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Inspired by the recently developed projection chart, such as the U? chart for monitoring a shift in the
multivariate mean, this article proposes a multivariate projection chart for monitoring process variability.
In engineering practice, people often build a linear process model to connect the multivariate quality
measurements with a set of fixed assignable causes. The column space of the process model naturally
provides a subspace for projection and subsequent monitoring and was indeed used as the projection
subspace in the recently developed projection control charts for monitoring a shift the mean. For the
purpose of monitoring variability, however, we will show that such a projection may not be advantageous.
We propose an alternative projecting statistic, labeled as VS, to be used for constructing a multivariate
variability monitoring chart. We show, through extensive numerical studies, that the VS chart entertains
several advantages over other competing methods, such as its less restrictive requirements on the process
model and generally improved detection performance.
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ROCESS variability monitoring has been an impor-

tant field in statistical quality control (Woodall
and Montgomery (1999)). Several control charts have
been developed specifically to detect the process-
variability change. For example, R and S charts are
used to detect the variance change in univariate mea-
surements. For multivariate quality-characteristic
measurements, the existing charts for monitoring
variability are mainly based on the statistic of the
generalized variance, calculated from the sample co-
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variance matrix S, such as |S| (Alt (1985)),
log|S| (Montgomery and Wadsworth (1972) and
Alt and Smith (1988)). Recently, Reynolds and
Cho (2006) proposed a multivariate exponentially
weighted moving-average (MEWMA) chart for mon-
itoring process variability. Besides these variability-
monitoring charts, some other multivariate charts,
such as Hotelling’s T2 chart, although designed for
detecting mean shifts, can also signal variability
changes because the T2-chart has the sample covari-
ance matrix S in its statistic. To use these control
charts, measurements of quality characteristics are
taken from the finished or intermediate product and
are treated as random variables, and their distribu-
tions are compared with the corresponding distribu-
tions under normal conditions. If the measurements
show that there are some quality characteristics “out
of control” (e.g., deviation from the target or vari-
ability is too large), an alarm is generated to show
that some faults happen in the process. Clearly, these
charts are easy to use but do not take extra process
information, such as the relationship between pro-
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cess faults and quality characteristics of products,
into consideration.

There is some recent work in SPC to improve
the monitoring performance through a subspace-
projection method. Particularly, Runger (1996) pro-
posed a projection chart, called a U? -chart, that
appears to perform much better than a regular 72-
chart. This chart projects the quality measurement
y into a predefined lower dimensional space and the
projected vector is then monitored. The project di-
rections can be identified by selecting a subset of
quality variables that only certain assignable causes
affect or by adopting a process model that links the
model-fixed assignable causes with the quality vari-
ables. Quite a few such process models have been
developed recently, for instance, the process-oriented
basis-representation model (Barton and Gonzalez-
Barreto (1996)), the physical models for assembly
processes (Mantripragada and Whitney (1999), Jin
and Shi (1999), Ding et al. (2000)), and the state-
space models for machining processes (Zhou et al.
(2003b), Djurdjanovic and Ni (2001), and Huang et
al. (2000)). These models are in a common linear
mixed-model form as

y = Af +e, (1)

where y is a vector consisting of product-quality mea-
surements, A is a coefficient matrix determined by
process/product design, f is a vector representing the
model-fixed variation sources in the proces, and ¢ in-
cludes the measurement noise. In the implementation
of the U?-chart, the measurement y is projected onto
the column space of matrix A and the projected re-
sults are monitored. It has been shown that the U2-
chart is quite sensitive in detecting the mean changes
in f. In a more recent paper, Runger et al. (2007)
showed that the U2-chart is actually equivalent to
a T?-chart on the weighted least squares estimation
of f based on the model (1). Zhou et al. (2005) also
proposed a directionally variant chart to take advan-
tage of the known shift directions when assignable
causes occur in the system. It is not surprising that
these projection charts outperform the generic charts
in detecting the changes in the root causes because
extra information, the process model, is considered
in the chart design.

The above-mentioned U2-chart and the direction-
ally variant chart are designed for mean-shift detec-
tion. Although the U2-chart will also signal variance
changes, further investigation is needed to differen-
tiate whether the root cause is a mean shift or a
variance change. However, in many practical situ-
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ations, people are very interested in the variabil-
ity change for variation-reduction purposes. Thus,
it is highly desirable to develop a technique that is
specifically tailored for variability-change detection.
In other words, we want a control chart that is sen-
sitive only to the variance change of f, and it should
outperform generic variability charts, such as the |S|-
chart, by taking the known process model into con-
sideration.

To achieve this goal, we can follow exactly the pro-
cedure of the U2-chart to, first, project y onto the
column space of A and then monitor the variance of
the projected values. In this paper, such a projection
chart is called an |S;|-chart. However, the relation-
ship between the covariance matrix of y and the co-
variance matrix of f is more complicated than the
relationship between the mean of y and the mean of
f, which indicates a better way of projection should
be established for the purpose of variability monitor-
ing. In this paper, we propose a new projection chart
based on the process model, called the VS (stand-
ing for variances summation) chart, to monitor the
variance change of f. The VS chart uses a different
projection direction rather than the column space of
A matrix, to take full advantage of the variational
relation provided by the process model. In the im-
plementation of the VS chart, we actually estimate
the summation of the variances of the elements of f
instead of needing to know each element of it. It is
shown that the condition of the existence of VS is
much more relaxed than that of |S;|, which requires
all the columns of A to be independent of each other.
In most cases, the performance of the VS chart is also
superior to that of the |S;|-chart.

The remainder of the article is organized as fol-
lows. In Section 2, the problem formulation and the
development of the new projection chart are pre-
sented. Section 3 demonstrates the advantage of the
proposed variability control chart using extensive nu-
merical analyses. Finally, we conclude the paper in
Section 4.

Development of |S§.| and VS Charts

All the above-mentioned models, which link the
product quality measurements and process variation
sources, are linear models. Linear models are widely
used, not only because they are easy to deal with
but also for the reason that a practical system usu-
ally operates closely around some nominal working
point; hence, the system can be linearized without
significant loss of accuracy. In this article, we also
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adopt the linear model shown in Equation (1) as our
process model.

Without losing generality, we assume that y € RY,
f € R?, ¢ € RY and A € RYP, In addition, we
assume that

(A1) fisnormally distributed with zero mean and its
p elements are independent, i.e., f ~ N, (0, X¢),
and X¢ = diag{o?,...,02}; {0?}]_, are also
called variance components.

(A2) e is also normally distributed with zero mean
and its variance—covariance matrix is a scalar
matrix, i.e., & ~ Ng(0,021,), where o2 is the
sensor noise variance and I, is the identity ma-
trix.

(A3) fand e are independent.

(A4) The coefficient matrix A is a constant matrix,
which is determined by the system, and A is
assumed known.

These assumptions are not restrictive in practice
and have been adopted by many other authors (e.g.,
Ceglarek and Shi (1996) and Apley and Shi (2001)).
In (A1), we require each individual variation source
(element in f) be independent from each other, which
is indeed the case in many manufacturing processes.
For example, in an autobody-assembly process, the
key process-variation sources are the fixture locator
errors, and it is quite reasonable to assume the errors,
such as breaking and loosening of different locators,
are independent of each other. In (A2), we require the
variability contribution of the noise on each measure-
ment elements be the same. In many processes, ¢ is
dominated by measurement noise. If the same mea-
surement devices are used for each quality charac-
teristic (e.g., the same coordinate-measurement ma-
chine is used to measure various dimensions on a car
body), then (A2) is easily satisfied. Furthermore, be-
cause measurement noise is the major part of ¢, it is
reasonable to assume f and e are independent (A3).
In (A4), it is assumed that the coefficient matrix A
is known. This is not a restrictive assumption be-
cause A can often be either obtained from the physi-
cal analysis of the process or fitted empirically using
historical data. In fact, as discussed in the introduc-
tion part, several techniques to obtain A for assem-
bly processes, machining processes, and other dis-
crete manufacturing processes have been developed
recently.

With this process model and the assumptions, a
straightforward application of the projection idea is
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to project the quality measurements y onto the col-
umn space of matrix A. The projection procedure is
the same as estimating the variance components (i.e.,
{02}?_,) using a least-squares estimation procedure
(Ding et al. (2005)). The resulting chart is called the
|S;]-chart.

Chart |S;|

In the |S;| chart, instead of monitoring the vari-
ability of y, we monitor directly the variability of
variation sources f. However, because measurements
of f are not available, we have to estimate f using the
measurement y and the process model (1). In more
detail, denote the linear minimum variance estima-
tion of f as f, and then from Equation (1), we have

f=(ATA) ATy, (2)
With a sample of size n, we have n measurement
vectors {y;}i~, and hence n estimates of f:

fi=(ATA)'ATy;, fori=1,2,...,n. (3)

Then the covariance matrix of f is defined as

1 = wve 3
= —— S & -HE-D)T, 4
S= g E-DE-DT @
where f is the average of {f;}?_,. Then |S;| is the
determinant of matrix S;.

Because the measurement y follows a normal dis-
tribution and the elements of f are simply linear com-
binations of those of y, according to Equation (2), f
is also normally distributed and thus |S;| follows a
similar distribution as |Sy|. Thus, we can setup the
|S;|-chart in a similar way to the |Sy|-chart.

Because f is a p-variate normally distributed
random vector, |S;| has the same distribution as
[13|/(n — 1)P]1Z1Z, - - - Z,, (Djauhari (2005)), where
{Z;}7_, are independent random variables and Z; ~
x:_,fori=1,...,p.

Alt (1985) proposed a control chart using the gen-
eralized variance |S| based on the fact that the dis-
tribution of |S| can be approximated by an asymp-
totic normal distribution. The center line of the
chart is E(|S|) and the control limits are E(|S;|) +
34/Var(|S;|), where E(-) and Var(-) represent the
mean and variance of a random variable. So, just
like a generalized variance chart, we can set up the
|S¢|-chart in a similar way, with the following control

limits:
UCL = E(|S;|) + 34/ Var(|S;|)
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CL = E(IS;])

UCL = E(|S;|) — 3+/Var(|S;)). (5)

The values of E(|S;|) and Var(|S;|) can be esti-
mated in phase I analysis using a large number of
regular samples. It is also worth mentioning that
Djauhari (2005) recently proposed a method to de-
termine the average of sample covariance matrices
resulting in an unbiased estimate of the control lim-
its for the generalized variance chart.

There are several interesting observations regard-
ing the |S;|-chart. The dimension of f, p, is usually
smaller than that of y, ¢, and thus the |S;|-chart is
usually more efficient than the |Sy|-chart in detect-
ing the variation changes in f. This is also the key
reason of why U? outperforms a generic T2-chart.
However, for multivariate variability monitoring, the
|S;| chart does have certain limitations. First, for f
to be able to be estimated with Equation (2), matrix
A has to have full column rank, i.e., the columns
of matrix A have to be independent. Although this
condition is satisfied by many engineering systems,
it does not generally hold. In the case study, we will
present a case in which this condition is violated.
Second, by monitoring |S;|, we are actually detect-
ing the changes in |X;|. However, |3;| is different
from X¢. In fact, according to Equations (1) and (2),
we have

B, = AZAT+ 3, (6)
3; = (ATA)TTATS, A(ATA) !
= (ATA)TTAT(AXAT + B.)A(ATA) !
=3¢+ 0 (ATA)TL (7)

Equation (7) indicates that X; differs from 3¢
by 02(ATA)~!. When the variance of measurement
noise is small and matrix A is well conditioned (i.e.,
the values of the entries of (ATA)~! are small), then
3¢ can be approximated by X;. In this case, the
statistic [S;| can be roughly viewed as detecting the
changes in [[?_, 62. However, if the variance of the
measurement noise is not small or dependency ex-
ists among the columns of matrix A, which leads to
large values of entries of 62(ATA)~!, then X; will
be influenced by o2(ATA)~! more heavily. As a con-
sequence, the |S;|-chart will become more sensitive
to the changes in 02 and less sensitive to the changes
of {o?}F_;.

VS Chart
The |S;| chart uses the relationship of Equation
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(1) directly to conduct projection. It requires a some-
what strong condition on the coefficient matrix A.
When the matrix A does not have full column rank,
the |S;| chart cannot be employed. In contrast, the
VS chart utilizes the variational relationship between
y and f to conduct projection and thus can handle
this situation better.

First, the variational relationship between y and
f is obtained. Define 012, +1 = 02, then the covariance
matrix of y can be written as

p+1
By =A%AT + 3. = PV, 8)
i=1
where V; = a;a} fori = 1,...,p, a; is the ith column

of A, and V,,; = I, with I, being the g-dimensional
identity matrix.

Equation (8) can be further transformed into the
following vector form:

pt1
vec(Ey) = vec(AZAT 4+ B,) = vec (Z U?V,-)
i=1

=1II(A) -0, (9)

where vec(+) is the operator that stacks the columns
of a matrix as a vector (Schott (2005)), & = (o2 |
|02 |02,,)T, and II(-) is a transform defined as

I : RI%P qux(P+l)’
A (vec(Vy) | - | vec(Vp) | vec(Iy)). (10)

From Equation (9), it is clear that, in order to esti-
mate all the elements of o, i.e., the variances of each
of the variation sources and the measurement noise,
ITI(A) should have full column rank. The properties
of TI(A) have been studied intensively in recent diag-
nosability studies for variation source identification
(Ding et al. (2002), Zhou et al. (2003a), and Ding et
al. (2005)). It has been shown by Ding et al. (2005)
that, if A is a tall matrix, i.e., ¢ > p+ 1, then a full
rank matrix A will lead to a full rank matrix II(A),
but not vice versa. In other words, there are situa-
tions when A is not full rank, but II(A) still satisfies
full rank condition. For example, if

0 -1 1
A={-1 0 1],
1 -1 0

then rank(A) = 2, so A is a rank-deficient matrix.
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However,
00001 -1 0 -1 1
10100 0 1 0 1
T(A) = 11011 0 0 0 O
10001 0 0 0 1
and rank(II(A)) = 4, which means II(A) has full

column rank.

The variational relationship in Equation (9) pro-
vides an alternative projection direction for monitor-
ing the changes in the variance components: instead
of projecting onto the column space of A, which is
suggested by model (1), we can project the elements
of Xy onto the column space of II(A), which is sug-
gested by the variational relationship (9). As follows,
we show that the summation of the projection results
is actually an estimation of the summation of ele-
ments of o, i.e., 1;+10, where 1,4 is a column vec-
tor of which the p + 1 elements are all ones. Clearly,
a simple monitoring method can be developed based
on the estimates of 17, ;0.

From the diagnosability study by Zhou et al.
(2003a), we can estimate qT o based on Equation (9)
if and only if q falls in the row space of II{A), where
q is an arbitrary column vector. As a special case,
then we know that 1T, 0 can be estimated if 1T,
falls in the row space of II(A). In other words, if

rank (I—F(A-)——l) = rank(II(A))  (11)

holds, then 1p 110 is estimable. However, how to es-
timate lp +10 is not discussed in the paper by Zhou
et al. (2003a). In this paper, we propose an estimator
based on the projection concept as

)| vec(Zy), (12)

where [II(A)]* is the Moore—Penrose inverse of
II(A). It is shown in Appendix 1 that, if Equation
(11) holds, then the scalar 7 equals 17, ;0. That is,
the sum of elements of o can always be calculated
exactly using Equation (12).

def
rE 1p+1[H(A

In practice, Xy is unknown. However, the sample
covariance matrix Sy is always available from the
measurements and can be substituted into the place
of £y and results in a computable statistic that can
be monitored as

def

VS= 1p+1[H )t vec(Sy), (13)

and we will call the control chart based on this statis-
tic VS chart.

Journal of Quality Technology

It can be shown that the statistic VS follows
asymptotic normal distribution (please refer to Ap-
pendix 3 for the proof). With this in mind, the three-
sigma. control limits can be used when the sample size
is large (e.g., a couple of hundred):

UCL = E(VS) + 31/Var(VS)

CL = E(VS)

LCL = ma.x{E(Vs — 31/Var(VS) o} (14)

The values of E(VS) and Var(VS) can be esti-
mated in phase I analysis using a large number of
regular samples. When sample size is small, VS devi-
ates from the normal distribution. A simple simula-
tion study shows that the VS distribution is flat com-
pared with the normal distribution when the sam-
ple size is small and thus the false-alarm probability
of the control chart in Equation (14) is higher than
0.0027. To reduce the false-alarm probability, wider
control limits should be used. In practice, probabil-
ity control limits can be obtained through empirical
simulation when the sample size is small.

The statistic VS possesses some advantageous
properties. First, if II(A) has full column rank,
then the Moore—Penrose inverse [[I(A)]* is sim-
ply [(A)TII(A)]"II(A)T and thus VS is the
least-squares estimation of l;f_,_la based on Equa-
tion (9). However, by using the Moore-Penrose in-
verse [[I(A)]*, VS is always computable even if
[TI(A)TTI(A)]~! does not exist. If Equation (11) can-
not be satisfied, i.e.,

rank ( 1I(A)

T‘q‘) = rank(II(A)) + 1,

then 7 (and hence VS) is still computable, but
7 becomes 107 + 203 + -+ + apy102,,, where
{@i}i=1,... p+1 are the elements of the vector

. a €17, [(A)]TI(A),

and they cannot be all ones. So the variable 7 is a
weighted sum of {02}?1]. The proof of this result
can be found in Appendix 2. Second, it can also be
shown that the condition of Equation (11) is more re-
laxed than the full column rank requirement of II(A).
In other words, if II{A) has full column rank, then
Equation (11) always holds, but the inverse is not
true. For example, if

11
=0 0)
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then
T

I(A)

Il
—
o OO
o OO

0
0
1

and rank(TI(A)) = 2, which means II(A) does not
have full column rank. However, the vector 13 is
clearly in the range space of II(A)T.

In this section, we introduced the |S;|-chart and
the VS chart for multivariate variability monitoring.
The |S;|-chart can be viewed as the equivalent coun-
terpart of the U2-chart in variability monitoring. It
requires a strong condition on the coefficient ma-
trix A. The VS chart makes the projection based
on the variation relationship and needs a less strict
assumption and can be implemented even if the sys-
tem is not fully diagnosable. In the next section,
the performance of these two charts will be com-
pared with some existing multivariate variability-
monitoring techniques through extensive numerical
study.

Numerical Study

The process used in this case study is similar to
the one used by Apley and Ding (2005). In that case,
model (1) is used to describe the variation of the
shape of the liftgate opening of a minivan. Vector y
represents the measurement of the position of several
points around the opening, f represents the variation
patterns affecting the liftgate opening, and ¢ is the
measurement noise. Six sensors are used, so y has six
elements. There are a total of five variation patterns,
so the dimension of f is five. Details about the sys-
tem can be referred to Apley and Ding (2005). In the
following case study, the system is slightly modified
in order to better demonstrate the methods devel-
oped in this article. Three more sensors are added in
addition to the original six such that we get a new
matrix A of nine by five, as shown in the first col-
umn of Table 1. In this case, rank(A) = 5, which
means A has full column rank and II(A) also has
full column rank, hence f and VS can be calculated

219

using Equations (2) and (13), respectively. Further-
more, to demonstrate the performance of different
charts when matrix A is not of full rank, two ad-
ditional cases are constructed by modifying A. The
matrices for these two additional cases are listed in
the second and third columns of Table 1. For case 2,
rank(A) = 4 < 5 but II(A) is of full rank; for case 3,
rank(A) = 4 < 5 and rank(II(A)) = 5 < 6, but

rank ( 1I(A)

1 1 --- 1
so we can still set up the VS chart using Equation
(13).

) = 5 = rank(II(A)),

For each case, the average run lengths (ARLs)
under out-of-control situations are compared among
ISy|, |S;| (when applicable), and VS charts through
numerical study. In the study, we select the standard
deviation of measurement noise as 0.1; and when the
minivan-assembly system operates in normal condi-
tion, the standard deviation of the variation sources
(i-e., elements of f) are also oin-controt = 0.1. Based
on this in-control situation, we can simulate the pro-
cess to generate large amounts of measurement data
when the process is normal, and then using the data,
we can decide the control limits. Although the 3-0
limits are widely used for the |Sy|-chart, the perfor-
mance of the chart using these control limits is very
poor in these cases: a simple numerical study shows
that the ARLg with sample size n = 25 is only 53.9
for the |Sy|-chart using 3-0 control limits. To make
fair comparisons, probability control limits are used
in this study. To get the probability control limits,
in phase I of this simulation, a large number of mon-
itoring statistics for each control chart are produced
when the process is in control, and the 0.135% and
99.865% percentile points of these statistics are used
as the lower and upper control limits. The probability
control limits for all three cases and three different
sample sizes (25, 75, and 150) are listed in Table 2.
These control limits will give an a-error of 0.0027 or
ARL of 370 when the process is in control. In the ta-

TABLE 1. The Coefficient Matrices Used in the Three Simulation Cases

Matrix A of case 1

Matrix A of case 2

Matrix A of case 3

-1 -1 -1 1 1 10 0 o\T /o0 0 1
i 1 1 1 1 10 0 O VI 0
0 05 1 0 05 1 0 0 0 -1 0 -1 0
0 0 0 0 0 0 1 05 0 0 -1 0 o
0 0 0 0 01 1 1 -1 0 -1 1

-1 -1 0 -1\T,s,1 0 1 0 -1 -1 -1 1 -t
0 -1 -1 -1 1 -1 0 0 1 1 0 -1
1 0 o0 1 -1 -1 1 0 0 -1 -1 0 1
-1 0 1 -1 1 1 1 -1 1 1 -1
-1 -1 1 -1 1 1 0 0 1 1t 11
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TABLE 2. Control Limits of Each Control Chart for Different Sample Sizes Case

Syl IS¢ £
Case n=25 n=T75 n=150 n=25 n=75 n=150 n=26 n=75 n=150
1 UCL  2423.3 3077 2711 21.54 14.55 11.72 9.46 7.85 7.28
LCL 6.6 143 325 0.34 1.53 2.44 3.43 4.43 4.87
2 UCL  4561.4 5768 5082 _ — — 9.58 7.89 7.29
LCL 12.4 268 608 — — — 3.55 4.48 4.89
3 UCL 5710 7221 6360 — — — 9.51 7.86 7.27
LCL 15.5 336 762 — — — 3.57 4.49 4.90

ble, because |S;| is not available when the matrix A
is not of full rank, we do not have |S;| chart for cases
2 and 3. Further, we notice that the control limits of
|Sy| in cases 2 and 3 are significantly wider than that
in case 1, which means that the structure of A influ-
ences significantly the distribution of the monitoring
statistic of the |Sy|-chart. By contrast, the proba-
bility control limits of the VS chart are fairly stable
across different cases, suggesting that the monitoring
statistics of the VS chart is insensitive to the model
structure. This can be viewed as an advantage of the
VS chart over the conventional |Sy|-chart.

To compare the performance of these charts for
different magnitudes of variability changes, we per-
formed the simulations with 02 = k-o2__ . . for
i=1,...,5, and k running from 1.25 through 4. For
each k and i, the ARL is obtained through Monte

Carlo simulations and the overall ARL (illustrated
in the following tables) is the average of the ARLs of
different i, i = 1,...,5, but of the same k. Table 3
lists the ARL comparison for case 1 and Table 4 lists
the results for both cases 2 and 3.

From these results, we observe the following. (1)
The performance of the |Sy|-chart is poor compared
with the other two charts. It performs uniformly
worse than the |S;|-chart and is comparable with
the VS chart only when both the variance change
magnitude and the sample size are extremely large.
However, when the sample size and/or the change
magnitude is moderate, |Sy| performs significantly
worse than the VS chart. This is not surprising be-
cause prior research has also argued that the pro-
jection method (here the |[S;| and VS charts) can en-
hance the performance of monitoring by taking extra

TABLE 3. Comparison of ARL of Three Control Charts with Different Sample Sizes (Case 1)

Sy| IS¢ %

k n =25 n="75 n =150 n =25 n="175 n = 150 n =25 n=75 n = 150
1 370.6 370.7 368.1 368.3 369.2 369.4 369.9 371.2 374.7
1.25 304.9 229.1 162.0 257.8 166.5 104.0 257.3 169.1 108.4
1.50 221.0 113.2 58.7 152.4 62.4 28.4 136.4 55.6 25.7
1.75 159.3 60.7 26.2 92.7 28.5 11.1 71.2 21.8 9.1
2 117.2 36.1 14.0 60.5 15.4 5.6 39.5 10.6 4.6
2.25 89.2 23.5 8.5 41.8 9.5 3.4 23.6 6.2 3.1
2.50 69.7 16.3 5.7 30.4 6.4 2.4 15.2 4.3 2.5
2.75 56.0 12.0 4.2 23.1 4.6 1.9 10.6 3.3 2.2
3 46.0 9.2 32 18.1 3.6 1.5 7.8 2.8 2.1
3.25 38.4 7.3 2.6 14.7 2.9 14 6.1 2.5 2.0
3.50 32.6 5.9 2.2 12.1 2.4 1.2 5.0 2.3 2.0
3.75 28.2 5.0 1.9 10.2 2.1 1.2 4.3 2.2 2.0
4 24.6 4.3 1.7 8.8 1.9 1.1 3.7 2.1 2.0
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TABLE 4. Comparison of ARL of Two Control Charts with Different Sample Sizes (Cases 2 and 3)

|Sy| VS
k n=25 n="175 n = 150 n =25 n=75 n = 150
Case 2
1 372.7 368.0 372.3 376.3 373.8 373.7
1.25 312.5 240.2 173.0 261.6 172.7 109.2
1.50 232.6 121.3 64.4 138.2 57.2 26.2
1.75 171.0 66.1 28.9 72.9 22.6 9.3
2 127.0 39.5 154 40.7 11.0 4.8
2.25 96.8 25.7 9.3 24.8 6.5 3.2
2.50 75.9 17.8 6.2 16.1 4.5 2.6
2.75 60.9 13.0 4.5 11.3 34 2.3
3 50.0 9.9 3.5 8.4 2.9 2.1
3.25 41.9 7.9 2.8 6.6 2.5 2.1
3.50 35.6 6.4 2.3 54 2.3 2.0
3.75 30.6 5.4 2.0 4.5 2.2 2.0
4 26.7 4.6 1.8 4.0 2.1 2.0
Case 3
1 372.3 371.4 369.8 369.9 372.9 371.0
1.25 314.0 244.6 181.8 255.2 167.1 105.4
1.50 238.1 132.5 75.8 134.1 54.5 25.1
1.75 179.3 77.1 37.0 69.8 21.5 9.0
2 136.6 48.3 20.7 39.0 10.5 4.6
2.25 106.7 32.4 12.8 23.6 6.3 3.1
2.50 85.5 22.9 8.6 154 4.3 2.5
2.75 69.9 17.0 6.1 10.8 3.3 2.2
3 57.9 13.0 4.7 8.0 2.8 2.1
3.25 49.0 10.3 3.7 6.3 2.5 2.0
3.50 41.9 8.4 3.0 5.2 2.3 2.0
3.75 36.4 7.0 2.6 44 2.2 2.0
4 31.9 5.9 2.2 3.8 2.1 2.0

model information (i.e., the subspace information)
into consideration. (2) Comparing the |S;| and VS
charts, apparently the VS chart can be applied to a
wider range of situations and requires a weaker con-
dition on model matrix A. For example, the VS chart
can be applied to both cases 2 and 3, while |S;| can-
not. Further, the performances of the VS chart in
cases 2 and 3 are very similar to its performance in
case 1. In other words, the deficiency in matrix A
in cases 2 and 3 does not cause degradation in the
performance of the chart. When the matrix A is of
full rank, the performances of the |S;| and the VS
chart are quite similar, which is also expected. (3)
The performance of the control charts are getting

Vol. 40, No. 2, April 2008

better when the sample size n increases; that is, the
statistics are getting more and more sensitive to the
shift of the process variability. (4) Another advan-
tage of the VS chart is that the response of the VS
chart to different faults is quite uniform. This can-
not be readily observed in Tables 3 and 4 because the
ARLs therein are averaged over different faults. Ta-
ble 5 presents one example (case 1, n = 75) where the
five individual ARLs with respect to the five individ-
ual faults, instead of their average, are displayed for
different control charts. Clearly, the |Sy|- and |S;|-
charts are less sensitive to the occurrence of the third
fault among these five faults, while the VS chart re-
sponds uniformly to these five faults, which can be
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TABLE 5. Comparison of ARLs of the Control Charts for Each Fault (Case 1, n = 75)
ISyl |S¢] \&

k #1  #2  H#3  #4  #5  H#1 #2  #3  #4  #5  #H1 #2  #3  #4 #5
1 371.4 370.1 370.1 374.5 367.5 366.0 370.8 373.6 366.7 368.7 370.1 374.4 370.7 372.1 368.8
1.25 197.7 216.6 270.3 220.4 240.4 134.0 150.3 213.3 157.3 177.6 185.5 145.9 149.9 183.7 180.5
1.50 85.2 985 155.3 104.3 122.5 42.7 520 938 553 68.0 626 471 479 61.1 593
1.75 421 509 906 539 658 182 22.7 463 244 311 244 188 192 237 231
2 241 295 562 314 394 96 121 257 129 168 11.5 97 9.8 112 11.0
225 154 189 373 202 255 59 74 158 79 102 66 59 59 65 64
250 106 13.1 262 140 177 41 50 106 54 69 44 42 42 44 43
275 78 96 192 102 129 31 37 75 39 50 33 33 33 33 33
3 60 74 147 78 99 24 29 57 31 38 28 28 28 28 28
325 49 59 115 62 78 20 24 44 25 31 25 25 25 25 25
350 40 48 94 51 64 18 20 36 21 26 23 23 23 23 23
375 34 41 77 43 53 16 1.8 30 19 22 22 22 22 22 22
4 30 35 65 37 46 14 16 26 17 19 21 21 21 21 21

viewed as an advantage in general. This result can be
explained by the fact that the monitoring statistic of
the VS chart is actually an estimate of the summa-
tion of the variation components, o2, i = 1,...,5,
and thus each variation component has equal weight
in the statistic. These properties of VS make it the
most desirable chart for variation monitoring when a

process model is known.

Another important factor that influences the
control-chart performance is the magnitude of the
measurement noise. A signal-to-noise ratio (SNR),
defined as the ratio of 02 __ .o t0 02 (the ratio of
in-control variance of process variables and that of
measurement noise), is often used as an indicator of
the magnitude of measurement noises. A similar def-
inition is used in Ding et al. (2005). In the previous

: 2 =2 =
numerical study, because 07 _ . ..o1 = 0z = 0.1, the

SNR is 1. To study the influence of the measurement
noise on the control-chart performance, we investi-
gate values for SNR of 0.2, 1, and 5. In these studies,
the sample size n = 75 is selected.

First, the probability control limits of the |Sy|,
|Sz| (when applicable), and the charts for these SNRs
are identified through simulation as above, and these
control limits are shown in Table 6. From these con-
trol limits, it is apparent that the magnitude of mea-
surement noise significantly influences the control
limits of the |Sy|- and |S;|-charts, which indicates
that the noise level significantly impacts the distri-
bution of the monitoring statistic of these two charts.
Once again, the control limits of VS are considerably
stable across different SNR values. This suggests that
the VS chart is more robust with respect to the dis-
turbances of the measurement noise.

TABLE 6. Control Limits of Each Control Chart for Different SNR (n = 75)

|Sy| |Si‘l VS
Case SNR =02 SNR=1SNR=5SNR=0.2 SNR=1SNR=5SNR =02 SNR=1SNR=5
1 UCL 6.68 x 107 3077 1.276 506.7 14.55 3.776 13.43 7.85 6.75
LCL 3.12 x 10° 143 0.059 53.1 1.53 0.397 7.06 4.43 3.90
2 UCL 1.20 x 108 5768 1.070 — — — 12.66 7.89 6.94
LCL 5.56 x 106 268 0.050 — — — 7.82 4.48 3.81
3 UCL 158 x 108 7221 1.238 — — — 12.46 7.86 6.95
LCL 7.35 x 108 336 0.057 — — — 7.95 4.49 3.79
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TABLE 7. Comparison of ARL of Three Control Charts with Different SNR (Case 1, n = 75)

ISyl

S¢] VS

k- SNR=02 SNR=1 SNR=5 SNR=0.2 SNR=1 SNR=5 SNR=02 SNR=1 SNR=5

1 366.6 370.7 370.6 372.2
1.25 303.2 229.1 186.1 269.3
1.50 216.7 113.2 76.1 161.3
1.75 151.7 60.7 37.2 97.8
2 108.0 36.1 211 62.4
2.25 79.1 23.5 13.5 41.8
2.50 59.6 16.3 9.3 29.4
2.75 45.9 12.0 6.9 21.4
3 36.2 9.2 5.4 16.2
3.25 29.0 7.3 4.3 12.5
3.50 23.8 5.9 3.6 10.0
3.75 19.8 5.0 3.1 8.1
4 16.6 4.3 2.7 6.8

369.2 368.5 371.2 371.2 373.1
166.5 122.5 273.0 169.1 136.2
62.4 37.5 154.0 55.6 37.7
28.5 15.8 83.0 21.8 14.0
15.4 8.4 46.8 10.6 6.9
9.5 5.2 28.0 6.2 4.3
6.4 3.6 17.9 4.3 3.2
4.6 2.7 12.1 3.3 2.7
3.6 2.2 8.7 2.8 2.4
2.9 1.9 6.6 2.5 2.2
24 1.6 5.3 2.3 2.1
2.1 1.5 44 2.2 2.1
1.9 1.4 3.7 2.1 2.0

Similar to the previous numerical study, the ARLs
of the control charts under different conditions are
identified through simulations. The results for case
1 are listed in Table 7 and those for cases 2 and
3 are listed in Table 8. The results are just as ex-
pected. First, when the SNR increases, all the con-
trol charts perform better because the statistics are
less influenced by the measurement noise. Second,
the |S;| and VS charts perform significantly better
than the conventional |Sy|-chart under all SNR lev-
els. Furthermore, it seems that VS outperforms the
|S;| chart when the noise level is high. This is consis-
tent with the observation made based on the control
limits: the VS chart is more robust to measurement
noise perturbation.

Based on the above numerical study, we can see
that, in most of the studied cases, the |S;| and VS
charts outperform the |Sy |-chart. The proposed pro-
jection chart using the VS statistic is preferred over
the |S;|-chart because it has broader applicability,
performs more robustly to measurement noise per-
turbation, and responds more uniformly to different
faults in the system.

Conclusion and Future Work

This research focuses on the development of a
variance-monitoring control chart. In order to en-
hance the performance of the resulting control chart,
the idea of projection methods is applied. Two pro-

Vol. 40, No. 2, April 2008

jection charts, the |S;| and VS charts, were pre-
sented. Through a numerical study, both charts, as
expected, demonstrate better performance than the
conventional variance-monitoring chart. But the |S;|-
chart, using the same projection that is used in the
U?2-chart (Runger (1996)), suffers a setback in its ap-
plicability, and sometimes in robustness as well, be-
cause it requires a stronger condition on the model
matrix A to be computable. On the contrary, the
VS chart, using a different projection method, which
is more suitable for monitoring the variance com-
ponents, entertains the advantages of being broadly
applicable, robust to noise disturbance, and having
uniform responses to different faulty inputs. For this
reason, this VS control chart is recommended for
practical use.

Future work can be done along the following lines.
The distribution of VS is found to be asymptotic
normally distributed. However, when the sample size
is small, a systematic method for control-limits ad-
justment is needed to make sure the Type I error
probability of the developed chart is at the specified
level. Another interesting problem is the robustness
of the proposed charts with respect to model uncer-
tainty. Because these two charts heavily depend on
the process model, the errors in the model will def-
initely have an impact on the performance of these
two charts. The sensitivity of performance of these
two charts to the model error is currently under in-
vestigation. The results will be reported in the near
future.
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TABLE 8. Comparison of ARL of Two Control Charts with Different SNR (Cases 2 and 3, n = 75)

Syl \£
k SNR=02 SNR=1 SNR=5 SNR=02 SNR=1 SNR =5
Case 2
1 370.1 368.0 3714 372.5 373.8 368.9
1.25 295.4 240.2 216.7 233.3 172.7 155.6
1.50 196.8 121.3 101.2 105.0 57.2 47.7
1.75 127.2 66.1 52.6 49.1 22.6 18.4
2 85.0 39.5 30.7 25.6 11.0 9.1
2.25 58.8 25.7 19.7 14.7 6.5 5.4
2.50 42.5 17.8 13.6 9.4 4.5 3.8
2.75 31.7 13.0 10.0 6.5 34 3.1
3 244 9.9 7.7 4.9 2.9 2.6
3.25 19.3 7.9 6.1 4.0 2.5 24
3.50 15.6 6.4 5.0 3.3 2.3 2.2
3.75 12.9 54 4.2 29 2.2 2.1
4 10.8 4.6 3.7 2.7 2.1 21
Case 3
1 3714 3714 372.0 370.8 372.9 368.9
1.25 296.9 244.6 223.3 216.4 167.1 155.9
1.50 198.6 132.5 114.0 91.1 54.5 48.1
1.75 130.2 77.1 63.9 40.7 21.5 18.5
2 88.4 48.3 39.5 20.8 10.5 9.2
2.25 62.1 324 26.2 12.0 6.3 5.5
2.50 454 229 18.5 7.7 4.3 3.9
2.75 34.2 17.0 13.7 5.5 3.3 3.1
3 26.5 13.0 10.5 4.2 2.8 2.6
3.25 211 10.3 8.3 3.5 2.5 24
3.50 17.1 8.4 6.8 3.0 2.3 2.2
3.75 141 7.0 5.7 2.7 2.2 2.1
4 11.8 5.9 4.8 2.5 2.1 2.1
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Appendix
1. If Equation (11) holds, then r equals 17, 0.
If

rank (#A)l) — rank(TI(A)),

Journal of Quality Technology

must exist a vector §¢ € RY
TI(A)T¢. Thus,

such that 1,.; =

17, [[I(A)*TI(A)
= (II(A)7¢)T[I(A)]*TI(A)
= ¢TII(A) [(A)] T TI(A). (15)

Because [I[I(A)]T is the Moore—Penrose inverse of
II(A), II(A) - [II(A)]* - II(A) = II(A), so Equation
(15) can be written as

17, [A)*IL(A) = €7II(A) = 15,  (16)
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and

1541 [M(A)] Fvec(Zy) = 15,4 [[I(A)]F (II(A)o)

= 1p+1‘7~

2. If Equation (11) does not hold, then r can-
not equal 17, ;0.

To prove this statement, it is equivalent to proving
that, if 7 = 17, o for any &, condition Equation (11)
is required.

If 7 = 17,0, then 17, [II(A)]*TI(A) = 1T,.
Suppose rank(II(A)) = p, then II(A) can be de-

2 2
composed as II(A) = UAVT, where U € RY X9
and V € RPHDXP+D) gre orthogonal matrices and

A € RTXEHD g the singular-value matrix of which
the first p diagonal elements are positive and other el-
ements are zeros. Thus, [TI(A)]TII(A) = VATAVT,
80

1y [T(A) ' TI(A) = 17, VATAVT = 17,
1,,+1 = 1p+1VA A=1T,V.

Denote 17,V = (b by bp+1 ), then, be-
cause ATA is a square matrix of which the first p
diagonal elements are ones and other elements are
ZEros,

Ly V=(b by - bp1)
=17T,,VA*A
= (b b bpr1 ) ATA
=(by -~ b, 0 --- 0).

That is, bp41 = bpyz = -+ = bpy1 = 0. Hence, 17,
is in the space spanned by the first p rows of VT,
which is the same as the row space of II(A).

3. Distribution of VS

Define 17, [TI(A)]* as vec(H)T, where H is a ¢
by ¢ is a square matrix. It can be shown that H is a
symmetric matrix.

The proof is as follows:
vec(HT) = K - vec(H) = K[II(A)T]* 1,4
= [M(A) K ¥ 1544
= [T1(A)T* 1541 = vec(H),
where K € R?7*? is the commutation matrix.
Thus, VS = vec(H)Tvec(Sy) = tr(HTS,). When H

is symmetric and Sy follows the Wishart distribu-
tion, Fujikoshi (1970) showed that the distribution

Vol. 40, No. 2, April 2008

of tr(HTS,) is asymptotically normal, so the statis-
tic VS is asymptotically normally distributed.
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