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bstract

Although a variety of design and control strategies have been proposed to improve the performance of polymer electrolyte membrane (PEM) fuel
ell systems, temporary faults in such systems still might occur during operations due to the complexity of the physical process and the functional
imitations of some components. The development of an effective condition monitoring system that can detect these faults in a timely manner is
omplicated by the operating condition variation, the significant variability/uncertainty of the fuel cell system, and the measurement noise. In this
esearch, we propose a model-based condition monitoring scheme that employs the Hotelling T2 statistical analysis for fault detection of PEM fuel
ells. Under a given operating condition, the instantaneous load current, the temperature and fuel/gas source pressures of the fuel cell are measured.
hese measurements are then fed into a lumped parameter dynamic fuel cell model for the establishment of the baseline under the same operating
ondition for comparison. The fuel cell operation is simulated under statistical sampling of parametric uncertainties with specified statistics (mean
nd variance) that account for the system variability/uncertainty and measurement noise. This yields a group of output voltages (under the same
perating condition but with uncertainties) as the baseline. Fault detection is facilitated by comparing the real-time measurement of the fuel cell
utput voltage with the baseline voltages by employing the Hotelling T2 statistical analysis. The baseline voltages are used to evaluate the output
2
 statistics under normal operating condition. Then, with a given confidence level the upper control limit can be specified. Fault condition will
e declared if the T2 statistics of real-time voltage measurement exceeds the upper control limit. This model-based robust condition monitoring
cheme can deal with the operating condition variation, various uncertainties in a fuel cell system, and measurement noise. Our analysis indicates
hat this scheme has very high detection sensitivity and can detect the fault conditions at the early stage.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Polymer electrolyte membrane (PEM) fuel cell systems oper-
te at relatively low temperatures and are promising candidates
or future clean energy sources. These systems are intrinsically
omplex, with coupling effects of fluid, heat, electrochemical
eaction, phase change, etc. There are also physical property
imitations for fuel cell components such as membrane and elec-
rodes. Therefore, fault conditions and even failure may occur

nder practical operating conditions. In fact, the reliability and
urability are considered the main challenges to the fuel cell
esearch community.

∗ Corresponding author. Tel.: +1 860 486 5911; fax: +1 860 486 5088.
E-mail address: jtang@engr.uconn.edu (J. Tang).
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surement noise; Statistical analysis

The fault conditions, which might be temporary or perma-
ent, usually are closely related to a critical component of the
uel cell, the membrane-electrode assembly (MEA). Typically,
hree fault modes may be involved in fuel cell failures, i.e., the
ehydration and drying of the membrane, the fuel/gas starvation
f electrochemical reaction, and the leak of the membrane. It is
ell known that the electrolyte membrane needs to be appro-
riately hydrated in order to efficiently conduct the hydrogen
rotons and prevent the occurrence of localized hot spots. The
ehydration and drying of the membrane lead to the increase of
he internal resistance and a larger output voltage loss, which in
urn raises the local temperature of the membrane. If the local

verheating lasts for a long period of time, hot spot may occur
nd eventually permanently damage the membrane. Water trans-
ort across the membrane and water content therein depend on
he combinational effects of the electro-osmotic drag force on

mailto:jtang@engr.uconn.edu
dx.doi.org/10.1016/j.jpowsour.2006.07.004
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Nomenclature

a water activity
Amem effective area of membrane (m2)
ci specific heat (J/(kg K)−1)
C water concentration (mol m−3)
Dw water diffusion coefficient (m2 s−1)
F Faraday’s constant (A s mol)−1

hlatent latent heat of water phase change (J kg−1)
hA effective convection heat transfer coefficient
i current density (A m−2)
I load current (A)
Jw mole flux of water transport in the membrane

(mol(m2 s)−1)
Ki flow rate coefficient (kg(Pa s)−1)
m species mass in the channels (kg)
M species mole mass (kg mol−1)
Mm,dry mole mass of dry membrane (kg mol−1)
nd electro-osmotic drag coefficient
N number of cells in the stack
P species partial pressure (Pa)
tm membrane thickness (m)
T temperature (K)
V channel volume (m3)
W flow rate (kg s−1)

Greek symbols
β humidity ratio
φ relative humidity
λ water content
ρm,dry dry density of membrane (kg m−3)
τ time constant (s)
ξi empirical coefficients of activation overvoltage

Superscripts and subscripts
an anode
atm ambient air
body cell body
ca cathode
cw cooling water
hum humidification
in inlet
mem membrane
O2 oxygen
out outlet
phase phase change
s source
sat saturation
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v vapor
w water

he water molecules and water back-diffusion from the cathode

ide to the anode side. It is believed that the electro-osmosis drag
ffect is larger than that of the back-diffusion, and the water con-
ent of the membrane is mainly dependent on that of the anode
ide [1–3]. If the fuel is not adequately humidified, the mem-
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rane may be dehydrated at the anode side, while flooding may
ccur at the cathode side due to water generated by the electro-
hemical reaction. The fuel/gas starvation might have several
ossible causes [1–4]. The first stage may be caused by the
hannel flow variation within the stack [4], i.e., the flow resis-
ance directly resulting in the fuel/gas starvation in the channels,
nd consequently the electrolyte fuel/gas starvation. The reasons
nclude the liquid water droplets forming in the flow channels,
he temperature variation, and geometry deviation. The second
tage fuel/gas starvation may be caused by the electrode pores
locked by the liquid water, which is termed “flooding”. This
henomenon generally occurs at the cathode side. The fuel/gas
tarvation may interrupt the electrochemical reaction and lead to
rapid loss in the output voltage. In the worst situation, it may

ven lead to the decomposition of the fuel cell component and
ermanently damage the cells [3,4]. Another fault mode is the
eak of the membrane, which is due to the fracture and/or hole
f the membrane [4]. While the holes in the membrane may be
aused by the hot spot, the fracture of the membrane is directly
esulted from the mechanical stress concentration. Under the
ynamic operating conditions, the pressure difference across the
EA may break the membrane [4].
In order to improve the reliability and the overall perfor-

ance of PEM fuel cell systems, a number of design and control
trategies have been proposed and some examples can be found
n Refs. [5–8]. Currently, however, there exists very limited
esearch on the monitoring and online fault detection of PEM
uel cells. Recently, Hissel et al. [9] explored a fuzzy diagnosis
ethod for PEM fuel cells. A Sugeno-type fuzzy model of a
EM fuel cell was developed. The fuzzy model and the phys-

cal PEM fuel cell process, subjected to the same input, were
laced in parallel to each other, and the output voltage differ-
nce between the model predication and the measurement was
sed to infer the fault occurrence. They considered the cases
f accumulation of nitrogen and water in the anode compart-
ent and the drying of the membrane. The main difficulty in

he online monitoring for PEM fuel cells stems from the sys-
em complexity. While over the years PEM fuel cells have been

odeled at various levels with different focuses, a global model
apable of characterizing the dynamic and transient behavior of
he fuel cells is still being pursued. Moreover, the modeling of
ertain components is based on phenomenological characteriza-
ions and the fuel cell system has inherent variability/uncertainty
ue to manufacturing tolerance, etc. These issues, together with
he online measurement noise, make it very difficult to develop
deterministic model-based monitoring system. For example,
direct level-difference comparison between the online mea-

urement and a deterministic baseline predicted by the dynamic
odel of a healthy fuel cell might lead to significant number of

alse alarms. Meanwhile, a fuel cell system normally operates
nder dynamic and varying conditions, e.g., constant changes in
oad current, temperature, flow rate, etc. Therefore, one would
eed to collect a huge amount of baseline data under all these

arying conditions if a non-model based scheme is used, which
ould be extremely costly and even infeasible.
Building upon the previous studies and understandings men-

ioned above, in this paper we explore the development of a
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odel-based health monitoring strategy for PEM fuel cells using
he statistical analysis. This proposed strategy can deal with the
perating condition change and system uncertainty/noise simul-
aneously. Under a given operating condition, the instantaneous
oad current, the temperature and fuel/gas source pressures of
he PEM fuel cell are measured. These measurements are then
ed into a lumped parameter dynamic fuel cell model for the
stablishment of the baseline under the same operating condi-
ion for comparison. In order to account for the system vari-
bility/uncertainty, the fuel cell operation is simulated under
tatistical sampling of parametric uncertainties with specified
tatistics (mean and variance). This yields a group of output volt-
ges (under the same operating condition but with uncertainties)
s the baseline. Fault detection is facilitated by comparing the
eal-time measurement of the fuel cell output voltage with the
aseline voltages from the statistical analysis standpoint. This
roposed strategy involves two aspects of advancement. Build-
ng upon the recent progress, we first establish a system-level
ynamic model of PEM fuel cell to characterize the compli-
ated interactions of the temperature, gas flow, phase change in
he anode and cathode channels, and membrane humidification
nder operating conditions. In this model, we explicitly take
nto account the phase change effect so that the water content
nd heat inside the PEM fuel cell, which are critical to the nor-
al operation of the fuel cell, can be properly evaluated. At

he fault detection stage, we incorporate the Hotelling T2 statis-
ics method [10] into the condition monitoring. The Hotelling
2 statistics is a powerful tool of multi-variate statistical anal-
sis, and has been widely used in process and quality controls
11,12]. Essentially, the T2 value of the response data is used to
easure the overall conformance to an established standard. In

he proposed condition monitoring scheme for PEM fuel cell, the
forementioned baseline voltages obtained from the simulations
nder the same input are used to evaluate the output T2 statistics
nder normal operating condition. Then, with a given confidence
evel the upper control limit can be specified. Fault condition will

e declared if the T2 statistics of real-time voltage measurement
xceeds the upper control limit. A series of numerical studies are
arried out to demonstrate the system performance. Our analysis
hows that this proposed health monitoring system is capable of
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Fig. 1. Condition monitoring struc
urces 162 (2006) 388–399

etecting fuel cell damage under complicated environment with
ystem variability/uncertainty and measurement noise.

. Health monitoring system development

.1. Condition monitoring structure

The structure of the proposed health monitoring system is
llustrated in Fig. 1. The main idea is to use the statistical analysis
o compare the online measurement of the fuel cell output volt-
ge to the baseline predicted by the healthy reference model. The
eference model is placed in parallel to the physical fuel cell and
s subjected to the same inputs. More specifically, the physical
uel cell variables such as fuel/gas source pressures, environment
emperature, and load current will be measured using various
ensors. All these measurement data will be used as inputs to
he reference model. The healthy fuel cell output voltage predic-
ion under the specific operating condition is then obtained using
he fuel cell mathematical model. An important feature of the
resent research is that the system uncertainties/measurement
oise will be taken into account. Generally, the system uncer-
ainties stem from the modeling error as well as the cell-to-cell
ifference due to manufacturing tolerance. Mathematically, the
ystem uncertainties can be characterized by perturbations (with
ertain mean and variance) to physical parameters involved in
he fuel cell model. Therefore, in simulating the healthy fuel
ell output voltage, we will run the reference model multi-
le times with statistical sampling of parametric uncertainties.

group of output voltages (with uncertainties/noise) can be
btained as the healthy fuel cell baseline. Fault detection is then
acilitated by comparing the real-time measurement of the fuel
ell output voltage with the baseline voltages by employing the
otelling T2 statistical analysis. The Hotelling analysis includes

wo stages, the baseline construction and the statistical analysis
valuation of the online measurement (monitored) data. At the
hase one stage, the voltage outputs of the healthy fuel cell pre-

icted by multiple simulations with system uncertainties/noise
ill be analyzed to establish/confirm the control limit under a
iven confidence level. A self-checking procedure is employed
o either adjust the control limit (and the corresponding confi-

ture using Hotelling method.
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ence level) for conformity or to eliminate the predictions with
2 statistics exceeding the upper control limit. At phase two,
hen an online measurement of the output voltage is obtained

or monitoring, it will be incorporated into the Hotelling T2 anal-
sis to establish a revised control limit that takes into account
he increase of dimension of the dataset due to the inclusion
f the new measurement. Statistically, the Hotelling T2 analysis
nables the conformity check between the voltage measurement
nd the baseline healthy voltage prediction. Fault condition will
hen be declared if the T2 statistics of the online voltage measure-
ent of the fuel cell being monitored exceeds the upper control

imit. Clearly, this proposed condition monitoring system can
eal with the two major issues in fuel cell applications, the com-
lex multi-physics operation and the system uncertainties. The
omponents shown in Fig. 1 will be explained in detail in what
ollows.

.2. Reference model development

Without loss of generality, we use the Ballard Mark V 5 kW
tack as benchmark example [13] and develop the mathematical
odel. The reason we choose this particular stack for demon-

trating the methodology development is that the relevant param-
ters and typical operating processes are well-documented. The
tack is composed of 35 cells. In a previous study, a general
ystem-level modeling methodology for PEM fuel cell has been
utlined [14]. In this section, we develop a mathematical model
hat is specifically tailored for stack health monitoring. It has
een pointed out that, when only the stack voltage is used
s information carrier, it is difficult to detect the failure of a
ingle cell in a large stack [4]. The reason is that the wiring
ould become extremely complicated if one wants to measure
ingle-cell output voltage. It is suggested that the group volt-
ge monitoring of no more than five cells seems to be feasible
rom stack operation standpoint [4]. Therefore, in our study the
tack modeling will be based on the group consideration of five
ells. The dry fuel from a compressed gas tank and the dry puri-
ed air from an air compressor enter the stack separately and
ow directly into the humidification section where the fuel/gas
treams pick up water. The fuel/gas main streams are further
eparated and then individually fed into each of the fuel cells in
heir respective anode and cathode channels in the active fuel cell
ection. The electrochemical reaction takes place at the individ-
al MEA. The electrical power is then generated, and the surplus
uel/gas and produced water due to the electrochemical reaction
ow out through their respective outlets.

PEM fuel cell has been modeled at various levels of complex-
ty [1–3,14–17]. While the micro-level models of single cell aim
t the cell component synthesis/design, these models consist of
omplex partial differential equations and are mostly based on
teady state conditions. Moreover, the model complexity dra-
atically increases after one packs up the single-cell models

nto the stack model. These models usually require very high

omputational cost and cannot be used in online monitoring that
eeds real-time prediction. In order to establish a tractable stack
odel that can be directly used in health monitoring, here we use

he control volume (CV) approach at the modeling stage. The
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forementioned benchmark stack is divided into seven groups,
ach of which is composed of five cells. The fuel cell sub-group is
ivided into three control volumes, the anode channel, the cath-
de channel, and the fuel cell body. As each fuel cell sub-group
s composed of five single fuel cells, the five anode channels
nvolved in this sub-group are treated as one anode channel CV.
ame is applied to the cathode channel CV and the fuel cell
ody CV. For a sub-group composed of five single fuel cells,
he species conservation and energy conservation principles are
pplied to three CVs [14]. If pure hydrogen is used as fuel and is
umidified before entering the anode channel, two species, i.e.,
ydrogen and water (liquid and vapor), will be involved in the
odeling. There are three equations for mass conservation and

ne equation for energy conservation. It is worth mentioning that
hase change plays a critical role in PEM fuel cell operations.
his is especially relevant in a model-based condition modeling
ecause the water content and heat directly decide the proper
peration of a PEM fuel cell. The present model explicitly takes
his into account.

.2.1. Anode channel
Mass conservation:

dmH2

dt
= WH2,in − WH2,out − MH2

NI

2F
(1)

dman,v

dt
= Wan,v,in − Wan,v,out − Wv,mem + {sgn}pWan,v,phase

(2)

dman,w

dt
= −{sgn}pWan,v,phase − Wan,w,out (3)

All notations are defined in the Nomenclature. In the above
quations, the hydrogen inlet flow rate WH2,in depends on the
ource fuel and anode channel pressure, relative humidity, tem-
erature, and anode inlet flow rate coefficient. The flow rates
f other species, WH2,out, Wan,v,in, Wan,v,out, and Wan,w,out, can
e obtained similar to WH2,in. Wv,mem is the water flow rate
cross the membrane that can be calculated based on the electro-
smotic drag force and the back-diffusion from the cathode side
o the anode side caused by the water content difference [16,17].

In Eqs. (2) and (3), the sign function {sgn}p is used to charac-
erize the direction of phase change, (+1) indicating evaporation
nd (−1) indicating condensation. It is worth mentioning that
he two-phase change is an important feature in PEM fuel cells
hat operate at relatively low temperatures. It plays an impor-
ant role in heat and water management, and humidification of

embrane and electro-catalyst layers [14]. In literature, various
odeling approaches have been proposed to characterize this

henomenon. In microscopic level modeling, multi-phase mix-
ure based two-phase flow model is employed, where the phases
re assumed to be distinct and separable components with non-
ero interfacial areas, and the phase change is characterized by

moothly varying phase compositions in their mixture [18,19].
uch micro-level models generally reflect the local behavior
nly and require very high computational cost which is not
easible for online applications. There has been recent interest
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n developing system-level models that can provide the global
haracterization of the system behavior [14,16]. Pukrushpan et
l. [16] developed a constant temperature model where it was
ssumed that the vapor condenses into the liquid form once the
elative humidity of the gas exceeds 100%. Xue and Tang [14]
roposed a phase change modeling approach, which is incorpo-
ated into a comprehensive system-level dynamic model of PEM
uel cells. The fundamental principle is that if the vapor partial
ressure is larger than the in situ saturation vapor pressure, liquid
ater will be formed through condensation. On the other hand,

f the vapor partial pressure is smaller than the corresponding in
itu saturation pressure, the existent liquid water will evaporate
ntil the vapor partial pressure reaches the saturation pressure.
n this study, we employ this modeling approach, and the phase
hange rate equation is given as [14]

an,v,phase = Van

RvTan

1

τ(Tan, Pan,v, αan)
(PTan

an,v,sat − Pan,v)

here Van is the channel volume of the sub-group.
Energy conservation:

d

dt

[(∑
i

mici

)
Tan

]
=
∑

j

Wj,inTs,an −
∑

j

Wj,outTan

− MH2

NI

2F
cp,H2Tan + {sgn}pWan,v,phase(−hlatent)

+ (hA)an(Tbody − Tan) − Wv,memcp,v[{sgn}dTan

+ ({sgn}d − 1)Tbody] (4)

here the sign function {sgn}d is used to indicate the vapor
ransport direction in MEA, {sgn}d = +1 if vapor is transported
rom the anode channel to the cathode channel, and {sgn}d = 0
therwise. (hA)ca represents the convective heat transfer coeffi-
ient between the cathode channel control volume and the fuel
ell body.

.2.2. Cathode channel
Mass conservation:

dmO2

dt
= WO2,in − WO2,out − MO2

NI

4F
(5)

dmca,v

dt
= Wca,v,in − Wca,v,out + Mv

NI

2F
+ Wv,mem

+ {sgn}pWca,v,phase (6)

dmca,w

dt
= −{sgn}pWca,v,phase − Wca,w,out (7)

Energy conservation:

d

dt

[(∑
i

mici

)
Tca

]
=
∑

j

Wj,inTs,ca −
∑

j

Wj,outTca

NI NI
− MO2 4F
cp,O2Tca + Mv

2F
cp,vTbody+ (hA)ca(Tbody − Tca)

+ Wv,memcp,v[{sgn}dTbody + (1 − {sgn}d)Tca]

+ {sgn}pWca,v,phase(−hlatent) (8)

I
t
c
p

urces 162 (2006) 388–399

.2.3. Fuel cell body
The fuel cell body is treated as a solid control volume. The

ass of the fuel cell body is assumed to be a constant, and thus
he mass conservation is trivial. The only concerned dynamic
ehavior of fuel cell body is the temperature. Using the energy
onservation, we have

mbodycbody
dTbody

dt
= MH2

NI

2F
cp,H2Tan + MO2

NI

4F
cp,O2Tca

− MH2O
NI

2F
cp,H2OTbody + Wv,memcp,H2O[{sgn}anTan

− Tbody + (1 − {sgn}an)Tca] + NI2Rohm + 	H

(
MH2

NI

2F

)
− NVcellI + (hA)an(Tan − Tbody) + (hA)ca(Tca − Tbody)

+ (hA)∞(T∞ − Tbody) + (hA)cw(Tcw − Tbody)

+ (KA)(T i−1
body − 2T i

body + T i+1
body) (9)

If the water is transported from the anode side to the cath-
de side, i.e., {sgn}an = 1, the anode channel temperature has
ontribution to the fuel cell temperature change. Otherwise,
sgn}an = 0, and it is the cathode channel temperature Tca that
ill affect the fuel cell temperature. The last term in Eq. (9)

epresents the conduction heat transfer among the neighboring
ub-groups.

.2.4. Electrochemical reaction
Typically, the fuel cell output voltage is the summation of

hree effects [16], the Nernst potential, the cathode and anode
ctivation overvoltage, and the ohmic overvoltage due to internal
esistance,

cell = ENernst − ηact − ηohmic (10)

here the Nernst potential, the activation voltage and the ohmic
oltage loss are functions of the operating conditions. One way
f modeling the activation overvoltage and ohmic overvoltage is
o take into account that the membrane conductivity is strongly
ependent upon the membrane water content and fuel cell tem-
erature [20]. Alternatively, the expressions of the activation
vervoltage and the ohmic overvoltage may be characterized
sing the experimental data under various cell temperature and
oad current [13,14,16],

act = −ξ1 − ξ2Tbody − ξ3Tbody ln(c∗
O2

) − ξ4Tbody(I) (11)

ohmic = I(ξ5 + ξ6Tbody + ξ7I) (12)

here c∗
O2

is the concentration of oxygen at the catalyst interface,
nd ξi (i = 1, . . ., 7) are parameters calculated from the experi-
ental data using linear regression. It should be noted that the

lectrochemical effects may vary slightly from cell to cell and
epend on the complicated operating conditions within a cell.

n order to take into account the system variation/uncertainty, in
his research we use the linear regression expressions where the
oefficients can be easily perturbed during the statistical sam-
ling.
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As the cells are serially connected, the sub-group output volt-
ge will be the summation of the five single cell output voltages.

.2.5. Stack model assembly
Eqs. (1)–(12) provide a basis for the modeling of the con-

erned fuel cell sub-group. The assembly of such sub-group
ystems will form the stack model, which also include heat con-
uction effect among these fuel cell sub-groups. As the total
nlet flow rate of fuel/gas is individually fed into each of the
uel cells and the exhaustion of each fuel cell converges to the
tack outlet, the inlet/outlet flow rates of the stack will be the
ummation of the respective sub-group inlet/outlet flow rates.
he cooling water flow rate is treated in the same manner. We

hen have,

total,H2,in =
7∑

i=1

Wi,H2,in, (13a)

total,H2,out =
7∑

i=1

Wi,H2,out (13b)

total,O2,in =
7∑

i=1

Wi,O2,in, (14a)

total,O2,out =
7∑

i=1

Wi,O2,out (14b)

total,cw =
7∑

i=1

Wi,cw (15)

In all, there are seventy first-order dynamic equations for the
tack. A variety of stack state variables can be obtained from the
odel simulation. In this study, the sub-group output voltage
ill be employed to monitor the conditions of the stack using

he Hotelling statistical analysis.

.3. Baseline simulation with system uncertainties

In the aforementioned dynamic model, all the system param-
ters are assumed as deterministic parameters. However, in a real
uel cell system, variations/uncertainties exist. Part of the uncer-
ainties comes from the normal time-evolution nature of fuel cell
omponents as well as the cell-to-cell manufacturing variation.
rom the modeling perspective, even more significant uncertain-

ies may appear since the fuel cell model involves coefficients
btained based on experimental studies (e.g., in Section 2.2.4).
EM fuel cells are highly non-linear. The practical operation
f a PEM fuel cell is essentially dynamic and thus the operat-
ng conditions cover various combinations of parameters/states
hat may deviate from the nominal condition. In addition, all the
ensor measurements (of the input state variables and the output
oltage) may be subjected to noise.
In order to take into account the fuel cell varia-
ions/uncertainties effect in the condition monitoring system,
n this research we let the key empirical parameters used in
he baseline model be random variables with specified statistics

H
c
h
c

urces 162 (2006) 388–399 393

Table 2). As a result, the model outputs become stochastic in
ature. Stochastic analysis is a procedure where the input para-
etric uncertainties propagate through a physical process (such

s the fuel cell system). As most of the physical processes in
he PEM fuel cell system are governed by differential/partial
ifferential equations and are non-linear processes, the uncer-
ainty propagation using the closed-form result is not feasible.
n the proposed condition monitoring system, we will use the
ampling approach to perturb the uncertain parameters, which
ssentially leads to a group of output voltages as the baseline.
his group of output voltages covers the possible output range
nder the normal operation condition, which will be used in the
otelling T2 statistics analysis for damage detection.
In traditional stochastic analysis, the samples are selected

andomly using such as the Monte Carlo technique [21]. The
omputational cost for such sampling, however, is in general
uite high [21–23]. To improve the sampling efficiency, the strat-
fied sampling methods have been developed, such as the Latin
ypercube sampling (LHS) method [24] and the Hammersley
equence sampling (HSS) method [25]. The LHS method is a
tratified sampling method, where the distribution is divided into

intervals with equal probability, and the sample is then picked
andomly from each interval. In the HSS method, m sampling
oints are uniformly placed in a k-dimensional cube through a
ow-discrepancy design, and the representative sample is gener-
ted. In order to demonstrate the proposed condition monitoring
trategy, here we assume that the empirical parameters listed in
able 2 all have the Gaussian distribution, and the corresponding
tandard deviations are also listed in the same table. Let the total
umber of uncertain parameters be q. Using the LHS procedure,
values of each of the parameters are sampled under the Gaus-

ian distribution assumption. We then obtain a m × q sampling
ata matrix. For each column data, the m values are randomly
istributed with one from each interval as mentioned above, and
hey are randomly permuted. When a set of the input measure-
ent data (from physical fuel cell system) comes in, the system
odel will be simulated m times using each row of the above
× q sampling data matrix. Correspondingly, we will obtain m

utput voltages, which will be used as the baseline for damage
etection. Clearly, these m output data will cover the uncertainty
and resulted from the system parameter uncertainty propaga-
ion through the system model, and the computational time is
educed using the LHS procedure for sampling.

.4. Hotelling T2 statistical analysis for stack condition
onitoring

The multiple simulations of PEM stack model under statis-
ical sampling of parametric uncertainties will yield multiple
utput voltage time-responses as the baseline. These voltage
esponses (as functions of time, due to the dynamic nature of
he PEM fuel cell) will then be compared with the real-time

easurement of the output voltage for condition monitoring.

otelling first proposed the multi-variate statistical analysis for

onformity check [10]. This method is considered robust and
ighly sensitive for such task, and has been widely used in pro-
ess control and fault detection [11,12]. The analysis is based
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Table 1
Parameters used in the model validation and simulation

Parameters Value Reference

Kan,in (kg(Pa s)−1) 1.23 × 10−10 a

Pan
s (psig) 35 [13]

Tan,in (◦C) 23.5 [13]
ϕan 0.9 b

Kca,out (kg(Pa s)−1) 2 × 10−5 a

Tca,in (◦C) 23.5 [13]
ϕca 0.0 b

Wcw (kg s−1) 0.0331568 [13]
mcw (kg) 2.5 b

(hA)an (W K−1) 2 [13]
(hA)∞ (W K−1) 17 [13]
T∞ (◦C) 23.5 [13]
tm (m) 1.275 × 10−4 [16]
ρm,dry (kg cm−3) 0.002 [1]
Kan,out (kg(Pa s)−1) 2 × 10−5 a

Patm (Pa) 1.013 × 105 [13]
Van (m3) 0.005 [16]
Kca,in (kg(Pa s)−1) 9.148 × 10−10 a

Pca
s (psig) 35 [13]

Vca (m3) 0.01 [16]
MC (J K−1) 35000 [13]
Tcw,in (◦C) 23.5 [13]
N 35 [13]
(hA)ca (W K−1) 10 [13]
(hA)cw (W K−1) 50 [13]
τ (s) 30 b

Acell (m2) 0.0232 [13]
Mm,dry (kg mol−1) 1.1 [1]

o

t
d
m

U

a
T
u
conclude, with 1 − α confidence level, that the voltage output is
abnormal and fault condition has occurred in the corresponding
sub-group of the stack. From the above procedure, we can see
that the Hotelling T2 analysis allows the direct comparison of

Table 2
Parameters used in the simulation and uncertainties

Parameters Value Standard
deviation (%)

Reference

ξ1 0.944 0.01 [13] for mean value
ξ2 −3.54 × 10−3 0.1 [13] for mean value
ξ3 −4.68 × 10−4 0.1 [13] for mean value
94 X. Xue et al. / Journal of Po

pon the T2 statistics and the comparison with certain control
imits.

In general, for a p-variable problem with each variable having
observations, the mean vector is defined as,

¯ = [x̄1, x̄2, . . . , x̄p]T (16)

here x̄j = (1/m)
∑m

i=1xij is the mean estimation for the j-th
ariable. The sample covariance matrix S can be calculated as,

= 1

m − 1

m∑
i=1

(xi − x̄)(xi − x̄)T (17)

The covariance matrix S indicates the relationship existing
mong the p-variables. In the present study, the output voltage
f each sub-group is used as the information carrier for condi-
ion monitoring. Therefore, the output voltage history calculated
r measured/sampled will be grouped, with each group having
time points. We will perform condition monitoring based on

hese grouped p-variables successively. Recall that in order to
ake into account the system uncertainties caused by the empir-
cal modeling, the fuel cell model will be simulated multiple
imes with statistical sampling (through the LHS procedure) of
hysical parameters. We may then obtain m voltage output obser-
ations correspondingly. There are two distinct phases involved
n constructing the Hotelling T2 control limits [10]. First, we use
he aforementioned m observations (simulations) of healthy fuel
ell model to establish a Phase I baseline and an upper control
imit under a specified confidence level. The purpose is to exam-
ne the baseline data and also the relation of normal condition
ith respect to the upper control limit. For a given voltage output

imulation/observation xi, the statistic T2 is defined as

2 = (xi − x̄)TS−1(xi − x̄) (18)

It can be proved that the statistic T2 follows the F-distribution.
herefore, under a given Type 1 error probability α, the Phase I
pper control limit UCL1

p,m,α can be established as [10]

CL1
p,m,α = p(m − 1)2

m(m − p)
Fα(p, m − p) (19)

here F�(p, m − p) is the 1 − α percentile of the F-distribution
ith p and m − p degrees of freedom. Indeed, we may use m
bservations of the output voltage under normal operating con-
ition predicted by the fuel cell model to establish a control limit
ith 1 − α confidence level. At this Phase I stage, the observa-

ions of normal fuel cell output (obtained by model prediction
nder statistical sampling) will undergo a self-checking proce-
ure. The statistic T2 of every output voltage prediction will be
ompared with the upper control limit. If the statistic T2 of cer-
ain prediction exceeds the upper control limit, we may either
liminate this prediction from the baseline data or revise the
pper control limit (and, correspondingly, the confidence level).
his procedure iterates until the baseline data are purified.
The baseline output voltages under normal operating condi-
ion will then be utilized to establish Phase II statistic T2 for
ondition monitoring. This is facilitated by incorporating the
eal-time online measurement of fuel cell output voltage into

ξ

ξ

ξ

ξ

a Coefficients are so chosen that the fuel/gas inlet flow rate is the same as those
f the experimental setup.
b Parameters are assumed.

he analysis. Since the new voltage measurement is indepen-
ent of the Phase I baseline, the Phase II upper control limit is
odified as [10]

CL2
p,m,α = p(m − 1)(m + 1)

m(m − p)
Fα(p, m − p) (20)

In other words, when a real-time measurement of output volt-
ge comes in, we need to use Eq. (18) to calculate the statistic
2 value of this new p-variable. If this value exceeds the Phase II
pper control limit that we have established in Eq. (20), we may
4 1.96 × 10−4 0.1 [13] for mean value

5 −3.3 × 10−3 0.1 [13] for mean value

6 7.55 × 10−6 0.1 [13] for mean value

7 −1.1 × 10−6 0.1 [13] for mean value
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Fig. 3. Fuel partial pressure simulation in anode CV.
X. Xue et al. / Journal of Pow

he online measurement with a group of possible output voltage
nder normal operation conditions, which is a key feature of the
roposed condition monitoring strategy.

. Simulation and discussion

.1. Dynamic simulation of fuel cell stack using nominal
arameters

In order to explore the dynamic behavior of the PEM fuel cell
tack under various fault conditions, a series of step changes in
oad current is applied to the fuel cell system to emulate the exter-
al load change. The initial conditions and system parameters
re listed in Tables 1 and 2. Here in this first study, we assume an
deal system without uncertainties, and hence all system param-
ters take the nominal values. The purpose is to compare the
ominal difference of fuel cell state variables caused by the fault
onditions. During the simulation, the fault condition is delib-
rately introduced into the system. The total time period for
he simulation is 30,000 s. Initially, no external load current is
pplied to the system. At the 100th s, the system starts up with a
0 A external load current. At the 5000th s, the membrane drying
f a single cell is introduced into sub-groups 3 and 6, respec-
ively. This fault condition recovers to the normal condition at
he 7000th s. At the 11,000th s, the load current continuously
ises up to 30 A. The cathode flooding is then introduced to a
ingle cell in sub-group 6 at the 17,000th s which continues for
000 s. The fuel cell then returns to the normal condition. The
ast fault introduced is the cathode flooding of a single cell of
ub-group 3 at the 25,000th s. A number of stack state variable
istories are shown in Figs. 2–13.

We first analyze the fuel cell state variable histories to gain the
hysical insight. Fig. 2 shows the stack temperature history. All
even sub-groups show similar trend, i.e., the stack temperature

ncreases following the increase of the external load current. The
emperature is influenced by the occurrence of cell faults. At the
000th s, the membrane drying is introduced into sub-groups 3
nd 6, respectively, and the drying level of sub-group 3 is higher

Fig. 2. Stack temperature history simulation.

Fig. 4. Vapor partial pressure simulation in anode CV.

Fig. 5. Oxygen partial pressure simulation in cathode CV.
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Fig. 6. Vapor partial pressure simulation in cathode CV.

Fig. 7. Liquid water mass simulation in anode CV.

Fig. 8. Liquid water mass simulation in cathode CV.

Fig. 9. Direct comparison of sub-group voltage values.

Fig. 10. Baseline self-checking result of sub-group 3 voltage.

Fig. 11. Baseline self-checking result of sub-group 6 voltage.
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Fig. 12. Hotelling analysis of sub-group 3 voltage.

han that of the sub-group 6. It is apparent that temperatures
f sub-groups 3 and 6 both increase with sub-group 3 having
higher temperature. Similarly, the flooding of cathode elec-

rode blocks the transport of oxygen from the cathode channel
o the cathode electrolyte and, consequently, the oxygen partial
ressure at the electrolyte decreases, which directly leads to the
utput voltage decrease. Here it is assumed that the oxygen at the
lectrolyte is adequate for the electrochemical reaction under the
oading conditions. The decrease of the electrical power leads
o the temperature increase of sub-groups 3 and 6, provided that
he consumed fuel is the same as that of the normal operating
onditions. This result is shown in Fig. 2 at the 17,000th and
5,000th s, respectively. One may observe that the temperature
ncrease of sub-groups 3 and 6 influences the neighboring stack
emperature.

Figs. 3 and 4 show the hydrogen and vapor partial pressures in

he anode channel CV of seven sub-groups. The hydrogen partial
ressure tends to go down following the load current increase.
he increase of the load current directly leads to the increase

Fig. 13. Hotelling analysis of sub-group 6 voltage.
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f the consumed fuel and water generated due to the electro-
hemical reaction. Consequently, the hydrogen partial pressure
n the anode CV decreases even though the anode CV tempera-
ure increases, while the partial pressure of the vapor increases
ue to both anode CV temperature increase and the increase of
ater diffusion effect from the cathode side to the anode side.

n Figs. 5 and 6, the oxygen and vapor partial pressures in the
athode show similar trends to those of the anode CV.

Figs. 7 and 8 illustrate the liquid water generated due to phase
hange in the anode and cathode CVs, respectively. It is apparent
hat there is no liquid water in the anode CV, while the liq-
id water generated in the cathode CV increases following the
ncrease of the external load current. Clearly, as the electrochem-
cal reaction intensifies, the water vapor generated increases and
hen the condensation takes place in the cathode CV. One may
ee that the faults are explicitly simulated using the above devel-
ped model, and they do cause some interesting changes during
uel cell operations.

.2. Hotelling monitoring

In this sub-section, we demonstrate the Hotelling statistical
nalysis method for fault detection. As stated, under the respec-
ive fault conditions in three time periods (5000th–7000th s, cells
n sub-groups 3 and 6 having faults; 17,000th–20,000th s, a cell
n sub-group 6 having fault; 25,000th–28,000th s, a cell in sub-
roup 3 having fault), the output voltages of sub-groups have
ery small fault-caused variations relative to the healthy con-
ition (the exact maximum variation using nominal parameters
ithout uncertainty is 0.0446 V). In practical applications, the
ealthy responses are subjected to model uncertainty, and both
he healthy and faulty responses will be contaminated by mea-
urement noise. In this research, the modeling uncertainty is
ccounted for by assuming variance in the empirical parameters
sed in the description of electrochemical reaction (Table 2). It
hould be noted that little knowledge currently exists in quanti-
ying such uncertainty, and the standard deviation values shown
n Table 2 are obtained by trial and error that yield reason-
ble output voltage history calculation in the simulation. In
uture, comprehensive experiments are needed in quantifying
uch uncertainty. In addition to such parametric uncertainties,
n this study we assume that the voltage measurement is sub-
ected to random noise with 0.016 V standard deviation. Fig. 9
llustrates the output voltages of the faulty sub-groups 3 and 6,
espectively. Also shown are the healthy output voltages selected
rom the corresponding baseline (obtained via statistical sam-
ling, which will be further discussed later) under the same
perating conditions. Clearly, the fault conditions cause very
nsignificant change of output voltage, which is further con-
aminated by the noise. Therefore, it is virtually impossible to
eclare fault occurrence based upon the direct comparison of
utput voltages, as shown in Fig. 9.

We then implement the Hotelling statistic T2 detection

ethod, where we use sampled output voltage measurements as

he p-variable. Here, for easy identification of the fault sources,
he Hotelling detection is applied for each sub-group of the volt-
ges. In order to establish the baseline and the control limit,
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set of fuel cell output voltages are generated using the fuel
ell model under statistical sampling of parametric uncertain-
ies (through the LHS procedure) under the normal operating
onditions. Here, the Gaussian distributions are assumed for the
ncertain parameters (shown in Table 2) and each distribution is
ivided into 16 strata. Output voltages are grouped every 6 time
oints, i.e., p = 6. Hotelling analysis are performed successively
or the entire voltage histories. After self-checking, a baseline
omposed of 16 sample voltages is constructed. Figs. 10 and 11
how the corresponding self-checking results of normal voltage
utputs of sub-groups 3 and 6, respectively. Here, the confi-
ential level of the F-distribution is set to be 95%. The degree
f freedom of the Phase I self-checking is p × m = 6 × 16. The
pper control limit of Phase I is 27.14. Clearly, the self-checking
esults of the baseline are below the Phase I upper control limit,
nd we may now declare with 95% confidence that the baseline
s purified.

At Phase II, the (simulated) online measurement of sub-group
utput voltage measurements is inserted into the Hotelling anal-
sis module, and analyzed based on the baseline developed at
hase-I stage. If the statistic T2 of the online output voltage
easurement exceeds the Phase II upper control limit, a fault

ondition can be declared; otherwise, the operating condition
s treated as normal. Again, each subgroup output voltage of
he online fuel cell output voltage is consecutively grouped for
very 6 time points. One advantage of this strategy is that the
ondition monitoring system would have enough time to pro-
ess all the calculations. With the new online measurement, the
hase II upper control limit can be calculated as 30.76 under
95% confidence level (Eq. (20)). We then test this condition
onitoring method by incorporating the simulated voltage mea-

urement of the faulty fuel cell system. Figs. 12 and 13 show the
otelling results of abnormal voltage outputs of sub-groups 3

nd 6, respectively. It can be clearly seen that the T2 values of the
easurements exceed the upper control limit at the time instant
hen the fault occurs. The Hotelling statistic T2 of sub-groups 3

nd 6 declare both fault at the 5000th s. The fault condition lasts
or about 2000 s and then the T2 values drop to below the upper
ontrol limit. At the 17,000th s, the Hotelling statistic T2 of sub-
roup 6 goes beyond the upper control limit, which lasts for
000 s. At the 25,000th s, the Hotelling statistic T2 of sub-group
declares fault condition. While the direct comparison of the

ault and normal voltages in Fig. 9 cannot give definitive conclu-
ion, the Hotelling method significantly improves the detection
ensitivity and can correctly predict the fault occurrence imme-
iately, even under system parameter uncertainties and noisy
easurements.

. Concluding remarks

This research proposes a condition monitoring approach for
he PEM fuel cells. The basic idea is to compare the fuel cell out-
ut voltage measurement with model prediction under the same

perating conditions. We first develop a fuel cell stack model
hich can simulate the complicated transient behavior and
ynamic interaction of the temperature, gas flow, phase change
n the anode and cathode channels, and membrane humidifica-

[

urces 162 (2006) 388–399

ion under operating conditions. Using this model as basis, we
hen simulate the stack output voltage response, where statistical
ampling is incorporated to account for the system uncertainties.
his yields a group of output voltage histories as the baseline. We
nally employ the Hotelling T2 control limit approach to mon-

tor the stack condition by statistically comparing the voltage
easurement with the baseline voltages. Our analysis indicates

hat this Hotelling method has very high detection sensitivity
nd can detect the fault conditions at the early stage.
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