela-
tive importance is averaged over all the trees (Hastie et al.,
2001).

Since the measures are relative, we assign the one with the
largest value of importance a value of 100 and scale oth-
ers accordingly. Figure 8 shows the relative importance of
the seven predictors. Apparently, the pattern factor p, the
number of stations, N, and the maximum of δ/L are the
three most-important variables in determining the model
difference. The first three predictors have an importance
value higher than 80 whilst the remaining four have a rel-
ative importance smaller than 60. The constituency of the
first three critical predictors also matches our intuitive un-
derstanding of the multistation processes. It appears that
we may be able to further reduce a feature space to the first
three predictors. Of course, it is concern that the predic-
tion power of the model that only uses the three critical
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Fig. 8. Relative importance of the predictor variables.

variables may be much poorer than that of a model that
uses all seven variables. It turns out that using just the
three most important predictor variables, MART can ac-
tually give comparable results for AAE and MIS (AAE =
1.38% and MIS = 0.12).

Fig. 9. Partial dependence plots for the three most critical variables: (a) partial dependence on N; (b) partial dependence on (δ/L)max;
(c) partial dependence on p; (d) partial dependence on p and N; (e) partial dependence on p and (δ/L)max; (f) partial dependence on
N and (δ/L)max.

5.1.2. Partial dependence plot
After identifying the most critical predictor variables, we
now explore the nature of the dependence of the lineariza-
tion errors on the joint values of the critical factors. This sec-
tion illustrates the dependence by a visualization method,
i.e., a partial dependence plot, which gives a graphical de-
piction of the marginal effect of one or several variables on
the response.

Partial dependence functions can be used to interpret the
results of any black-box learning method. Suppose that sF
denotes the set of critical predictor variables and sC denotes
the other predictor variables. Hastie et al. (2001) proposed
to calculate the partial dependence of f (s) on sF by averag-
ing the joint effect of predictor variables in sC . While the
partial dependence plots may not provide a comprehensive
description of the underlying relationship between the pre-
dictor variables sF and the response f (s), they are able to
illustrate general trends.
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We obtain the one-variable and two-variable partial de-
pendence plots in Fig. 9(a–f) by using the commercial soft-
ware TreeNetTM (TreeNetTM, 2005). Note that the values
of the vertical axis are centered to have a zero mean and
thus its absolute reading is not physically meaningful. How-
ever, lower values on the vertical axis still mean a smaller
linearization error, the higher values mean a larger error,
and a flat line means a constant linearization error. More-
over, the general trends of the dependence of f (s) relative to
the three critical variables are maintained. We observe the
following:

1. The linearization error d generally increases with N, p,
and (δ/L)max.

2. From Fig. 9(a), we see that the dependence of d on N is
approximately piecewise linear.

3. From Fig. 9(b), we notice that the shape of the depen-
dence on (δ/L)max appears to be exponentially increas-
ing when (δ/L)max becomes larger. The slope of the re-
sponse curve becomes steeper, meaning that d is more
sensitive to a change in (δ/L)max when (δ/L)max is large.

4. In Fig. 9(c), there are essentially three regions of the
values of p: p < −0.5, −0.5 < p < 1, p > 1. Within each
of these regions, the value of d is basically determined by
the joint values of N and (δ/L)max (refer also to Figs. 9(d)
and 9(e)).

5. From Fig. 9(d), since the shape of the dependence on
N is affected by the value of p, we conclude that there

Fig. 10. Decision rules (R represents (δ/L)max).

is an interaction between these two variables. Similarly,
we can observe that interactions exist between the other
two pairs of predictor variables in Figs. 9(e) and 9(f).

5.2. Decision rules

A nonlinearity study should yield some sort of guidelines,
on which one can rely to determine when the linear model
is a good approximation and when such a model may no
longer be valid. In this section, we will use the three critical
variables, p, N and (δ/L)max, to generalize some guidelines
or decision rules, expressed in a “if-then” format, for users.

Because the data we obtained from the 2-covering design
is scattered in the parameter space, a decision rule from
those data could be biased. A sensible approach to gener-
alize decision rules is to fill the response surface over the
input factors p, N, and (δ/L)max, that is, we predict the
linearization error over a fine grid by applying the predic-
tive MART model. In this way, we obtain a dataset con-
sisting of three predictors and corresponding linearization
errors. This dataset gives us a way of partitioning the three-
dimensional space, determined by p, N, and (δ/L)max, into
several regions. Such a space partition can be better de-
scribed by a single tree (Hastie et al., 2001, p. 267), as shown
in Fig. 10. Beside each internal node of the tree we show the
corresponding partition criterion. We take the left branch if
the partition criterion is satisfied and the right branch other-
wise. The percentage number associated with each terminal
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Fig. 11. Decision maps on joint values of (δ/L)max and N when: (a) p > 1; (b) −0.5 < p < 1; and (c) p < −0.5.

node is the average of the linearization errors for the corre-
sponding region.

This decision tree may be reduced to a 2-D decision map
if users have some knowledge about a particular subset of
parameters of their process. For instance, one may be aware
of the range of p in their process. By averaging over the joint
effects where the values of p are in the known range, one can
obtain a prediction of the linearization errors depending on
the joint values of (δ/L)max and N. Fig. 11(a–c) provides
the predictions of d over the joint values of (δ/L)max and
N. Fig. 11(a) is for when p > 1, Fig. 11(b) is for the case
where −0.5 < p < 1, and Fig. 11(c) is for when p < −0.5. In
these graphs, the percentage numbers represent the average
d values in the corresponding region.

From the decision maps in Fig. 11(a–c), one can tell that
the pattern factor p has a significant effect on the lineariza-
tion errors. When p > 1, the linearization error will be al-
most always significant, and when p < −0.5, the error will
stay insignificant even when the number of stations gets
bigger. For −0.5 < p < 1, the linearization error stays in-
significant up to 15 stations and then will largely depend on
the magnitude of (δ/L)max. This prediction is very consis-

tent with the understanding we garnered about the process
from the partial dependence plot in Fig. 9(c).

It goes without saying that combining this set of tools will
help users decide the appropriate conditions for which the
linear model is still a good approximation of the actual non-
linear process. For example, in a typical automotive body
assembly process the authors have repeatedly worked on be-
fore, the between-locator distance is generally greater than
100 mm and the locator deviation, as regulated by its design
tolerance, is about 0.1 mm; these two parameters allow us
to estimate (δ/L)max as around 1 × 10−3. Meanwhile, there
is no evidence that a systematic sequence pattern occurs
in the process, meaning that p is around zero. Under this
setting, using the resulting decision map in Fig. 11(b), one
can see that for a process with 15 or less stations, a linear
model can be a good approximation. The linearization error
is marginally significant for a process with 15 to 25 stations
but significant when the number of stations is more than 25.
This analysis is consistent with our prior experiences and
also confirms that the previously developed linear models
are so far properly utilized since the processes considered
therein all have less than 15 stations.
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We present our final decision rules in a tree structure and
in a decision map format, which complement each other
in helping make decisions. The tree structure can accom-
modate as many decision variables as one may like to have.
The decision map only works for a pair of variables but
generally provides a better overview of the decision space.

6. Conclusions

This paper presents a data mining method to study the
significance of nonlinearity in multistation assembly pro-
cesses. There are two major steps in the proposed proce-
dure. The first step is data extraction using a 2-covering
design method. It covers all the pairwise combinations of
factors, and produces a design with a relatively small num-
ber of design cases. The necessity of using a 2-covering de-
sign method rather than methods such as the OA method
becomes more obvious for a system with more stations and
a larger number of factors. The second step is to establish
a MART-based predictive model to analyze the data from
the 2-covering design. Based on the MART model, we are
able to identify the critical factors/features of a multista-
tion process and to generate insights about the underlying
relationship between the linearization error and the selected
features. We also develop a set of decision rules based on
the proposed nonlinear model that would help users decide
whether a linear state space model is a good approximation
of the underlying process.

The capability of the proposed approach in discovering
the nonlinearity in manufacturing systems depends on three
aspects. First, it is bounded by the amount and type of phys-
ical nonlinearity that is modeled in the nonlinear manufac-
turing system model. Nonlinearity that is not included in
the model cannot be discovered by the data mining method.
In this paper, we consider the dimensional nonlinearity that
is modeled by the 3DCS software. Second, it is also bounded
by how much nonlinearity the covering design can capture.
The more completely our design covers the design space, the
more nonlinearity our design can capture. Previous studies
have shown that 2-covering designs are able to capture 70–
98% of anomalies in most applications. Third, it is bounded
by how much nonlinearity our data analysis algorithm can
identify. We showed in Section 4 that the MART predictive
model has a reasonably good prediction capability.

The reason why data mining methods can aid our non-
linearity study lies in its capability in knowledge discovery
and knowledge encapsulation. Previous nonlinearity stud-
ies have focused on directly analyzing mathematical forms
of manufacturing system models. However, in many sophis-
ticated systems, mathematical models may be extremely
complicated, which makes it almost impossible to gener-
ate simple rules and/or to provide useful insights. On the
contrary, our approach focuses on applying data mining
methods to discover useful information from the outputs
of the physical system. The proposed approach, although

demonstrated in the specific context of multistation assem-
bly processes, is actually rather flexible. It can be applied to
a broad variety of other manufacturing process models.
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