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A Gaussian process method for modeling and assessing form errors is presented. The Gaussian process method decomposes a
geometric feature into three components: designed geometric form, systematic manufacturing errors and random manufacturing
errors. It models the systematic manufacturing errors as a spatial model using a Gaussian correlation function and models the
random manufacturing errors as independent identically distributed noises. Based on a handful of coordinate measurements, the
Gaussian process model reconstructs the part surface and assesses the form error better than traditional methods. The Gaussian
process method also provides an empirical distribution of the form error, allowing engineers to quantify the decision risk on part
acceptance. This method works for generic geometric features. The method is implemented on two common features: a straight and
a round feature. Simulated datasets as well as actual coordinate measuring machine data are used to demonstrate the improvement
achieved by the proposed method over the traditional approaches.

Keywords: Spatial model, Gaussian process, form tolerance, systematic manufacturing error, random manufacturing error

1. Introduction

Manufacturing operations are rarely perfect, so manufac-
tured features inevitably deviate from their nominal design.
This deviation is known as manufacturing error. Designers
assign tolerances to specify the allowable range of manu-
facturing errors. If the tolerance is used to control the errors
associated with a part dimension, e.g., the radius of a shaft,
it is known as the dimensional tolerance; if the tolerance is
used to control errors associated with geometric form, e.g.,
the straight and round geometric features shown in Fig. 1,
it is known as the geometric tolerance or form tolerance.
Geometric features tend to be more difficult to assess and
control, but their integrity is closely related to good quality
and correct functioning of a part (please refer to the exam-
ple of automotive transmission in Woo and Hsieh (1997)).

In order to ensure the geometric integrity of a manufac-
tured part, one needs to first assess the form error using
coordinate measurements, and then to compare it with the
associated tolerance requirement. For this reason, form er-
ror assessment is crucial in controlling form errors and sub-
sequently ensuring the quality and reliability of the part.
Our goal here is to study methods that can help assess the

∗Corresponding author

form error of geometric features using measurements from
a Coordinate Measuring Machine (CMM).

Form error assessment using CMM measurements has
been extensively studied. Dowling et al. (1997) surveyed
the related literature prior to 1997. This survey paper dis-
cussed two major ideas: the Minimum Zone (MZ) method
and the Orthogonal Least Squares (OLS) method. The MZ
method finds the maximum inscribing and minimum cir-
cumscribing features that bound all the CMM data and
uses the orthogonal width to estimate the form error. The
OLS method fits an ideal feature to CMM data by minimiz-
ing the sum of squared orthogonal residuals and uses the
range of the resulting orthogonal residuals to estimate the
form error. Most papers surveyed in Dowling et al. (1997)
provided algorithms to realize the two ideas for various
kinds of geometric features. Dowling et al. (1997) also dis-
cussed some variants of the OLS method, which use a dif-
ferent objective function, e.g., the least average deviation
used in Shunmugam (1987, 1991) and Namboothiri and
Shunmugam (1998), which is supposed to be more robust
in the presence of measurement outliers.

The post-1997 research output leaned towards searching
for efficient/robust algorithms for the MZ method. The
proposed methods include the characteristic point-based
method (Deng et al., 2003) and minimizing the potential
energy (Fan and Lee, 1999). Another approach is the exact
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932 Xia et al.

Fig. 1. Illustration of: (a) a straight geometric feature and its form tolerance zone; and (b) a round geometric feature and its tolerance
zone.

MZ solution of a geometric feature (e.g., sphericity), as dis-
cussed in Huang (1999a) and Chen and Liu (2000). Since
it is computationally demanding to find exact MZ solu-
tions using traditional methods such as the convex hull and
Voronoi diagram approaches, attention has been focused
on how to improve the efficiency of finding the exact MZ
(Samuel and Shunmugam, 1999, 2000; Huang, 1999b) and
on developing efficient approximation alternatives (Suen
and Chang, 1997; Weber et al., 2002; Zhu et al., 2004).
One particularly interesting approach is the zone-fitting
method proposed by Choi and Kurfess (1999a, 1999b).
The zone-fitting method attempts to verify the form er-
ror conformance by transforming all the CMM data back
to the design tolerance zone via an optimization routine.
It is computationally less demanding than geometry-based
methods and is easier to implement for different types of
features.

Dowling et al. (1997) pointed out several open issues in
form error assessment for geometric features. One impor-
tant issue is how to incorporate the systematic manufac-
turing errors into a modeling and assessment procedure.
Manufacturing errors are always stochastic in nature. In
the literature, however, the term random manufacturing er-
ror generally refers to identically independently distributed
(i.i.d.) random deviations from an ideal form, with the term
systematic manufacturing error referring to non-i.i.d. devi-
ations. Dowling et al. (1997) gave a few examples of sys-
tematic manufacturing errors. They also pointed out that
systematic manufacturing errors are a common cause of
form errors in the real world. Therefore, for a model to be
realistic it should incorporate systematic errors. This issue
has not been well addressed in the existing body of litera-
ture. By not accounting for systematic errors, the estimate
of the form error can be significantly different to its actual
value. This paper attempts to model systematic errors us-
ing a Gaussian process model (a spatial statistical model)
(Banerjee et al., 2004) in order to better estimate the form
error.

Numerous methods have been used to model system-
atic errors, including basis function methods to approx-
imate the systematic errors, e.g., a polynomial of differ-
ent orders (e.g., Yeh et al. (1994)) and B-spline functions
(e.g., Yang and Menq (1993)). Another approach is to use
Fourier analysis to distinguish between the generally low-

frequency systematic components and the high-frequency
random components (e.g., Henke et al. (1999), Cho and
Tu (2001) and Desta et al. (2003)). These models require a
large amount of CMM data in order to be able to estimate
the relatively large number of parameters involved in the
polynomial or B-spline function approaches or to allow a
clean separation of the frequencies in the Fourier analysis
approach.

Another line of approaches is to use a spatial statisti-
cal model (typically, a Gaussian process model) to repre-
sent systematic manufacturing errors (Dowling et al. 1993;
Yang and Jackman, 2000). The non-parametric nature of
Gaussian processes offers an improved flexibility in learning
general types of systematic errors over the basis-function fit-
ting method and the Fourier analysis method. This feature
makes the spatial statistical model attractive, since people
generally do not know the function form or the type of sys-
tematic manufacturing error in an actual geometric feature
in advance. However, little research on the spatial-model-
based approach has been performed and the literature on
this topic is sparse. In Dowling et al. (1993) and Yang and
Jackman (2000), the spatial models require one CMM coor-
dinate measurement to be an explicit function of the other
two coordinates. Thus, these models cannot be applied to
generic geometric features, such as a circle, where one co-
ordinate cannot be expressed as an explicit function of the
other two.

Our paper continues this line of research and improves
the modeling capability and form error assessment. We first
present a Gaussian Process (GP) model that does not re-
quire one coordinate to be expressed as an explicit function
of other coordinates. We also model both systematic errors
(using a spatially correlated term) and random errors (using
a spatially uncorrelated term). In contrast, both Dowling
et al. (1993) and Yang and Jackman (2000) did not include
spatially uncorrelated errors. This might not be reasonable
if the considered manufacturing process produces both low-
frequency systematic errors (because of machine tool wear)
and high-frequency random errors (because of machine
vibration). In addition, the GP model produces a distribu-
tion of the geometric surface, which we subsequently use
to estimate an empirical distribution of the form error. The
empirical distribution reflects the estimation uncertainty
(resulting from the sampling and modeling uncertainty)
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Gaussian process method for form error assessment 933

and can help quantify the risk of a part not being accepted.
Dowling et al. (1993) and Yang and Jackman (2000) used
one predicted surface to estimate the form error and to de-
cide on accepting or rejecting a part. They did not provide
uncertainty information about the form error assessment.

This paper is organized as follows. Section 2 presents the
overall structure of the proposed GP model. Section 3 illus-
trates the procedure to determine the geometric form com-
ponent in the GP model for a generic feature. Section 4 dis-
cusses the GP model formulation and how to estimate the
form error. Section 5 compares the proposed GP method
with existing methods on two specific geometric features,
using both simulated data and real CMM measurements.
Section 6 concludes the paper.

2. GP model for form error assessment

When magnified, the surface of a manufactured part looks
just like a geographic terrain (please see Stout et al. (1990)
for the topography of a variety of machined surfaces). This
analogy motivates applying a spatial statistical method to
represent a manufactured geometric feature. A CMM mea-
surement of an actual geometric feature can be decomposed
into three portions (as shown in Fig. 2): a global trend por-
tion, which follows the shape of the feature as defined by
its designed form; a spatially correlated portion (when the
systematic error exists, the measurements in close proximity
on a surface show strong correlation); and a spatially un-
correlated portion, i.e., the random error portion. As such,
we model the CMM measurements as arising from system-
atic errors and random errors added to an ideal geometric
form.

Before writing down the GP model for a part geometry,
we need to specify the inputs and the response variable for
the model. Recall that the previous GP models require that
one coordinate must be expressed in terms of the other co-
ordinates. This is because those GP models used one or two
coordinates, e.g., x and/or y, as inputs, and the remaining
coordinate, e.g., z, as the response. In order to enable our
GP model to be applicable to generic geometric features,
we redefine the inputs and the response variables.

Let us consider the measuring mechanism of a computer-
controlled CMM. The machine takes the nominal position
to be measured, ni, from an operator (via a computer in-

terface) or a database storing the predetermined position
information. Then it calculates the approach direction vi
for the measuring probe to travel and directs the probe to
retrieve the coordinates, denoted by ai, of a point on the ac-
tual geometric feature. This mechanism indicates that the
input is ni and the response is ai. Essentially, we map all
the points on an ideal geometric form to the actual man-
ufactured feature. Our GP model is set up to capture the
mapping between the two surfaces. The advantage is that
when we use the nominal position ni as the input variable,
it works for any type of geometric feature and thus avoids
the restriction required by the previous GP models.

The new response ai is typically a vector, for example,
for a three dimensional feature, ai = [xi, yi, zi]. A multivari-
ate GP model is obviously more difficult to handle than a
univariate model. Thus, we want to further reduce the mul-
tivariate response into a single response variable. Here, we
adopt the strategy used by Hulting (1997), who suggested
projecting the value of ai onto the probe approach direc-
tion vi (usually the norm direction to the local surface) and
using the resulting value as the response. As such, our GP
model can be written as:

zi ≡ aT
i vi = f(ni,β)Tvi + η(ni) + ε(ni), (1)

where zi is the cth CMM observation projected onto the vi
direction, f(ni,β) corresponds to the ideal geometric form
that engineers design, η(ni) is the systematic manufacturing
error, modeled by a spatially correlated term, and ε(ni) is
the random error, modeled by the spatially uncorrelated
term. Generally, the random error includes both random
manufacturing errors and measurement noises. For the time
being, we assume that the measurement errors are negligible
and then attribute the second error term ε(ni) entirely to
the random manufacturing error. We will discuss what this
assumption implies later.

The function form of f(·, ·) can be decided by the shape
of a geometric feature, known from the part’s design. The
value of f(ni, β) incorporates the actual position of the part,
which may undergo a rigid-body motion during the fixtur-
ing process, and the changes in dimensions of the part. In
other words, β includes two factors: β = (θ, φ), where θ
includes the parameters characterizing the rigid-body mo-
tion and φ includes the dimension parameters (e.g., the
radius of a round part). Therefore, the f(ni, β) can incor-
porate dimensional errors, for instance, φ can denote the

Fig. 2. Decomposition of CMM measurements of a manufactured straight geometric feature.
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934 Xia et al.

radius value of an actual part, which may be different from
the design value. However, f(ni, β) still represents the ideal
geometric form because a deviation in the dimension pa-
rameter φ does not affect the form error. In other words, a
smaller circle could still be a perfect circle.

In model (1), the random error ε(·) is modeled as i.i.d.
N(0, σ 2

ε ). The systematic error η(·) is assumed to be a GP
independent of ε(·), and of zero-mean and covariance func-
tion cov(η(ni), η(nj)) = σ 2

η R(υ, ni − nj), where R(υ, ·) is the
correlation function with hyper-parameter υ. The rationale
behind this is that the systematic departures from the ideal
geometric shape can be regarded as a sample path of a (suit-
ably chosen) GP η(·). The choice of correlation function
R(υ, ·) reflects the characteristics of the systematic manu-
facturing errors. When making the choice for R(υ, ·), we
also need to consider the scarcity of the data, that is, when
a CMM is used to measure a part, the sample size is typi-
cally not large. Hence, it would not serve us well if our GP
model includes too many parameters to be estimated.

For this reason, we adopt an isotropic Gaussian corre-
lation function, which is widely used in spatial statistics, as
follows:

R(υ, ni − nj) = exp{−(υ||ni − nj||2)2}, (2)

where || · ||2 denotes Euclidean distance and υ is the scale
parameter controlling how quickly the correlation decays as
the between-point distance increases. The isotropic Gaus-
sian correlation function has only one unknown parameter
υ. Past experience indicates that this correlation function
is able to model various spatial features (Zimmerman and
Harville, 1991; Gaudard et al., 1999). Our experience also
indicates that the Gaussian correlation function appears
reasonable for a number of manufactured geometric fea-
tures. Of course, when the data suggest that for some par-
ticular part/feature the spatial correlations are significantly
different from Equation (2), this isotropic assumption can
be relaxed by including different parameters to control the
spatial correlation scale for different directions.

There have been some research reports on modeling more
general variance–covariance structures of spatially corre-
lated measurements. For example, Chang and Ho (2001)
proposed a correlation model for lattice-structured CMM
measurements on a part surface. They assumed that the
overall correlation is the product of the row-wise and
column-wise correlations and that the CMM measurements
in a row or column follow an autoregressive moving aver-
age process. This line of research is a valuable contribution
to the modeling of systematic manufacturing errors, since
a correct variance–covariance structure is essential to a GP
model. Under the circumstance that a Gaussian correlation
function does not adequately reflect the correlation in the
data, the correlation structure proposed in Chang and Ho
(2001) could be a good alternative.

The parameters for the GP model areϕ ≡ {β, σ 2
η , σ 2

ε , υ}.
In practice, engineers use a CMM to measure from one part
m data points {ni, zi}i=1,...,m, and use them to estimate the
unknown parameters ϕ. Plugging the estimated values for
the parameters ϕ into the GP model, engineers can use it to
predict the actual coordinate at a not yet measured location
and to reconstruct the entire geometric feature. Finally, en-
gineers can assess the form error of the geometric feature
using the reconstructed geometric feature. The overall pro-
cedure is shown in Fig. 3, where GP( · , · ) denotes a Gaus-
sian process with the specified mean and covariance matrix.

3. Determination of the ideal geometric form

In order to fully specify the GP model in Equation (1), this
section presents a procedure to determine the ideal geo-
metric form f(ni,β)Tvi for generic geometric features. The
procedure follows an idea first proposed by Hulting (1997)
when discussing a manufacturing part model; we repeat
some of Hulting’s original description here in order to make
this paper a self-contained piece and to provide a basis for
latter discussions.

Fig. 3. Procedure of the GP modeling and form error assessment.
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Gaussian process method for form error assessment 935

Consider a process in which a CMM measures a manu-
factured part with a general geometric shape, represented
by M(θ,φ), the same notation is used by Hulting, where
θ and φ follow the same meaning as we explained in Sec-
tion 2. Denote the nominal design values for the dimension
parameters by φ∗. As such, M(0, φ∗) represents the de-
signed feature that has the nominated sizes and is perfectly
aligned with the CMM reference coordinate. M(θ,φ) has
the same geometry as M(0, φ∗) but differs from it in terms
of a rigid-body motion and some dimension change. There-
fore, M(θ, φ) represents the ideal form, the same as f(·, ·).
More specifically, f(ni, β) is a point on M(θ, φ) (recall that
β = (θ, φ)). As we mentioned before, for a given part, the
function form of M(·,·) or that of f(·, ·) is known from the
computer-aided design model.

During a coordinate measuring process, M(θ,φ) only
slightly deviates from M(0, φ∗) in both location and di-
mension size. The dimension aspect is easy to understand
since a manufacturing process supposedly produces the re-
quired dimensions with reasonable accuracy. The location
aspect can be understood as follows. A CMM can set up its
reference coordinate through soft fixturing (Hulting 1995),
i.e., it first gets a few reference points on the part to esti-
mate where the part is located and then adapts its reference
coordinate to the estimated location.

Determining f(ni,β) requires solving some geometry
equation for a given point ni. When a CMM is directed to
measure a point ni, it will automatically calculate its path,
the approach direction vi, based on its knowledge of the
nominal surface. (vi is usually the norm direction to the
nominal surface M(0, φ∗) since the true shape and location
are never known.) As it moves along the path the probe will
touch the actual manufactured surface and return the mea-
surement value ai. Geometrically, f(ni,β) is an intersection
point of the geometric shape M(θ, φ) and the line passing
through ni and ni + vi. Therefore, both ai and f(ni,β) lie on
the line through ni and ni + vi. If projecting those values
along vi, one will end up with the univariate GP model in
Equation (1).

The above discussion outlines how to decide f(ni, β)Tvi.
However, no general analytical formula can be devised for
an arbitrary geometry; engineers will have to go through the
following procedure (please refer to Fig. 4 for illustrations).

Step 1. Decide the approach direction vi according to
M(0, φ∗) and ni, and decide the line function pass-
ing through ni and ni + vi.

Step 2. Solve for the intersection point(s) between the line
function and M(θ,φ).

Step 3. If there is more than one intersection point, select
the one that corresponds to the first intersection on
M(θ,φ) when the CMM probe moves.

Step 4. Then, f(ni,β)Tvi is simply the vector inner product
of the coordinates of the intersection point f(ni,β)
and vi.

The detailed procedures of deciding the ideal geometric
form for two specific geometric features, straight and round
features, are given in the Appendix.

4. Predictive distribution and probabilistic form error
assessment procedure

4.1. Maximum likelihood estimate for parameter estimation

Recall that the parameters in GP model (1) are ϕ ≡
{β, σ 2

η , σ 2
ε , υ} and the training dataset is {ni, zi}i=1,...,m. We

arrange all the zi values in zo, i.e., zo = (zi)i=1,...,m, where the
subscript “o” implies the observed CMM measurements.
Given the Gaussian process assumption, the distribution
of zo conditioned on ϕ = {β, σ 2

η , σ 2
ε , υ} is

(zo|ϕ) ∼ N(go(β), Wo), (3)

where go(β) is an m × 1 vector, defined such that its ith
element is gi(β) = f(ni,β)Tvi, and Wo = σ 2

η Ro + σ 2
ε I and

Ro is an m × m matrix, defined such that its (i,j)th elements
are R(υ, ni − nj) in Equation (2).

We employ a Maximum Likelihood Estimator (MLE) to
estimate the parameters in the GP model. From Equation
(3), the log-likelihood function for zo can be written as

l
(
β, σ 2

η , σ 2
ε , υ

)
= −(

log
(

det
(
σ 2

η Ro + σ 2
ε I

))
+ (zo − go(β))T(

σ 2
η Ro + σ 2

ε I
)−1

(zo − go(β))
+ m log(2π ))/2. (4)

An MLE of ϕ = {β, σ 2
η , σ 2

ε , υ} is obtained by maximiz-
ing l(β, σ 2

η , σ 2
ε , υ), i.e., ϕMLE = arg maxφ l(β, σ 2

η , σ 2
ε , υ).

in
manufactured  
surface

y

y

iv

ai

in

(a) (b) 

)0,0(x x
)0,0(

iv
CMM probe

ai

δ arc tan(ψ)

*),( φ0M
),( φθM

(x0, y0)
τi

),(nf i

),(nf i

Fig. 4. Demonstrations of deciding the ideal geometric form: (a) for a straight geometric feature; and (b) for a round geometric feature.
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936 Xia et al.

We solve it using a gradient-based optimization routine in
MATLAB (other similar optimizers can fulfill the task as
well). Two more actions are taken to improve the optimiza-
tion efficiency. One is that we substitute the three param-
eters (σ 2

η , σ 2
ε , υ) with (exp(α1), exp(α2), exp(α3)). This is

because the variance parameters σ 2
η , σ 2

ε and the correlation
hyper-parameter υ can only take positive values and this
makes it a constrained optimization. After the transforma-
tion, we deal with an unconstrained optimization, which is
generally easier to solve. For an unconstrained optimiza-
tion, we use the MATLAB function fminunc.

For a straight geometric feature, its GP model has a lin-
ear mean structure. Thus, we can use a REstricted Max-
imum Likelihood (REML) estimator, which is supposed
to give less biased estimates of covariance parameters (i.e.,
υ, σ 2

η and σ 2
ε in this paper) than MLE. Cressie and Lahiri

(1996) proved the asymptotic property of REML estima-
tion for the GP covariance parameters. Wolfinger et al.
(1994) gave the details for implementing a RMLE for a
linear GP model. For a roundness feature, model (1) has
a non-linear mean structure so REML estimation is not
available. Therefore, we use a MLE for round features.

4.2. Predictive distribution of geometric surface
and form error assessment

For the purpose of form error assessment, we are ultimately
interested in predicting the behavior of the geometric fea-
ture based on the observed CMM measurements. We ap-
proximate the continuous surface of a geometric feature by
a dense set of points on it. Denote by {pi}i=1:N the dense set
of nominal points on a geometric feature, which are deemed
representative of the feature. The prediction of the geome-
try at pi is z(pi), and we arrange all N predictions in vector
zp, i.e., zp = (z(pi))i=1:N , where the subscript “p” implies a
prediction. Given the Gaussian process assumption, zp and
zo follow a joint multivariate normal distribution:

(zp, zo|ϕ) ∼ N
((

gp(β)
go(β)

)
,

(
Wp WT

po

Wpo Wo

))
, (5)

where go(β) and Wo are defined in Equation (3), gp(β) is
an N × 1 vector, defined such that its ith element is gi(β) =
f(pi,β)Tvi, Wpo is the covariance matrix between zo and zp,
and Wpo = σ 2

η Rpo; Wp is the covariance matrix of zp and
Wp = σ2

ηRp + σ2
εI. The correlation matrix Rpo is an N ×

m matrix, and its (i,j)th elements are R(υ, pi − nj); Rp is
an N × N correlation matrix, and its (i,j)th elements are
R(υ, pi − pj).

According to the conditional distribution theorem for a
multivariate normal distribution (Hardle and Simar, 2003,
p .157), we can have that:

(zp|zo,ϕ) ∼ N(gp(β) + WpoW−1
o (zo − go(β)),

Wp − WpoW−1
o WT

po

)
. (6)

Equation (6) provides the predictive distribution of the dis-
cretized geometric feature based on the observed CMM

measurements zo. The negative amount WpoW−1
o WT

po in the
variance term comes from the observed measurements zo
and their correlations with the predicted locations. Basi-
cally, the information in the CMM observations helps re-
duce the uncertainty when predicting the geometric fea-
ture. The more CMM data or the stronger the correlation
between {pi}i=1:N and {ni}i=1:m is, the less uncertainty re-
mains in the predictive distribution of the geometric feature.
In practice, the parameter ϕ = {β, σ 2

η , σ 2
ε , υ} is unknown

and will be estimated from CMM observations. A common
treatment is to plug in the MLE ϕ̂ into distribution (6).
The predictive distribution with the plugged-in parameter
estimates looks like:

(ẑp|zo, ϕ̂) ∼ N(gp(β̂) + ŴpoŴ−1
o (zo − go(β̂)),

Ŵp − ŴpoŴ−1
o ŴT

po

)
, (7)

where Ŵo = σ̂ 2
η R̂o + σ̂ 2

ε I, Ŵp = σ̂ 2
η R̂p + σ̂ 2

ε I, Ŵpo = σ̂ 2
η R̂po

+ σ̂ 2
ε I and R̂o, R̂p, R̂po are the correlation matrix with

hyper-parameter value of υ̂ plugged in.
We can reconstruct the geometric feature by drawing a

sample from the multivariate distribution specified in Equa-
tion (7), which is a realization of the discretized geomet-
ric feature. The density of prediction locations is suppos-
edly much higher than the actual CMM measurements, i.e.,
N � m, and the CMM measuring sites {ni}i=1:m are usually
a subset of the prediction sites {pi}i=1:N . That allows the re-
constructed surface to provide a closer representation of the
geometric feature than the handful of CMM observations
scattered over the surface. Once a surface is predicted (or
reconstructed), the form error of the feature, denoted by h,
is estimated through finding the maximum inscribing and
minimum circumscribing geometry that bounds all points
on the predicted surface (known as the Taylor’s principle
(Dowling et al., 1997)).

To account for the uncertainty in both the data and
model, we need to repeat the above procedure T times. T
needs to be a big number to ensure a good approximation,
and we use T = 10 000 for the study in Section 5. Figure 5(a)
shows a 95% predictive band of the predicted surface and
the average predicted surface, together with the measured
and true values of the surface (this is a simulated case so we
know the true surface).

Finally, we have T estimates of the form error, ĥ1, ĥ2,
. . . , ĥT , each of which is calculated by applying Taylor’s
principle to an individual predicted surface. Using the T
estimates of the form error, we can produce an empirical
distribution of h, shown as the histogram in Fig. 5(b). This
histogram is an empirical predictive distribution of the form
error, given the CMM measurements zo and the GP model.
When a large sample is used, the distribution of h is centered
around the actual form error. Thus, it makes sense to use
the median (denoted as ĥ(0.5)) of the empirical distribution
of h as the final estimate of the form error.
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(a)
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Fig. 5. (a) Predictive distribution for a round geometric feature and (b) the associated form error estimate histogram.

In fact, the predictive distribution of h contains richer in-
formation than a point estimate of the form error. It allows
engineers to quantify the decision risk on part acceptance.
In practice when the sample size is limited, one may want
to be more conservative in accepting the part. For exam-
ple, instead of using the median ĥ(0.5), one could use the
95th percentile of the empirical distribution, ĥ(0.95), to be
compared with a predetermined form tolerance. If ĥ(0.95) is
smaller than the predetermined form tolerance, one is more
than 95% confident that the part form error is less than the
form tolerance. Which exact percentile to use can be ad-
justed based on the functionality requirements and the cost
of making a wrong decision.

5. Comparison with traditional methods

This section compares the GP method for form error es-
timate with the two traditional methods: the MZ method
and the OLS method. We choose these two methods as the
reference for comparison primarily because they are still
the most popular ones in the literature and are widely used
in form error assessment software provided by CMM man-
ufacturers.

In this section, we focus on comparing the unbiasness of
the form error estimates from the three different methods.
We calculate the ratios of the estimated form errors over the
true form errors. The true form errors are known for the

simulation studies. If the calculated ratio is closer to one,
the estimate is less biased. We do not compare the proba-
bilistic decision-making procedure allowed by the predic-
tive distribution of h, because the MZ and OLS methods
do not take the uncertainty information into account in
their decision-making procedure. However, we believe that
it is an advantage of the GP method that it provides distri-
bution information that can quantify the decision risk for
industrial practices.

We do not compare the speed of these three methods,
because the GP method uses a large number of replications
to get the predictive distribution of the form error, while the
other two do not. The OLS method only calculates a point
estimate and is faster. Finding the exact MZ solution could
be computationally demanding, but many fast approxima-
tion algorithms are available. In our study here, we actually
use the minimax estimate to approximate the MZ. The ac-
tual computation time of the GP method ranges from tens
of seconds to several minutes, which should be acceptable
to practitioners.

Section 5.1 performs the comparison using a set of simu-
lated data. We simulate a total of six different manufactur-
ing scenarios for two geometric features: a straight feature
and a round feature, with three scenarios for each. For each
scenario, different sizes of samples, ranging from eight to
80 for the straight and round features, are used to estimate
the form error. The sample size, denoted by m, refers to the
number of the measurements taken from different locations
on a part.
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938 Xia et al.

In Section 5.2, we use a CMM to obtain actual coordinate
measurements from two parts with a straight feature and a
round feature, respectively. We apply the GP method, the
MZ method and the OLS method to estimate form error
and other parameters for each of the above cases.

5.1. Comparison using simulated data

We follow the following procedures to implement the simu-
lation study for each manufacturing scenario in Section 5.1.
(A similar procedure was used by Dowling et al. (1995) to
compare the performance of the MZ method and the OLS
method.)

Step 1. Simulate one single geometric feature.
Step 2. Generate a dense enough set of measurements, a to-

tal of N points on the selected geometric feature so
that the measurements closely represent the actual
geometry. In the simulation, we take a measure-
ment every 0.5 mm. Our experience indicates that
this density is considered dense enough by practi-
tioners. Thus, N = L /0.5, where L is the length of
a straight feature or the circumference of a round
feature. Determine the form error h∗ from the N
points using the MZ method and treat it as the
“true” form error.

Step 3. Select m data points from the set of dense mea-
surements and treat them as the CMM measure-
ments of the geometric feature. The m locations and
their corresponding observations are chosen using
a maximin distance Latin hypercube sampling ap-
proach; this method makes sure that the m samples
evenly spread over the feature space. For more de-
tails on the maximin distance Latin hypercube sam-
pling procedure, please refer to Santner et al. (2003,
p. 150).

Step 4. For m = 8, 10, 15, 20, 30, 40 and 80, determine the
form error estimate and denote by ĥOLS(m) when
using the OLS method, by ĥMZ(m) when using the
MZ method, and by ĥGP(m) when using the GP
method (which is the ĥ(0.5) as defined in Section 4).

Step 5. Calculate the estimate ratios, ĥOLS(m)/h∗,
ĥMZ(m)/h∗ and ĥGP(m)/h∗. A ratio closer to one
indicates a less biased estimate.

Step 6. Repeat Steps (3) to (5) 50 times for each m and gen-
erate a box-whisker plot of the form error estimate.

5.1.1. Straight feature
In this subsection, we simulate the straight feature. Manu-
facturing errors of a straight feature usually include surface
deflection, waviness and random error. Depending on what
manufacturing process is used to produce the feature, one
of the errors could dominate in the measurements. For in-
stance, when using a lathe (a turning process) to machine the
feature, surface deflection could be more prominent than
other types of errors because of the force exerted perpen-
dicularly to the surface. Dowling et al. (1995) suggested a
generating function for simulating different scenarios of the
form of

y = δ + ψx − 64
L6

R(x3(L − x)2) + A sin
(

2π

λ
x
)

+ ε, (8)

where the first two terms δ + ψx represent the rigid-body
motion during a fixturing process, the third term represents
the surface deflection, the fourth term is a wave pattern,
and the last term is the i.i.d. random error, assumed to be
N(0, σ 2

ε ). Including an i.i.d. pure random error sometimes
creates outliers that jump out of the geometric surface. The
existence of such outliers creates an abrupt discontinuity
in the geometry and may not accurately reflect the actual
surface. To alleviate the discontinuity problem, we use a
three-point moving average window to smooth the i.i.d.
random error. The meanings of the other parameters in
Equation (8) are as follows: L is the length of the straight
feature; A is the sinewave amplitude; λ is the wavelength; R
is the deflection range. We simulate a feature of length L =
200 mm. Table 1 shows the three simulated manufacturing
scenarios, corresponding to a milling, turning and grinding
process, respectively. The parameters in Table 1 are deter-
mined from the typical process capability associated with
each of the manufacturing processes.

5.1.2. Round feature
This paper adopts the round feature generator from Desta
et al. (2003):

x = x0 + (r + A1 sin(4τ ) + A2 cos(3τ ) + A3 sin(7τ )
+ A4 cos(10τ ) + ε) cos τ,

y = y0 + (r + A1 sin(4τ ) + A2 cos(3τ ) + A3 sin(7τ )
+A4 cos(10τ ) + ε) sin τ,

(9)

where x0 and y0 are the origin of the round feature, r is
the radius, τ is the polar angle, A1 sin(4τ ) − A2 cos(3τ ) +
A3 sin(7τ ) + A4 cos(10τ ) represents the systematic error
and the other notations are the same as defined be-
fore. Table 2 summarizes three different manufacturing
scenarios.

Table 1. Manufacturing scenarios for a straight geometric feature.

Process characteristics φ(mm) ψ A(mm) λ(mm) R(mm) σε(mm)

Case I Sinewave dominates (face milling) 0.04 0.02 0.03 20 0.015 0.017
Case II Deflection dominates (turning) 0.05 0.01 0.005 10 0.025 0.009
Case III Random errors dominate (grinding) 0.03 −0.01 0 N/A 0 0.003
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Table 2. Manufacturing scenarios for a round geometric feature (unit: mm).

Process characteristics x0 y0 A1 A2 A3 A4 r σε

Case I Three-lobed systematic errors dominate and radius
change (turning)

0.2 0.02 N/A 0.03 N/A N/A 25.03 0.01

Case II General systematic errors dominate (turning) 0.03 0.2 0.002 −0.015 −0.01 −0.008 25 0.012
Case III Random errors dominate (turning) 0.01 0.15 N/A N/A N/A 0 25 0.017

5.1.3. Results and discussions
Figures 6 to 8 show the results of form error estimation for
the straight feature, and Figs. 9 to 11 shows the estimation
results for the round feature. In each box-whisker plot, the
locations of the upper limit, the 75% quantile, the median,
the 25% quantile and the lower limit are shown. The crosses
outside of the upper and lower limits are usually considered
as “outliers”.

The dashed line indicates that the estimate of the form
error is the same as the true form error (i.e., the estimated
ratio is equal to one). In other words, the best method is the
one that consistently produces box-whisker plots closest to
the dashed line.

From Figs. 6 to 11, we observe the following.

1. The proposed GP method performs significantly better
than the OLS and MZ methods when systematic manu-
facturing errors exist. When the sample size grows larger,
the GP method tends to be unbiased. This appears to
confirm what we observed in the empirical distribution
of form error estimate in Fig. 5(b). By comparison, the
MZ and OLS methods tend to underestimate the form
error, even when using a relatively large sample size (for
example, m = 40 or 80). Dowling et al. (1995) also men-
tioned the underestimation of the MZ and OLS meth-
ods for straight features. We believe that our form error
estimation/assessment benefits from the GP method’s
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Fig. 6. Form error estimate comparison for a straight feature; case I.
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Fig. 7. Form error estimate comparison for a straight feature: case II.
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Fig. 8. Form error estimate comparison for a straight feature: case III.
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Fig. 9. Form error estimation comparison for a round feature: case I.

8 10 15 20 30 40 80
0.4

0.6

0.8

1

1.2

1.4

es
tim

at
e/

tr
ue

Gaussian Process Form Error Estimate Median

8 10 15 20 30 40 80

0.4

0.6

0.8

1

es
tim

at
e/

tr
ue

Orthogonal Least Square Form Error Estimate

8 10 15 20 30 40 80
0.2

0.4

0.6

0.8

1

es
tim

at
e/

tr
ue

Minimum Zone Form Error Estimate

sample size

Fig. 10. Form error estimation comparison for a round feature: case II.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
6
:
3
6
 
1
5
 
A
u
g
u
s
t
 
2
0
0
8



942 Xia et al.

8 10 15 20 30 40 80

0.4

0.6

0.8

1

1.2

1.4

es
tim

at
e/

tr
ue

Gaussian Process Form Error Estimate Median

8 10 15 20 30 40 80
0.2

0.4

0.6

0.8

1

es
tim

at
e/

tr
ue

Orthogonal Least Square Form Error Estimate

8 10 15 20 30 40 80
0.2

0.4

0.6

0.8

1

es
tim

at
e/

tr
ue

Minimum Zone Form Error Estimate

sample size

Fig. 11. Form error estimation comparison for a round feature: case III.

ability to capture the systematic manufacturing errors
(please refer to Fig. 5(a), where the predicted surface for
a round feature is shown), while the other two methods
treat the handful of CMM measurements as a complete
representation of the entire feature.

2. In the cases when only random manufacturing errors
exist (i.e., Figs. 8 and 11), the GP method performs sim-
ilarly to the OLS method and slightly better than the
MZ method. This is expected since the OLS method as-
sumes that the error term consists of i.i.d. random noises.
When the systematic error term vanishes, a GP model is
essentially the same as an OLS model.

3. The GP method suffers from not having sufficient infor-
mation when the CMM sample is small as the other two

methods do, but to a less degree. Insufficient information
from a small sample generally leads to wider predictive
distributions, meaning more uncertainty.

4. In our simulations, we decide the smallest sample size
according to the number of unknown parameters used
in the GP model (which is five for the straight and six for
the round features). We start with a sample size roughly
1.5 times that of the number of unknown parameters.
The literature is uncertain as to how many samples are
required to produce a good prediction. Bernardo et al.
(1992) suggested using three observations per parameter
as a rule of thumb for good model performance. That
translates to a sample size of 15 and 18, respectively,
for the two features. From the simulation results, we

Fig. 12. Sketches of two real parts; (a) a straight feature; and (b) a round feature.
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Fig. 13. Form error estimate comparison using real CMM measurements for the straight feature.

observed that the GP method produces reasonably good
estimate of form error when the sample size is larger than
15 for straight or larger than 20 for round features. One
may argue that a sample of size 15 may be much more
than what is typically used in practice; Dowling et al.
(1997) mentioned that people use three to five points
for a line feature and four to eight points for a circle.
However, citing the work by Weckenmann et al. (1991),
Dowling et al. (1997) also pointed out that the small
sample size practice is not sufficient, and mentioned
that a sample of ten to 20 is instead needed for sufficient
precision in estimating the errors and parameters. What
our simulation suggests appears consistent with the
recommendation in Weckenmann et al. (1991).

5. In the cases where the number of measurements is
fewer than 1.5 times that of the number of unknown
parameters, we feel that the GP method may not
produce accurate enough predictions so the alternative
method should be used.

5.2. Form error estimate using actual CMM measurements

We used a CMM to obtain coordinate measurements from
two parts. A 250 mm long straight block (Fig. 12 (a)) was
manufactured by a face milling process and a cylinder with
a 38.1 mm radius (Fig. 12 (b)) was manufactured by a rough
turning process. We took dense CMM measurements (i.e.,
one measurement every 0.5 mm) for both the straight and
the round features. In total we took 500 points from the
straight feature, and 480 points from the circle. We applied
Taylor’s principle to the dense CMM measurements, and
treated the calculated form error as the true form error h∗.

The form error for the straight feature was h∗ = 0.052 mm,
and for the round feature h∗ = 0.43 mm.

Then, we took a smaller, more practical number, m, of
CMM observations for each part to estimate the form er-
ror. Again the three methods, GP, OLS and MZ were used.
The sample sizes we used are 15, 20 and 30. Figures 13
and 14 summarize the comparison results for the straight
feature and round feature, respectively. Consistent with the
previous simulation results, the GP-method-based form er-
ror estimates the median much better than the other two
estimates and appears to be less biased than the OLS and
MZ methods.

In addition, we estimated the dimension parameter (only
for the round part), and the variance of the random errors.
Table 3 shows the estimation results and gives the mean val-
ues and the associated standard deviations (in parentheses).

For round features, manufacturing engineers are inter-
ested in estimating radius r̂ and using it in dimensional
quality control. For all the sample sizes, estimates from the
GP method and from the OLS method are very close in
terms of both the average estimates and the standard devi-
ations. The MZ estimate of r̂ deviates more noticeably from
the OLS and GP estimates and the standard deviation of
the MZ estimate is about three times larger than those of
the OLS and GP estimates. This suggests that using the
MZ method for parameter estimation might not be a good
practice.

The estimated standard deviation of the random error σ̂ε

can be obtained by the GP and OLS methods but not by the
MZ method. In fact, every decision in a MZ procedure is
deterministic. One may notice that the GP method yields a
smaller estimate of σ̂ε than the OLS method. This is because
the OLS method treats all the errors (η and ε) as the random
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Fig. 14. Form error estimate comparison using real CMM measurements for the round feature.
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Table 3. Parameter estimate comparison.

Straight feature Round feature

Sample size σ̂ OLS
ε (µm) σ̂ GP

ε (µm) σ̂ OLS
ε (µm) σ̂ GP

ε (µm) r̂OLS(mm) r̂MZ(mm) r̂GP(mm)

15 15 (0.65) 3.4 (1.1) 93 (18) 21 (12) 38.10 (1.1 × 10−2) 38.07 (3.3 × 10−2) 38.09 (1.2 × 10−2)

20 14 (0.61) 3.4 (1.2) 87 (16) 22 (11) 38.10 (1.3 × 10−2) 38.06 (3.4 × 10−2) 38.10 (1.3 × 10−2)

30 14 (0.48) 3.3 (1.2) 89 (7.4) 18 (9.8) 38.10 (7.1 × 10−3) 38.04 (2.6 × 10−2) 38.10 (6.1 × 10−3)

error and thus may inflate the estimate of σ̂ε. The inflation
in estimating σ̂ε will cause a loss of power in subsequent
inferences (Kurfess et al., 1996).

Other parameters such as δ̂, ψ̂ , x̂0 and ŷ0 can be estimated
as well. These parameters are related to the rigid-body mo-
tion of the part during a fixturing process. They are not di-
rectly involved in the form error assessment but only work
as a compensation of imperfect alignment. These values are
indeed small because of the soft-fixturing procedure used
in a CMM measuring process. To save space, we do not list
them here.

6. Concluding remarks

This paper presents a GP method for form error assessment.
Our comparisons show the GP method generally gives a less
biased estimate of the form error than the traditional MZ
and OLS methods. The simulation results indicate that a
sample of 15 or more CMM observations should be used
with our GP method, at least for the two geometric features
under consideration. This result is consistent with recom-
mendations from previous studies (e.g., Weckenmann et al.
(1991)). The GP method produces a predictive distribution
of the form error estimate, allowing a decision maker to take
into account the uncertainty from the model and sampling.

One more note is on the random error term ε in the
model. Dowling et al. (1997) mentioned that the rule of
thumb in practice is that one may ignore measurement er-
rors if the tolerance size is ten times larger than them. The
CMM we used is a Sheffield Discovery II D-8. Its calibrated
volumetric accuracy and repeatability are 4.7 and 1.66 µm
in range, respectively, suggesting the combined uncertainty
is around 6 µm. Compared with the form errors of 0.052
mm for straight and 0.43 mm for round features the above
general rule certainly holds for round features and approxi-
mately holds for straight features (about 8 times). Thus, our
treatment of attributing all the random error to the man-
ufacturing process is reasonable for the products we ana-
lyzed. However, some high-precision manufacturing pro-
cesses, such as grinding, lapping and honing, have a typical
tolerance limit of a few microns (for example, ±8 µm for
grinding). Then, the above rule will not be satisfied. There-
fore, in general engineers need to consider, and eventually to
eliminate, the influence of the measurement error to reduce
the false positives in quality control. We believe that the

current GP model can be extended to include the measure-
ment error, but it requires repeated measurements to enable
differentiating measurement errors from random manufac-
turing errors.
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Appendix

We here illustrate how to implement the procedures to
determine the ideal geometric form (as in Section 3) for
two commonly used geometric features, straight and round
features.

A1. Straight features

For a straight feature, the nominal geometry M(0, φ∗) is
y = 0, and the general geometry shape M(θ,φ) is y = δ +
ψx (Fig. 4(a)), where θ = (δ, ψ) is the location parameter
with δ representing translation and ψ representing rotation.
In this case, the dimension parameterφdegenerates. Soβ =
θ = (δ, ψ). For a point ni = (xi, 0)T on the nominal feature
y = 0, the approach direction is vi = (0, −1)T. After solving
for the intersection between y = δ + ψx and the vertical
line x = xi and then calculating the vector inner product
in step (4), we have f(xi,β)Tvi = (xi, δ + ψxi) · (0, −1)T =
−δ − ψxi.

A2. Round features

For straight features, y is an explicit function of x. How-
ever this is not the case for a round feature. Denote the
round feature’s nominal radius by r0 and the actual ra-
dius by r . As illustrated in Fig. 4(b), the nominal geom-
etry M(0, φ∗) is x2 + y2 = r2

0 and the general geomet-
ric shape M(θ,φ) is (x − x0)2 + (y − y0)2 = r2, where the
location parameter θ only consists of the translation of
the center, i.e., (x0, y0), because a round feature is invari-
ant under rotation. The dimension parameter φ is the
radius r . Thus, β = (x0, y0, r ). Given the nominal fea-
ture M(0, φ∗), we will have ni = (r0 cos τi, r0 sin τi)Tand
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Fig. A1. Triangle relationship for a round feature.

vi = (− cos τi, − sin τi)T, where τi is the polar angle. Con-
sequently, f(ni,β) is the intersection point of (x − x0)2 +
(y − y0)2 = r2 and the line passing through (0, 0) and
ni = (r0 cos τi, r0 sin τi)T, i.e., the solution of the following
equations: {

(fxi − x0)2 + (fyi − y0)2 = r2,

fyi
fxi

= tan τi,
(A1)

where (fxi , fyi ) are the two coordinates of the intersection
points. Notice that a circle has two intersection points with
a line. Pick the first intersection point according to the ap-
proaching path of the probe as the final solution (fxi , fyi ).
In this way, we can numerically calculate f(ni,β)Tvi =
−fxi cos τi − fyi sin τi for any given ni.

For the value of f(ni,β)Tvi, we may calculate it via a ge-
ometrical method for this roundness feature: As illustrated
in Fig. (A1), f(ni,β)Tvi is the ti in a triangle constructed
from the three points: f(ni,β), (x0, y0) and (0, 0) (a sim-
ilar triangle was utilized in Traband et al. (2004)). Solv-
ing this triangle, we get f(ni,β)Tvi = −x0 cos τi − y0 sin τi −√

r2 − (x0 sin τi − y0 cos τi)2.
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