
59

Aggressive Data Reduction for Damage

Detection in Structural Health Monitoring

Chiwoo Park,1 Jiong Tang2,* and Yu Ding1

1Department of Industrial & Systems Engineering, Texas A&M University

College Station, TX 77843, USA
2Department of Mechanical Engineering, University of Connecticut

Storrs, CT, 06269, USA

While wireless sensors are increasingly adopted in various applications, the need of developing data

reduction methods to alleviate data transmission rate issue between the sensors and the data

interpretation unit becomes more urgent. This article presents a new data reduction method for

sensors used in structural health monitoring application. Our goal is to achieve an effective data

reduction capability while maintaining adequate power for damage detection. We propose to establish

an explicit measure of damage detection capability for the features in the response signals and use

this measure to select the subset of the features that balance between the degree of data reduction

and the damage detection capability. We also explore a computationally efficient procedure searching

for the best subset of the features. This new method is tested on experimentally obtained Lamb wave

signals for beam damage detection. Performance comparisons with respect to the existing methods

demonstrate the strength of the proposed method.
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1 Introduction

The development of structural health monitor-

ing (SHM) system has received significant atten-

tion in recent years due to its broad applications

to civil, mechanical, and aerospace structures.

The timely detection of damage occurrences in

these structures can enhance the safety and secur-

ity, elongate the product service life, and reduce

the operational and maintenance costs.

Generally, a SHM system must include at

least two components: the data collection unit and

the data interpretation unit. The former is used in

the process in which certain data that can reflect

the anomaly/damage in the structure are collected.

A wide variety of data have been explored for

SHM applications, which, when categorized, cor-

respond to various damage detection methods

including acoustic emission methods [1,2], mag-

netic field methods [3], eddy-current techniques

[4], thermal field methods [5], vibration/frequency

response methods [6], Lamb wave methods [7,8],

impedance-based techniques [9,10], etc. In these

methods, the data are collected by different types

of sensors either through passive approaches

(i.e., without actively exciting the structure) or by
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active means (i.e., active interrogation using actua-

tors to excite the structure). With these data, the

data interpretation unit then decides whether

damage has occurred in the structure. In many

cases, the primary concern is to predict the

occurrence of damage, and for that, a conformity

check between the online measurements and the

healthy baseline is used for decision making. In

some cases, a direct map between the data

anomaly and specific damage location and severity

can be established, which can further allow the

identification of damage.

Traditional SHM systems employ coaxial

wires for the communication and data transmis-

sion between the sensors and the decision making

(data interpretation) unit. Recently, there has

been fueled excitement of developing new SHM

systems using the wireless communication tech-

nology. It is believed that wireless sensor net-

works can significantly reduce the installation

and operation costs and increase the sensor

density as well as the coverage area [11]. While

many promising aspects of wireless sensors for

SHM applications have been suggested, such idea

also leads to a number of challenges. In particu-

lar, the issue of data transmission between the

sensors and the decision making unit, which may

pose challenge even in wired sensors, now

becomes extremely serious. One bottleneck in the

wireless health monitoring systems is the data

transmission rate. The data involved in many

SHM systems are time-domain structural

responses that have large data sizes. In general,

damage detection methods with higher detection

sensitivity are often associated with higher sam-

pling rate. For example, it is well known that the

sensitivity of vibration/wave propagation based

damage detection schemes is closely related to the

frequency band, i.e., the wave length of the signal

should be smaller than the characteristic length

of the damage to be detected [10]. It is not

unusual for a wave propagation-based damage

detection system to excite and sense wave

motions at megahertz range. High-frequency sam-

pling and excitation pose multiple challenges to

wireless sensor development, one of which is the

timely transmission of large amount of data.

In a wireless sensor network, the handling of

large amount of data collected by individual

sensors requires the collective considerations from

multiple aspects, including local data storage

capability, local data processing capability, power

consumption, and wireless transmission capability,

etc. More specifically, the sensor data, which carry

the damage features, are inevitably contaminated

by noise. Although directly transmitting the origi-

nal sensor data to the data interpretation unit can

retain the signal fidelity for comprehensive data

analysis, it may lead to prohibitive burden to the

wireless data transmission, especially for applica-

tions that need near real-time decision making.

One tempting idea is to perform data pre-proces-

sing at the local sensor level, so that the data can

be greatly compressed/reduced while the critical

features reflecting the damage effects can be

preserved. Such data reduction, also known as

feature extraction, if effectively established, can

alleviate the data transmission rate issue between

the sensors and the data interpretation unit. On

the other hand, it requires higher computing

capability and the associated power consumption

at the local sensor level.

It is worth emphasizing that the research and

development of wireless sensors for SHM is an

on-going, exploratory effort. Both the wireless

communication technology and the sensor-related

microelectronics are experiencing rapid advance-

ments. Therefore, at the current stage, it is

generally difficult to precisely quantify the opti-

mal balance between the local data pre-processing

and the transmission reduction. Nevertheless, the

current consensus among the wireless communi-

cation community is that the power consumption

for data transmission is about one magnitude

higher than that for local data pre-processing

[12]. For this reason, it appears worthwhile to

pursue aggressive data reduction (or feature

extraction) methods that can significantly reduce

the amount of data that need to be transmitted

from the local sensor to decision making unit

while maintaining adequate degree of damage

detection capability. Motivated by this pressing

practical need, this article concerns the develop-

ment of effective data reduction techniques for

the purpose of damage detection in SHM.

The rest of the article is organized as follows.

In the subsequent section, we review the literature

relevant to our research efforts. The detailed
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description of our proposed data reduction and

damage detection method is presented in Section

3. Section 4 includes a case study that demon-

strates the performance of our method against

the existing methods. The case study is based on

an experiment performed using Lamb wave sig-

nals to detect structural damages. Finally, we

conclude this investigation in Section 5.

2 Relevant Studies

Data de-noising technique is a major set of

methodologies used for the purpose of data

reduction because measurement signals are inevi-

tably contaminated by noises, and eliminating the

noise components apparently reduces the data

dimension. There is a rich body of literature

focusing on the generic de-noising methodology

[13–16], which is to distinguish purely random

noises from the data components that could

potentially be a meaningful signal. Because

purely random noises usually have higher fre-

quency and lower energy than a meaningful

signal, one can establish a threshold to set apart

the noises and the signals. A typical procedure

usually starts with a wavelet transformation. One

can retain a subset of above-threshold wavelet

coefficients while setting the below-threshold

ones to zero.

One principal drawback of the generic de-

noising methods is its ineffectiveness in reducing

the data, i.e., that the wavelet coefficients

retained are still too many to be handled.

Reported by Lada et al. [17], the de-nosing

methods could keep 49–67% of the original

coefficients; our case study will confirm this

understanding. This does not come as a surprise

because the de-noising methods intend to be

applicable to different applications and thus

resort to the most conservative way to define

what should be deemed as ‘noise.’ Without

specific application objectives as the guideline,

the generic methods simply run a statistical test

that identifies the independent, identically distrib-

uted components with zero means as the pure

noises and treats everything else as signals.

Some recent developments attempt to

improve the effectiveness of data. Lada et al. [17]

proposed a new criterion, labeled as relative

reconstruction error (RRE) as follows:

RREðpÞ ¼MSEþ �
p

N

where the first term, MSE, stands for the mean

square error between the original signal and the

signal reconstructed from the chosen coefficients,

N is the dimension of the original signal, p is the

dimension of the signal after reduction, and � is a

pre-determined weighting coefficient. The second

term in RRE is actually the data reduction ratio;

the more aggressive a data reduction, the smaller p

or p/N is. Lada et al. [17] recommended choosing

the subset of wavelet coefficients that minimize

the RRE. By including the data reduction ratio as

a penalty term in RRE, it helps prevent too many

wavelet coefficients being kept for the sake of

attaining a very marginal decrease in MSE. In

essence, this criterion is the same as the Akaike

information criterion (AIC) [18].

Later, Jeong et al. [19] found that the effec-

tiveness in using the RRE for data reduction can

be further enhanced. Their idea is to revise the

way to establish the threshold for wavelet coeffi-

cients. Simply put, both the de-noising methods

and the RRE criterion use some sort of threshold

when it comes to choose the wavelet coefficients.

The RRE’s threshold is larger (meaning that it

would choose fewer coefficients) than the de-

noising methods because it includes the data

reduction ratio as a penalty. The threshold works

as a boundary deciding if the wavelet coefficients

keep their original values or set to zero. If the

value of a wavelet coefficient is over the thresh-

old, the coefficient keeps its value; otherwise, it is

set to zero. This procedure is called hard-thresh-

olding. Jeong et al. [19] pointed out that hard-

thresholding causes large variance of the selected

coefficients and is very sensitive to small changes

in data. In order to make sure that hard-

thresholding will not adversely affect the signal

quality, certain degree of conservativeness is still

needed. Jeong et al. [19] proposed a different

RRE based on a soft-thresholding procedure,

which first subtracts the threshold from each of

the wavelet coefficients and sets the negative

values among the results to zero. They derived
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the new objective function of RRE when soft-

thresholding is used. In the new objective, the

ratio of the first norm of the remaining values

after soft-thresholding and the first norm of all

original values is used as the penalty, rather than

just a data reduction ratio. They showed that

their soft-thresholding method worked better

for data reduction purpose. The new RRE is

called RREs.

Due to their general applicability, the

de-nosing methods are expected to be applicable

to SHM, e.g., in [20]. On the other hand, both

RRE criteria were developed in the context of

semiconductor manufacturing, and to our knowl-

edge, they have not yet been applied to SHM

applications but in principle they could be used.

Since the dimension of the features extracted

should be smaller than the original dimension,

feature extraction is often used as an interchange-

able phrase for data reduction. Researchers have

explored extracting damage features from struc-

tural vibration responses to identify structural

damages as well as to transmit sensory data in

energy-efficient ways. Classical ways to extract

damage features typically involves using vibration

modal parameters such as dominant frequencies,

mode shapes and displacements. Yam et al. [21]

compared the energy spectrums of vibration sig-

nals from a normal beam and damaged ones for

each time slot. In a wavelet transformation, the

wavelet coefficients can be considered features.

Motivated by similar data-reduction needs as

mentioned in Section 1, researchers in the SHM

field also introduced some simple scalar values to

summarize and characterize the original signals

and argued that these scalar values can be used

for structural damage detection. Wang et al. [22]

introduced the distributed damage index detection

(DDID) as a measure for the possibility of damage

occurrence. DDID is a 1D counting number

measuring the difference of raw data between

normal structures and the current one, and is

calculated at each sensor node and transferred to

a base station. Sohn et al. [23] developed a

wavelet-based damage index to quantify the

attenuation of Lamb waves by structural damages

and conducted damage detection by comparing

their index with the baseline index deduced from a

normal structural. Bukkapatnam et al. [24] used

the distortion energies to quantify the damage-

induced distortions by examining a wavelet repre-

sentation of the difference in strain responses

between the damaged and the undamaged struc-

tures. The distortion energies are calculated for

each of several resolution levels of a wavelet

representation. The number of the resolution

levels is normally less than 10 so that its effective-

ness for data reduction is presumably much better

than the generic de-noising methods or using the

RRE criteria.

In summary, the above-reviewed approaches

can be grouped into two categories: (1) The

category that tends to keep too many features,

not all of which are relevant to damage detection.

This category includes the de-noising methods

and the RRE criteria. Obviously, if a method is

capable of searching for the set of features

necessary for damage detection but discarding

those irrelevant ones, a further data reduction

can be achieved. (2) The second category that

uses a summary index or a few indices for

damage detection. This group includes DDID,

Sohn’s damage index and the distortion energy

indices. The potential limitation with the second

group is that even though those indices are

intuitively related to structural integrity, there is

no formal linkage between the indices and the

detection capability. In other words, they are

surrogate measures of damage detection at best.

Because of this, as we will show later in the case

study, these indices may not be able to capture

the optimal set of features needed for damage

detection, and thus only lead to suboptimal

detection performance in terms of false positive

or false negative probabilities. We also believe

that using 1D index is too aggressive to capture

all the relevant features caused by complex

changes in a damaged structure.

The aim of this article is to present a new

method to find the minimal subset of the features

(in the form of wavelet coefficients) relevant to

structural damages. We develop an explicit mea-

sure for damage detection power and then link it

to the selected features. Subsequently, an iterative

algorithm is devised to search for the smallest

feature subset, which in the meantime maintains

adequate detection capability. Based on the expli-

cit link between the detection power and the
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damage features, we expect that the proposed

method is able to overcome the shortcomings of

the above-mentioned data reduction methods in

both categories; our case study in Section 4

demonstrates such improvement.

3 Data Reduction Method

3.1 Method Overview

In this section, we present a wavelet-based

feature selection method for structural damage

detection. It attempts to retain the smallest

possible number of features, or equivalently, to

achieve the highest possible data reduction while

still maintaining adequate damage detection cap-

ability. Given its high data reduction ability, the

method is suitable for enabling an energy-efficient

SHM based on wireless sensor networks.

In our method, we define the feature space as

the set of wavelet coefficients resulting from the

wavelet transform of the original signals. Please

note that the wavelet transform is broadly used in

the SHM applications [21,23,24]. We also perform

a generic de-noising procedure to remove the

purely random noises as part of the data pre-

processing. Doing so can help improve the con-

sistency of the subsequent data reduction (or

feature extraction) actions. De-noising usually

regards as ‘noise’ the wavelet coefficients of zero

mean and lower energy than the given threshold.

If we set the threshold too high, we might over-

look small local damages of very low energy. If we

set it too low, we keep too many wavelet coeffi-

cients and the de-noising does not have effects on

our method. Therefore, choosing a good threshold

is very important. In our method, we used the

threshold defined in VisuShrink [13], which is one

of the widely used de-noising methods developed

by Donoho. The reason we choose this method is

because it is the most computationally efficient

among the few widely used de-noising methods. In

terms of performance, all the de-noising methods

are comparable.

After obtaining the pre-processed, ‘clean’ stru-

ctural monitoring signals, we present our method

by addressing the following two questions: (1) what

should be the measure or criterion for feature

selection; (2) how to find the best (i.e., the smallest)

subset in a computationally efficient way.

The major steps in our method are outlined

in Figure 1. In Section 3.2, we derive the formula

for computing the damage detection power for a

given set of features (i.e., a given subset of

wavelet coefficients). The damage detection

power is established based on a statistical mon-

itoring and detection formulation. It utilizes the

baseline statistics established by using the data

collected from intact, healthy structures.

Section 3.3 presents the searching algorithm to

find the best subset of coefficients. After a feature

selection criterion is set up in Section 3.2, one may

use an exhaustive search to pinpoint the best one,

which, however, requires excessive computational

cost and thus is not suitable for local sensors with

limited capacity. We instead devise a forward

selection greedy search. The search algorithm

starts with an empty feature selection and itera-

tively selects one additional feature (i.e., a wavelet

coefficient) that can improve the selection criterion

Collect signals under normal condition

Step 1. Wavelet transform

Step 2. Pre-process (de-noise)

Step 3. Greedy search (forward selection)

Feature subset generation, S
by search algorithm (3.3)

Feature subset seletion criteria (3.2)

Features Evaluation

All features, Ω

Figure 1 Feature subset selection procedure for
damage detection. (3.2) and (3.3) refer to the correspond-
ing subsections where the detailed algorithms or proce-
dures are presented.
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(defined in Section 3.2) the most. The iterations

terminate when there is no sensible improvement

in the selection criterion.

3.2 Feature Selection Criterion

Our primary objective is to detect structural

damage using a subset of the features, S, from the

set of all features, � (recall that here a feature is a

wavelet coefficient and we use these two terminol-

ogies interchangeably hereafter). Intuitively, the

best subset should be the one containing only all

the necessary features required to discriminate a

damaged structure from the intact structures. As

discussed before, a sensible way to do so is to link

explicitly the selection of features to the detection

capability using that set of features.

In light of this, we want to compute the

damage detection capability for a given subset S.

Let Q(S) represent the damage detection power

for S. According to the statistical detection

theory [25], the detection power is typically

defined as the complement of the probability of

misdetection (or false negative), also known as

the b error probability. Suppose that H(S) is a

statistical hypothesis testing to decide whether

structural damages exist using the feature set S.

Then, the damage detection power of S, Q(S) is

QðSÞ ¼ 1 ¼ �ðHðSÞÞ: ð1Þ

In order to perform a statistical detection, a

baseline needs to be established; such a baseline

is used to characterize what constitutes the

normal structural behavior. This can be done by

collecting a set of sensory data from healthy,

intact structures. Here we assume that the wavelet

coefficients from an intact structure follow

Nð�,
P
Þ where � and

P
are the mean vector

and covariance matrix, respectively. With the

historical data x1, x2, . . . ,xm, from the intact

structures, we can estimate � using the sample

average �̂, and estimate
P

using the sample

covariance matrix
P̂

as

�̂¼
1

m

Xm
i¼1

xi and
X̂
¼

1

m�1

Xm
i¼1

ðxi� �̂Þðxi� �̂Þ
T

ð2Þ

As such, the multivariate normal distribution

with parameters �̂ and
P̂

and serves as the base-

line for future damage detection.

When damage occurs in a structure, it

presumably causes a different behavior in the

structural response and thus a different distribu-

tion in the observed sensory measurements.

The statistical detection theory [26] tells us that

the maximum likelihood statistic for testing the

hypothesis H(S), namely whether a new observa-

tion deviates from the baseline distribution, is

the Hotelling’s T2 statistic. Consider that x is the

newly measured structural response. Then the

Hotelling’s T2 statistic is [27]:

T2 ¼ ðx� �̂ÞT
X̂�1

ðx� �̂Þ ð3Þ

It has also been established that this

Hotelling’s T2 statistic follows an F distribution.

Specifically,

pðm� 1Þðmþ 1Þ

mðm� pÞ
T2 � Fp,m�p ð4Þ

where p is the number of features in the set S

and m is the number of the samples used to

estimate the parameters �̂,
P̂

. Suppose one has

chosen the confidence level of detection (namely

the probability of a error or false positive) as �0.
Then the decision boundary, also called upper

control limit (UCL), is given as:

UCL ¼
pðm� 1Þðmþ 1Þ

mðm� pÞ
Fp,m�p, �0 ð5Þ

where Fp,m�p,�0 is the inverse cumulative

distribution function (cdf), deciding the critical

value of an F distribution at �0. Given the T2

statistic value for any new sensor observations

and UCL, the damage detection procedure is

straightforward: when T2 � UCL , we can con-

clude there is damage with (1�a)100% confi-

dence; otherwise, we can conclude there is no

damage.

Given the above statistical detection frame-

work, the question is how to compute the b
error probability so that the detection power can

be quantified. The b error probability can be

64 Structural HealthMonitoring 9(1)



computed for any given change in the distribu-

tion: a shift in the mean component or a change

in the covariance matrix. Please note that an

advantage of using the Hotelling’s T2 statistic is

that it is sensitive to detecting changes in both

distribution parameters (mean and variance), i.e.,

it is unlikely to leave out any damage undetected

unless such damage does not cause any distribu-

tion change from the baseline.

Generally, a structural damage causes

a sustained shift in the mean parameter.

Suppose that the mean parameter shifts to a

new value, which is different from the baseline

by i�̂, where i is a constant coefficient and �̂ is

the estimate of the baseline variability. Thus, i�̂ is

a multiple of the standard deviation of the base-

line. As such, the new distribution mean is

� ¼ �̂þ i�̂. Given such change, the b error

probability is the conditional probability when a

change occurs but the detection method fails to

detect (i.e., the T2 is smaller than the UCL),

namely

�ðHðSÞÞ ¼ PðT2 � UCL � ¼ �̂þ i�̂
��� Þ: ð6Þ

Utilizing the properties of multivariate

normal distribution, the b error probability can

be further derived as

�ð� ¼ �̂þ i�̂Þ ¼ P
�
ðx� �̂ÞT

X̂�1
ðx� �̂Þ

� UCL � ¼ �̂þ i�̂
����

¼ Pððx� �ÞT
X̂�1

ðx� �Þ þ i2�̂T

X̂�1
�̂ � UCL � ¼ �̂þ i�̂Þ

���
¼ P T2 �

pðm� 1Þðmþ 1Þ

mðm� pÞ
Fp,m�p,�0 � i2�̂T

X̂�1
�̂

� �

Fp,m�p Fp,m�p,�0 �
mðm� pÞ

pðm� 1Þðmþ 1Þ
i2�̂T

X̂�1
�̂

� �
:

ð7Þ

In the above equation, Fp,m�p, �0 is the part of

the decision boundary and its value depends on

the confidence level �0 previously specified.

One difficulty of using the above b error

formulation is that we usually do not know the

exact magnitude of change that actually occurs in

the distribution parameter caused by structural

damage. It depends on the types and severities of

damages. In practice, there could be different

ways of handling this problem. For example, we

can specify a magnitude of change as the worst

case. Typically, the smaller the magnitude, the

less likely a change can be detected. So if we

choose a small enough threshold magnitude to be

detected and make sure that our detection

method can successfully detect it with an accep-

tably low b error, then it is reasonable to

conclude that other larger magnitude of change

can be detected as well. Another treatment is to

calculate a weighted average b error probability

for a broad range of changes. For example, the

multiple i can take values from 1 to a large value I.

Then, a weighted average b error probability

� ¼
XI
i¼1

�i�ð� ¼ �̂þ i�̂Þ, ð8Þ

where �i is the weight associated with the i-th

magnitude of change. Usually, we may assign

more weights to a small change and less weights

to a large change since small changes are inher-

ently difficult to detect. The choice of the value I

can be different in different applications. We

recommend choosing the value by checking the

magnitude of �ð� ¼ �̂þ i�̂Þ As the multiple i

increases, the � value decreases. Therefore, we

can set the range value I to the smallest i so that

�ð� ¼ �̂þ i�̂Þ is below a certain level (e.g., 0.01).

Then, for, i4I, the magnitude of �ð� ¼ �̂þ i�̂Þ
becomes ignorable, so Equation (8) provides a

good approximation.

For our application, we recommend using the

weighted average � because the worst-case

approach likely leads to a conservative data

reduction performance. Using �, we can obtain

the damage detection power as

QðSÞ ¼ 1� � ð9Þ

On the other hand, the effectiveness of our

data reduction (or feature extraction) method is

measured by the data reduction ratio, defined as
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the ratio of the reduced and the total size of the

feature space:

RðSÞ ¼
jSj

j�j
ð10Þ

where j � j is the operator for cardinality.

Our feature selection is realized through

minimizing R(S), subject to that the detection

power Q(S) is larger than a required level. This

gives us a constrained minimization problem to

solve. Here, we adopt the approach used by the

RRE criterion, which is to define a unified

feature selection criterion combining both Q(S)

and R(S) as (in fact we use 1� RðSÞ in the

following criterion because we want to ensure

both terms to be maximized subsequently):

CðSÞ ¼ QðSÞ þ �ð1� RðSÞÞ ð11Þ

Similar to RRE, the above criterion is to use

the data-reduction ratio as a penalty in the cost

function to force an aggressive data reduction.

But the difference lies in that the first term QðSÞ

in the above criterion is not the same as the MSE

in RRE: the QðSÞ measures the damage detection

power of using the features in S, whereas the

MSE measures the signal differences, a large

portion of which may not be relevant to the

damage detection objective.

Remark. In Equation (11), � is a positive real

number and it functions as weighting between

data reduction capability and damage detection

power. The appropriate values of � can be

different from applications. In applications con-

sidering data reduction more important, its value

should be larger. If damage detection is more

important, a small � should be chosen. In this

article, we use � ¼ 1 equally weighting data

reduction and damage detection power.

3.3 Subset Generation and

Searching Procedure

Given the criterion defined in Equation (11),

the feature subset selection problem can be

formulated as follows:

S� ¼ argmax
S��

½CðSÞ	 ð12Þ

Equation (12) entails a combinatorial optimi-

zation problem. Exhausting all possible subsets of

� to find the proper S* could be computationally

demanding. Suppose that the number of the

elements in � is n. Then, the total number of the

subsets to search through in a complete exhaus-

tive manner is 2n, which can be a very large

number even for a moderate n, say 50.

Considering the possible resource limitation

on a sensor node, rather than trying all possible

subsets, we devise a greedy search (forward selec-

tion) method because of its computational simpli-

city. The forward selection starts with an empty

set and adds one feature from � to S, which can

result in the largest increase in the objective

function in (12). The method will then remove the

feature just selected from �. In the subsequent

iterations, this operation will be repeated and it

augments the set S by adding one new feature at a

time. In each iteration, the augmentation proce-

dure generates r new subsets if the number of the

features remaining in � is r, because each new

subset contains the features selected from previous

iterations plus a new one chosen from the features

remaining in �. The iterations continue until any

new addition to S can no longer improve the

objective function. That is, if the improvement of

damage detection power by adding a new feature

does not outweigh the loss of data reduction rate,

the feature selection procedure stops.

The pseudo code of this search algorithm is

presented in Figure 2. In this pseudo code, C(S)

means the result of evaluation of Equation (11)

and MAX is the incumbent maximum value of

C(S). The algorithm starts with MAX¼ 0 and

S ¼ 6 0, which means that no feature is chosen in

the subset initially. In each iteration, the algorithm

evaluates CðSþxÞ, where the function C(Sþx) is

evaluated using Equation (11) and Sþx is the set

of the features generated by adding x (in T) to S.

Suppose that MF is the newly added feature x

that maximizes C(Sþx) among all the evaluations.

Then, the algorithm removes MF from T and adds

it to S. The next iteration starts with the updated

sets of features, S and T. The iteration continues

until we cannot find MF that increases C(Sþx).

Figure 3 illustrates a simple example of the

search algorithm, where the feature space has

seven coefficients �¼ {1, 2, 3, 4, 5, 6, 7}. It shows

66 Structural HealthMonitoring 9(1)



the first two iterations of the search algorithm.

For the first iteration, the algorithm generates the

seven subsets of the features, Sþ1,Sþ2, . . . ,Sþ7,

each of which can be generated by adding one

feature in T to S. Then, the algorithm evaluates

C(Sþx) for each subset. In the example CðSþ1Þ is

the largest among the evaluations. Thus, the

algorithm sets S to Sþ1 and removes feature 1

from T. The second iteration starts with the

updated S and T. By the same procedure as the

first iteration, the algorithm first evaluates the

function C(Sþx) for each of the possible subsets,

Sþ2,Sþ3, . . . ,Sþ7, generated by adding one feature

in T to S¼ {1}. Since C(Sþ5) is the largest, the

algorithm adds feature 5 to S and removes it from

T. As a result, the algorithm sets S¼ {1, 5} and

T¼ {2, 3, 4, 6, 7}, and the second iteration ends.

The third iteration will start with S¼ {1, 5} and

T¼ {2, 3, 4, 6, 7} These iterations repeat until the

algorithm cannot improve C(Sþ1) any more.

The forward-selection greedy search algo-

rithm is computationally efficient. Nevertheless,

because of the ‘greedy’ nature of the algorithm,

its performance and the choice of feature subset

sometimes could be sensitive to the use of

different historical data samples (employed for

establishing the baseline). In order to deliver a

consistent performance and make our method

Iteration1: Initial Settings

S =  Empty set
T = 1 2 3 4 5 6 7

Generate Subsets

Add x in T to S and generate S+x

Evaluate each subset

Evaluate the criterion for each subset generated

C(S+1) = 0.64

C(S+2) = 0.42

C(S+3)

C(S+5)

C(S+6)

C(S+7)= 0.35

C(S+4)

C(S+2)

C(S+3)

C(S+4)

C(S+5)

C(S+6)

C(S+7)

= 0.41

= 0.51

= 0.20

= 0.17

Choose the best subset

S= S+1=

T = 

1

Generate Subsets

Evaluate each subset 

= 0.88

= 0.76

= 0.69

= 0.92

= 0.82

= 0.79

1S+2 =

1S+3 =

1S+4 = 1S+7 =

1S+6 =

1S+5 =2

4

3

7

6

5

S+4=

1S+1=

2

3

4

S+2=

S+3=

5S+5 =

6

7

S+6 =

S+7 =

2 3 4 5 6 7

Add x in T to S and generate S+x

Iteration 2: Initial Settings

S =
T = 

1

2 3 4 5 6 7

Choose the best subset

S= S+5=
T = 

1

2 3 4

5

6 7

Evaluate the criterion for each subset generated

Figure 3 Example of the search algorithm.

1   S = Ø, T =Ω

S = S ∪ MF, T =  T \ MF

2   Do while C (S ) is improved
3         MAX = 0,  MF = Ø
4         Repeat for each x in T
4
5

S+x = S ∪ {x}
If C (S+x) > MAX , then MAX = C (S+x),  MF =  {x}

6 End
7
8   END

Figure 2 Subset selection algorithm.
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robust, here we recommend using a bootstrap-

ping technique [18] to reduce selection variability.

Bootstrapping is an effective statistical re-sam-

pling technique to handle variability or inconsis-

tency caused by sampling. Its idea is to divide the

baseline data samples into smaller subsets and

perform data analysis on each sample subset and

then pool the analysis results together in order to

cover the difference due to sampling.

Specifically for our application, the first step

is to randomly draw K datasets of size M without

replacement from the original baseline data sam-

ples. The second step is to apply the greedy

search algorithm and find the best feature subset

for each of the K datasets. Consequently, we will

have K resulting subsets, namely S1,S2, . . . ,Sk

(and these subsets may contain different features).

Eventually, we create the final best subset S* by

taking the union of the K best subsets:

S� ¼ [
K

i¼1
Si ð13Þ

By including this bootstrapping procedure,

the number of the features in the best subset will

increase but we expect to gain the robustness in

performance for damage detection.

4 Case Studies

In this section, we apply the proposed

method to the actual signals collected by a

laboratory structural health monitoring system in

order to verify its effectiveness. We also compare

our methods with the existing methods to demon-

strate its advantage.

In this experimental system, the Lamb wave

approach is used to detect the surface crack

damage in a beam structure. The reason we

choose the Lamb-wave-based approach for imple-

mentation is that the data (time-domain

responses) are complicated, large-sized, and typi-

cally contaminated by certain level of noise.

Meanwhile, the Lamb wave based damage detec-

tion is considered as a highly sensitive but ‘local’

approach with limited coverage area around an

actuator-sensor pair, which provides an ideal

basis for the future wireless sensor network for

structural health monitoring. The proposed

reduction method, however, can be applied to

other types of data.

4.1 Lamb Wave Approach for SHM

and Experimental Setup

Lamb waves are elastic guided waves propa-

gating in a solid plate or layer with free bound-

aries [28]. It has been recognized that the

propagation of Lamb waves in such structures

may be sensitive to the structural defects.

Therefore, the change of Lamb wave propagation

pattern with respect to the pattern under the

intact baseline state can be used to indicate the

occurrence of damage. Typically, the Lamb

waves are excited at relatively high frequency,

and thus small-sized damage can be detected.

The aluminum beam structure used in the

experiment has the following geometric para-

meters: 814mm (length)
 7.62mm (width)


 3.175mm (thickness). Figure 4 shows (a) the

intact undamaged beam, (b) a damaged beam

having a notch with dimensions 0.6mm (length)


 7.62mm (width)
 1mm (depth), and (c) a

damaged beam having a notch with 1.6mm depth.

For each beam, a pair of piezoelectric actuator

and sensor is attached at 406.5mm from the left

end and 456.5mm from the left end, respectively.

The hardware of the experimental investiga-

tion includes an AGILENT 33220A waveform

generator (used to drive the piezoelectric actua-

tor) and an INSTEK GDS-820S digital storage

oscilloscope (used to collect the sensor signal).

The waveform generator can produce an up to

64k-point arbitrary signal with 50MSa/s (mega

samples per second). The oscilloscope can store

two signals each up to 125 k data points, and the

sampling rate per channel is up to 100MSa/s. To

reduce the dispersion, the excitation signals

should have narrow bandwidth. Therefore, sinu-

soidal waves under Hann window are used as the

transient excitation signals, which is the common

practice in the Lamb-wave-based damage detec-

tion. In this experiment, five-cycle Hann wind-

owed sinusoidal wave with center frequency

90 kHz is used. For this specific beam structure,

90 kHz is the so-called ‘sweet spot’ frequency [8]

that maximizes the peak wave amplitude ratio
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between the lowest symmetric wave mode and the

lowest antisymmetric wave mode, which can

highlight the damage effect.

4.2 Detection Results and

Discussions

For the purpose of data reduction, we apply

our feature extraction algorithm to the Lamb

wave signals. The following are the detailed

settings used in our method: I¼ 3, chosen by

using the guideline stated in Section 3.2, meaning

that we take � in Equation (9) as the average of

three distribution changes; the weights are chosen

as �i ¼ ððI� iþ 1Þ2=
PI

i¼1ðiÞ
2
Þ, which assigns

greater weights to small changes and less weights

to large changes; confidence level a0¼ 0.0027;

and the bootstrapping constants K¼ 5 and

M¼ 40, where the confidence level corresponds

to the range of standard six sigma quality level in

industrial quality control practices [29]. The boot-

strapping constants are decided according to the
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Figure 4 Side and top view of the experimental setups (dimensions in mm): (a) experimental setup I: normal beam,
(b) experimental setup III: abnormal beam II, (c) experimental setup III: abnormal beam II.
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rule of thumb given in the analysis of RRE

criterion [17].

Each sample of Lamb wave signals is digita-

lized to be a 50,001
 1 vector. We collected the

following datasets: 300 samples from the intact

beam (experimental setup (a)), 150 samples from

the beam with 1.0mm depth crack (experiment

setup (b)) and 312 samples from the beam with

1.6mm depth crack (experiment setup (c)).

Among 300 samples from the experimental setup

(a), we randomly choose 200 samples (so m¼ 200

in Equation (5)) and use them to establish the

baseline. The remaining 100 samples from the

intact structure, together with the 462

(¼150þ 312) samples from damaged structures,

will be reserved as testing data, in order to assess

the false positive probability (a error) and the

false negative probability (b error) of the pro-

posed reduction method. The analysis of the

experimental results also includes the dimension

of the reduced data, p, and the data reduction

rate, R (defined in Equation (10)). In order to

ensure that the performance is not drastically

affected by the random sampling of the 200

baseline samples, the detection procedure is

repeated 50 times on the original dataset of 300

samples, and the average of each of the perfor-

mance indices (a, b, p, R) is reported. Figure 5

shows how the data samples are collected and

subsequently used for data reduction and damage

detection.

We also apply the existing methods on the

same dataset for data reduction and damage

detection. The same set of performance indices (a,
b, p, R) is assessed. The existing methods include:

(1) SureShrink [13], VisuShrink [14], RiskShrink

[14], and AMDL [16] from de-noising methods,

(2) the hard thresholding RRE [17] and the soft

thresholding RREs [19] from data reduction meth-

ods, (3) the damage index method [23] and

distortion energy method [24] from SHM applica-

tions. The performance comparison of all the data

reduction methods is presented in Table 1.

From Table 1, we can easily note that our

method strikes a good balance in terms of data

reduction ability and detection power. It retains

300 samples
(Experimental setup I)

200 samples
Damage classifier

α error β errors

Data reduction

200 reduction dataset
Data

reduction
ratio (R)

Training data

Random
sampling

100 samples 150 samples
(Experimental setup II)

312 samples
(Experimental setup III)

Figure 5 Data reduction and damage detection procedure using the experimental datasets. For the methods that do
not specify a damage classifier, the maximum likelihood classifier is used, which is the same as the one used in our
method (explained in Section 3.2); otherwise, their own damage classifiers are used.
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only six features, which is the second best in

terms of data reduction rate, while achieving a

detection capability almost as good as using the

RREs. The damage index method achieves the

most aggressive data reduction as we expected,

but it suffers from an unusually high false

detection probability (a high b value). This

confirms the concern that using a single scalar

index may be too aggressive to keep all the

relevant features for effective damage detection.

The method of distortion energy uses eight

resolution levels, comparable to our data reduc-

tion effectiveness, but its detection capability is

not as good as ours.

On the other hand, most of the generic data

reduction methods suffer from keeping too many

features, not all of which are relevant to the

damage detection objective. We also noticed that

the method using RREs produces competitive

results. It keeps more features but helps further

reduce the false positive probability (a value).

Therefore, we deem it the second best method

overall.

Based on the performance comparison, we

see that the six features selected by our method

could facilitate the damage detection with the

similar performance as a larger set of features

selected by a general data reduction method such

as RREs. Our conjecture is that there is a high

degree of redundancy among the large number of

features selected by a general data reduction

method. To verify the conjecture, we compare the

features from our method with the features

chosen by RREs.

Here, a feature is presented by its index in the

set of wavelet coefficients after the same wavelet

transform. Table 2 shows the indices of the

features selected by both methods. In Table 2, the

indices of the boldface font are the common set of

features chosen by both methods. If our conjec-

ture is correct, the features from RREs not

belonging to the common set should be highly

dependent on the common set of features.

To verify the relevance of these features to

the structural damage, we plotted two wavelet

coefficient maps in Figure 6: one for the signal

from the normal beam and the other for the

signal from abnormal beam I. The area inside the

black-bordered box corresponds to the area on

which six of the seven features from our method

are concentrated. When comparing the two

black-bordered areas from normal beam and

abnormal beam I, we see that the area from

Table 1 Performance of all methods compared, the values marked with asterisks (*) correspond to a
case where the resulting data dimension p is greater than the sample size of the baseline data
(m¼ 200). When this happens, the original version of the Hotelling’s T 2 statistic cannot be used
directly. We have to cut each Lamb wave signal into a number of segments, each of which has a
reduced dimension less than 200, in order to perform damage detection and assess the two error
probabilities. The segmentation causes a error larger than using the RREs and our method.

Data reduction techniques p R (%) a errors b errors

Our method 6 99.988 0.0302 0.0000
Damage index 1 99.998 0.0611 0.9972
Distortion energy 8 99.984 0.0900 0.1062
RREs 16 99.968 0.0287 0.0000
RRE 626 98.748 0.0351* 0.0000*
AMDL 961 98.073 0.0957* 0.0000*
VisuShrink 2574 94.907 0.0413* 0.0000*
RiskShrink 3733 92.534 0.0513* 0.0000*
SureShrink 12,765 74.471 0.0401* 0.0000*

Table 2 Indices of the features selected by our method
and RREs.

Data reduction
methods Indices of the features

Our method 1676 1677 1678 1703
1753 1879

RREs 1674 1676 1677 1678 1700
1701 1703 1726 1727 1729 1730
1753 1756 1779 1780 1832
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normal beam is darker than the area from

abnormal beam I.

To evaluate the dependency among these

features, we use the partial correlation Corr (S|T)

as a measure of the amount of information,

which can be explained by the features in S but

not by the features in T. For more details

regarding the partial correlation, please see [30].

In a multivariate case where Corr (S|T) is a

matrix (similar to a covariance matrix), one often

uses the summation of the eigenvalues of Corr

(S|T) as the measure of the above-mentioned

information amount.

We treat the union of the indices from both

methods as T and assign S as an empty set

initially. Then, we remove one index from T at a

time and add it into S. In Figure 7, we plot the

ratio of the summation of eigenvalues of Corr

(S|T) and the summation of eigenvalues of the

original set T. This ratio represents the amount

of information carried by the features only in S.

The horizontal axis in Figure 7 represents the

indices added to S in a sequential manner. When

S contains {1676, 1677, 1678, 1703, 1753, 1879},

namely the set of the features selected by our

method, we can see that more than 90% of the

information is carried by S. In other words, the

remaining features in set T are indeed highly

redundant to those features already in S.

5 Conclusion

In this article, we develop an aggressive data

reduction method to choose only the necessary

features for the purpose of detecting structural

damages. One of the major benefits from a high

degree of data reduction is to enable energy-efficient

operations for a wireless sensor network used for

monitoring structural damages and integrity.

The reason that the proposed method can

perform well is because that we have established

an explicit measure of damage detection power,

while the existing methods use certain type of

surrogate measures that are only implicitly related

to damage detection. The explicit measure of

detection power allows us to find the optimal

subset of features that contribute the most to the

goal of damage detection. By contrast, the exist-

ing methods either retain too many features, not

all of which are relevant, or use too few features

with some important ones left out.
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Figure 6 Discrete wavelet coefficient map.
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Through an experimental study based on

Lamb wave signals, we have demonstrated that

the proposed method outperforms the existing

methods. It testifies the benefit of using the

explicit measure for damage detection.
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