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A minimum volume set of a probability density is a region of minimum size among the regions covering a given probability
mass of the density. Effective methods for finding the minimum volume sets are very useful for detecting failures or
anomalies in commercial and security applications—a problem known as novelty detection. One theoretical approach of
estimating the minimum volume set is to use a density level set where a kernel density estimator is plugged into the
optimization problem that yields the appropriate level. Such a plug-in estimator is not of practical use because solving
the corresponding minimization problem is usually intractable. A modified plug-in estimator was proposed by Hyndman
in 1996 to overcome the computation difficulty of the theoretical approach but is not well studied in the literature. In
this paper, we provide theoretical support to this estimator by showing its asymptotic consistency. We also show that this

estimator is very competitive to other existing novelty detection methods through an extensive empirical study.
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1. Introduction

Novelty detection is to identify unknown, anomalous events
and separate them from normal events. The capacity of
novelty detection is critical in many commercial or secu-
rity applications because detection of potential failures or
abnormal activities provides the opportunity to prevent a
catastrophic outcome from happening. Novelty detection
methodologies find numerous applications, such as in reli-
ability improvement via fault detection of mission-critical
systems (Hayton et al. 2000, Sanseverino and Zio 2007),
quality control in manufacturing and production systems
(Guh et al. 1999, Jin and Shi 2001), medical diagnosis
(Tarassenko et al. 1995), and structural health monitor-
ing (Worden et al. 2000).

Novelty detection methods are based on a single class of
data, which is the data set of the normal events. The reasons
for novelty detection to be based on the normal events data
alone are twofold: (a) there are usually plenty of normal
events data but not sufficient abnormal events, especially
in mission-critical systems where people would expect fail-
ures to occur rarely; (b) even if there are a decent amount
of abnormal events, they might represent only one type of
fault or failure. The faults or failures occurring in the future
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could be distinctively different not only from the normal
events but also from the past failures. Thus, novelty detec-
tion is often achieved by profiling the features that can well
describe past normal events. Markou and Singh (2003a, b)
provide a comprehensive, two-part review of novelty detec-
tion methods and their applications.

A classic method for novelty detection is the Hotelling’s
T? chart (Montgomery 1997), widely used in statistical
quality control. In recent years, there have emerged more
powerful novelty detection methods based on minimum
volume (MV) set estimation. These methods find the min-
imal closed set covering a certain probability mass « with
respect to the unknown density of the normal events. If a
new event belongs to the minimal set, one regards the event
as normalcy; otherwise, anomaly. For the resulting novelty
detection rule, the probability that normal events lie outside
the minimal set, i.e., the type-I error, is controlled at 1 — a.
Because the volume of the set is minimized, the probability
that potential abnormal events fall inside the set, i.e., the
type-II error, is also minimized.

There are primarily two schools of thought about esti-
mating an MV-set. The first school attempts to directly esti-
mate the MV-set by choosing the minimal set containing
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a portion of the sample points among a special class of
measurable sets such as a Glivenko-Cantelli (GC), Vapnik-
Chervonenkis (VC), or Donsker class. Many (reproduc-
ing) kernel-based methods find the MV-set from a simple
GC class in reproducing kernel Hilbert space, or RKHS:
The one-class support vector machine method considered
half spaces (Scholkopf et al. 2001); the support vector
domain description method, the closed balls (Tax and Duin
1999); and the kernel minimum volume covering ellipsoid
method, the ellipsoids (Dolia et al. 2004, 2007). Because
of the simplicity of the GC class considered, computa-
tionally efficient algorithms based on quadratic program-
ming are developed for these methods. However, because
the MV-set in RKHS is not directly associated with the
MV-set in the original space, these methods tend to gen-
erate loose set coverings and thus have high type-II error
rate. For example, see Figure 2 in §3 of this paper or
Figures 5 and 6 of Hoffmann (2007). More complicated
instances of GC-classes could be formed as a composition
of simple GC-classes, for example, the k-constructible for
a finite union of the sets in GC-classes (Polonik 1995) or
the dyadic decision tree for a composition of boxes (Scott
and Nowak 2006). Through composition of simple sets,
the MV-set estimator can be more flexible and yields a
smaller type-II error rate. Nonetheless, because the num-
ber of the possible combinations of composing the sim-
ple GC-classes increases exponentially as the dimension
of data increases, implementation of the composition-based
methods is a challenge. In fact, the k-constructible remains
a theoretical development without a computational imple-
mentation, and the application of the dyadic decision tree
has been restricted to low-dimensional settings.

The second school of thought for MV-set estimation uti-
lizes the relationship between the MV-set and the level set
of a probability density and reduces the MV-set estimation
problem to a density level set estimation problem (Garcia
et al. 2003). The appropriate level of the density level set
is a solution to an optimization problem. Because a ker-
nel density estimator needs to be plugged into the solu-
tion of the optimization problem to obtain an estimated
density level set, the resulting estimator is called a plug-
in estimator. Although such a plug-in estimator has some
nice theoretical properties (Garcia et al. 2003, Baillo 2003,
Cadre 2006), it is not computable and thus is mainly of
theoretical value rather than being practically useful. On
the other hand, Hyndman (1996) discussed an appealing
idea to obtain a computable plug-in estimator. However,
this computable estimator is neither analyzed theoretically
nor evaluated by empirical studies. The primary objective
of this paper is to provide a theoretical support and exten-
sive empirical studies on the plug-in estimator proposed by
Hyndman (1996).

The rest of this paper is organized as follows. In §2,
we formulate the novelty detection problem as a level set
estimation problem and present a computable plug-in esti-
mator of a density level set. We show that this plug-in

estimator is asymptotically consistent. In §3, we test the
computable plug-in estimator in a number of examples,
including two artificial data sets and four real data sets, and
compare its performances (in terms of type-I and type-II
error rates) with the T? control regions and four exist-
ing MV-set estimators, which are the one-class SVM, the
support vector domain description, the minimum volume
covering ellipsoid, and the dyadic decision tree. Some con-
cluding remarks are given in §4.

2. Novelty Detection by Set Estimation

We want to define a novelty detection rule D so that if
a new data point x € % C R? meets D(x) > ¢, we infer
that x is a normal event, otherwise x is an abnormal
event. Borrowing terminology from statistical hypothesis
testing, we call A = {x: D(x) > t} the acceptance region.
We assume that a normal event is a random draw from a
probability distribution on % with density function f(x).
For a given a € (0, 1), it is required that P(x € A | x
is a normal event) > «. This requirement controls the prob-
ability that a normal event being incorrectly classified, i.e.,
the type-I error, to be no greater than 1 — a. The require-
ment can also be written in terms of the probability density
function of the normal event as [, f(x)dx > a.

Let sf = {A: [, f(x)dx > a} denote a collection of the
acceptance regions meeting the requirement that controls
the type-I error. To select the most suitable acceptance
region from the collection &, a sensible criterion is to min-
imize the probability that an abnormal event belongs to
A € 5, i.e., the type-II error of the novelty detection. If
the abnormal event is from a probability distribution on 2%
with a density bounded above by a constant C on A € ¥,
then the type-II error is bounded by CA(A), where A(A)
denote the Lebesgue measure of A. Because the density
function of the abnormal event is unknown, we reduce the
target of minimizing the type-II error to minimizing the
upper bound CA(A), or equivalently, the volume A(A) of
the set A. Thus, the acceptance region A* € s¢ for novelty
detection is defined as a solution of the following mini-
mization problem:

min{)\(A): /Af(x)dx>a}. (1)

The detection rule is obtained by setting D(x) = 1,.(x)
and r = 0. A solution A* of (1) is called a minimum vol-
ume (MV) set (Polonik 1995, Scott and Nowak 2006).
Therefore, the problem of deriving a novelty detection rule
is reduced to the one of finding an MV-set. In practice,
the density function f that appeared in (1) is unknown
and needs to be estimated using observations from normal
events.

2.1. Plug-In Estimation

In this section, we briefly review the development of a plug-
in estimator of a density level set for MV-set estimation.
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We also show that the plug-in estimator is not computable,
and thus motivate our study of a computable estimation in
this paper.

Define the level set of density f at level y by A, =
{x: f(x) > y}. Garcia et al. (2003) showed that, under some
regularity conditions, the density level set at a suitable level
y is a minimum volume set. In fact, Garcia et al. (2003)
proved the result for univariate densities but the argument
goes through for multivariate densities. According to this
result, we can restrict our attention to density level sets
when finding an MV-set. Therefore, the optimization prob-
lem (1) is reduced to

min{)\(Ay): Af(x)dx}a}. (2)

By monotonicity of the Lebesgue measure, A(A,) is a
decreasing function of y and minimizing A(A,) is equiv-
alent to maximizing y. Thus, optimization problem (2) is
equivalent to

max{y€R+: /Avf(x) dx}a}. 3)

If f is continuous and A({x: f(x) = y}) =0 for all
y€(0,sup, f(x)), problem (3) has a unique solution
(Garcia et al. 2003). Denote the solution as y*. We call
the corresponding level set A, a minimum volume cut and
denote it as MVC(a; f).

Because f is unknown, one can replace it by the follow-
ing kernel density estimator:

= 2k, @

n i=1

where K is a kernel function, s, > 0 is the bandwidth,
and x,, ..., x, are observations from the distribution with
density f, i.e., the normal events. Optimization problem (1)
then becomes

max{y cR*: /
A

ﬂuﬁh>a}

n

where A, | = {x: f,(x) >y}. (5)
The estimated level set An,v corresponding to the solu-
tion of this problem is called the plug-in estimator
of MVC(a; f) and is denoted as MVC(a; fn) Under
some regularity conditions, Cadre (2006) proved that
MVC(a; f,) is a consistent estimator of MVC(a; f).
Computing MVC(a; f,) is difficult. To solve optimiza-
tion problem (5), one needs to know which y satisfies the
inequality constraint, | i, fn (x) dx 2 a. Unfortunately, the
integral of f,, (x) over the complicated set {x: fn(x) >y}is
usually intractable. As a consequence, the plug-in estima-
tion is not applicable in practice.

2.2. A Computable Plug-In Estimator

The evaluation of the integral in optimization problem (5)
can be avoided, using an idea of Hyndman (1996). The idea
is to replace the integral with respect to the kernel density
estimation by the integral with respect to the empirical dis-
tribution. We show in this section that the plug-in estimator
induced by this idea is consistent.

Denote the empirical distribution by P,(A) =
(1/n) ¥, 1,4(x;) for given data points x, .., x,,. We solve

max{y € R*: PH(A,”) > al,

where AM ={x: ﬁ,(x) >y} (6)

This problem has a closed-form solution that is easily com-
putable. Note that

R 1. N, ,
Pn(An,y) = ; 21: l{fu(xi)>y} = n

where N, , is the number of observations that satisfy
fn(xi) > y. Using this equality, it is easy to see that
P,(A, ) is a left-continuous, nonincreasing step func-
tion with steps 1/n and f,,(xi) as jump points. There-
fore, the solution z, of optimization problem (6) is
the (|n(1 —a)])th-order statistics of {fn(xl),f;(xz), ey
fn(x,,)}, where |a| denote the largest integer that is smaller
than or equal to a. For future use, denote the level set of fn
at level z,, {x: f,(x) >z,}, by MVC(a; f,, P,). The nov-
elty detection rule is given as follows: if a new data point
x belongs to MVC(a; fn,Pn), x is regarded as a normal
event, otherwise as an abnormal one.

To prove the consistency of the computable plug-in
estimator given in the previous paragraph, we introduce
three regularity conditions. These conditions are all used
in Cadre (2006) to obtain the consistency of the original
plug-in estimator. In the following, let ® C (0, sup f) be
an open interval that contains the level y* corresponding
to MVC(a; f), and let || - || stand for the Euclidean norm
over any finite-dimensional space. Let AAB= (AN B)U
(AN B) denote the symmetric difference of sets A and B.

ASSUMPTION 1. The kernel function K is continuously dif-
ferentiable and has compact support. Moreover, there exists
a monotone nondecreasing function p: R, — R such that
K(x) = u(||x||) for all x € R

ASSUMPTION 2. The density function f is twice continu-
ously differentiable and f(x) — 0 as ||x|| — oo.

ASSUMPTION 3. For any t € O, inf .y, [ Vf|| > 0, where
Vf(x) is the gradient of f at x.

Assumptions 2 and 3 imply that for any t € @, A(f [ —
€,1+€]) — 0 as € — 0 (Cadre 2006).

THEOREM 1. Suppose that Assumptions 1, 2, and 3 hold.
If the bandwidth h, used in the kernel density estimation
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satisfies that nh®**(logn)* — 0 and nh?*?/(logn) — oo,
then

/  f(x)dx— a in probability,
MVC(a; f,, Py)

MMVC(a; f,, PL,YAMVC(a; f)} — 0 in probability.

The first part of the theorem says that the coverage
probability of MVC(«; f,, P,) for normal events con-
verges to the target value «. The second part says that
MVC(a; fn P,) is a consistent estimate of the theoretical
MV-set MVC(a; f). The proof of the theorem is given in
the online appendix.

An electronic companion to this paper is available
as part of the online version that can be found at
http://or.journal.informs.org/.

REMARK 1. To get some guidance on what bandwidth
to use in practice, we write h, = n~* with s > 0. To
make such £, satisfy the conditions in Theorem 1, s
should be in the range that (d +3)/((d+2)(d+4)) <
s < (2d +3)/(2(d +2)*). Because we do not have any
result on convergence rate, we cannot say which value
within the range gives the best rate of convergence. How-
ever, for d > 2, the gap between (d +3)/((d +2)(d +4))
and (2d +3)/(2(d +2)?) is as small as 0.01, and the gap
decreases as d increases. In our implementation of the
method, we use the average value of the two bound values:

i—o (d+3) (2d +3)
ST @+ (d+4) T T 2d+2)

REMARK 2 (MV-SET ESTIMATION FOR MULTIVARIATE NOR-
MAL DISTRIBUTION). This remark connects the classical sta-
tistical theory of quality control to the theory of minimum
volume set. We show that Hotelling’s T2 control region is
a special case of the MV-set estimation. Suppose that f(x)
is the density function of the multivariate normal distribu-
tion N (g, 2,). Its level set with level y is given by A, =
{20 (x = o) 25" (x — o) < 8(y)}, where 8(y) is a func-
tion of y. For a random vector X from N (u,, %), (X —
o) =5 (X — ) follows a x? distribution with d degrees
of freedom (see Mardia et al. 1980, pp. 66-76). Using
this fact, we obtain that 6(y) = 2 , ensures the P(A,) =
@, where x? , is the ath-quantile of the y; distribution.
Therefore, MVC(a; f) = {x: (x — po) = (x — po) <
Xi, 4}- When (i, %) are unknown, one can replace them
by the MLE, (i,,, in), in MVC(e; f) and obtain a plug-in
estimator:

MVC(a; f)=(x: (x = 2)" S (=) < X2} )

The consistency of this plug-in estimator follows directly
from the standard asymptotic theory of the MLE. The
novelty detection rule associated with (8) is the same as
Hotelling’s 72 control region, where (X — f,)"3 (X —
[,) is the test statistic and )(fh 4 1 equivalent to the upper
control limit (UCL) for sufficiently large n (see Mont-
gomery 1997, pp. 369-371).

™)

3. Experiments

We applied the computable plug-in estimator to a number
of examples of artificial or real data, and we compared it
with four existing methods: the one-class SVM (OC-SVM),
the support vector domain description (SVDD), the kernel
minimum volume covering ellipsoid (KMVCE), and the
dyadic decision tree (DDT). Although the plug-in estima-
tor works for high-dimensional data, we chose to perform
data reduction first by using principal component analy-
sis (PCA) to speed up the learning process. The reduced
dimension is chosen so that the retained principal com-
ponents explain 90% of the original variability. Because
determination of reduced dimension is important to the sub-
sequent novelty detection, further study of this issue is of
interest but beyond the scope of this paper.

We used two kernel functions when implementing the
computable plug-in estimator: the standard Gaussian kernel
and a truncated Gaussian kernel that satisfies Assumption 1.
Let B(a, b) denote the open cube of width 2b centered at a.
The truncated kernel has support of B(0,3) and has the
form

— exp{—(1/2)x"x}
Reo= fg(o, 3) exp{—(1/2)x"x} dx

for x € B(0, 3).

Note that the standard Gaussian kernel does not have a
compact support, so Assumption 1 used in Theorem 1 is
not satisfied. Because the standard Gaussian kernel has tails
that decay quickly to zero, we expect it behaves similarly to
compactly supported kernels. Cadre (2006) commented that
the compact support condition was used mainly to simplify
proofs.

For the reproducing kernel-based methods such as OC-
SVM, SVDD, and KMVCE, we used a radial basis function
kernel K (x, y) =exp{—o|x —y||*}. To choose the value of
o, we used a five-fold cross-validation on the training data
set of normal events. We used the OC-SVM implementa-
tion from R package €1071 (Dimitriadou et al. 2009) and
the SVDD implementation from DDTools kindly provided
by the author (Tax 2009). For the KMVCE, we imple-
mented the algorithm given by Dolia et al. (2007). For the
DDT, we used the authors’ implementation of the method
(Scott 2006) and followed the guideline in Scott and Nowak
(2006) to select tuning parameters. In particular, we used
the Rademacher penalty for the penalty function (Scott and
Nowak 2006) and chose the maximum number of the cuts
so that the dictionary size at the maximum depth is close
to the training sample size, where the dictionary is a kind
of data structure representing the tree nodes.

In all experiments, the target coverage probability of nor-
mal events is set to 0.95, which is equivalent to the type-I
error rate of 0.05. However, for the KMVCE, we did not
control its type-I error rate because there is no way to do
so by the nature of the method.

For each data set, we constructed the training and test
data sets as follows. The training data are randomly chosen



Park, Huang, and Ding: A Computable Plug-In Estimator of Minimum Volume Sets

Operations Research 58(5), pp. 1469-1480, © 2010 INFORMS

to have two-thirds of data points from normal events; the
test data set consists of the remaining data points from
normal events and all data points from abnormal events.
For all methods, the training data are used to construct
the decision rule, and the test data are used to measure
performance.

Comparison of methods was conducted in two ways.
First, we analyzed the boundary of the MV-set produced
by each method to see if the boundary compactly covers
data points from normal events. Second, we compared the
methods using three performance measures for detection
capability: the type-I error, type-II error, and overall mis-
classification error. To reduce the variability of these per-
formance measures, the splits to training and test data are
repeated 50 times, and we take the average value of each
performance measure over the 50 repetitions.

3.1. Artificial Data: Gaussian

We start with a simple set of artificial data of normal events
generated from a Gaussian density. The objective of using
this data set are to verify how well the MV-set estimated
by various methods matches the T? control region under
normality. We generated 1,000 data points of normal events
from a Gaussian distribution defined on R? and generated
600 data points of abnormal events from a mixture of three
Gaussian distributions that overlap with the Gaussian dis-
tribution representing normal events. We used R package
mclust (http://cran.r-project.org/web/packages/mclust/) to
generate the random samples.

Figure 1 compares the detection boundaries of the
MV-set estimation methods when the 1,000 data points of
normal events are randomly split into a training and test
data set in the ratio of 2:1. In this figure, the training data
are plotted as solid dots, the test data of normal events as
circles, and the test data of abnormal events as crosses.
The solid contour lines describe the boundaries covering
a portion of the normal events from various methods. The
dotted contour lines represent the boundary of the T? con-
trol region. We observe that the boundaries of the two
plug-in estimators are close to the 72 boundary, much as
expected, because of the normality assumption. The bound-
aries of the OC-SVM and KMVCE are also close to the 7>
boundary but more sensitive to some outliers. The bound-
ary of the DDT is relatively too compact when compared
to the T? boundary. It is also interesting to see that there is
no big difference between the two plug-in methods using
different kernel functions. This indicates that the compact
support requirement on the kernel function could be relaxed
in practice.

Table 1 compares the six methods in terms of their
type-1, type-II, and overall misclassification errors, based
on 50 random splits of normal events into training and test
data sets. The two settings of the plug-in estimators and the
SVDD show similar classification error rates to the 7°s.
The other three methods have a higher type-I error or a
higher type-1I error. These results are consistent with the
qualitative analysis on the boundaries from Figure 1.
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Table 1. Error rates of various methods for Gaussian
distribution.
Type-1 error  Type-II error
Method (false alarm) (miss detection) Misclassification
T? 0.0492 0.0129 0.0258
OC-SVM 0.1088 0.0076 0.0435
SVDD 0.0544 0.0112 0.0265
KMVCE 0.0248 0.0404 0.0349
DDT 0.1104 0.0126 0.0578
Plug-in 0.0612 0.0121 0.0295
(Gaussian)
Plug-in 0.0617 0.0115 0.0293
(truncated)

3.2. Artificial Data: Gaussian Mixture

We generate 1,000 data points of normal events from a mix-
ture of three Gaussian distributions on R2. We also generate
600 data points of abnormal events from another mixture
of three Gaussian distributions.

Figure 2 shows the decision boundaries of the six meth-
ods, based on one random formation of the training and test
data set. Both versions of the plug-in estimators represent
the support of the Gaussian mixture distribution tightly, and
we also reaffirmed that their boundaries are similar. We
observe that the OC-SVM produces an irregular boundary
to cover a few outliers. The SVDD and MVCE methods
are better than the OC-SVM, but they are still sensitive to
outliers, generating less-compact bounds and having higher
type-II errors. Note that all three methods are based on
RKHS. Boundaries in the RKHS might not be compact
in the original space even though they are compact in the
RKHS. The DDT method generates an inflexible bound-
ary with some over-ballooned parts and some too-compact
parts. As a result, it has relatively higher type-I errors.
Table 2 shows that both versions of the plug-in estimators
outperform other methods in terms of the misclassification
rate.

3.3. Breast Cancer Detection

This data set is the Wisconsin Diagnostic Breast Cancer
data set, available on the UCI Machine Learning Repos-
itory (http://archive.ics.uci.edu/ml/). The data set contains

Table 2. Error rates of various methods for Gaussian
mixture.
Type-I error  Type-II error
Method (false alarm) (miss detection) Misclassification
OC-SVM 0.1061 0.0241 0.0532
SVDD 0.0533 0.0315 0.0392
KMVCE 0.0241 0.0919 0.0678
Dyadic tree 0.1349 0.0105 0.0680
Plug-in 0.0579 0.0205 0.0338
(Gaussian)
Plug-in 0.0582 0.0200 0.0335
(truncated)
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Figure 1. Data and detection boundaries of various methods for normal events from a single Gaussian distribution (solid
dots: training data; circles: test data from normal events; crosses: test data from abnormal events; solid lines:
detection boundary from each method; dotted lines: 72 boundary): (a) OC-SVM, (b) SVDD, (c) KMVCE, (d)
DDT, (e) plug-in estimator with Gaussian kernel, (f) plug-in estimator with truncated Gaussian kernel.

(a) One-class SVM (OC-SVM) (b) Support vector domain description (SVDD)
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Figure 2. Data and detection boundaries of various methods for normal events from a Gaussian mixture (solid dots:
training data; circles: test data from normal events; crosses: test data from abnormal events; solid lines:
detection boundary from each method): (a) OC-SVM, (b) SVDD, (c) KMVCE, (d) DDT, (e) plug-in estimator
with Gaussian kernel, (f) plug-in estimator with truncated Gaussian kernel.

(a) One-class SVM (OC-SVM) (b) Support vector domain description (SVDD)
20 20

10

-10 4

—-20 4

(c) Kernel MVCE (KMVCE) (d) Dyadic decision tree (DDT)

(e) Our plug-in estimator (Gaussian) (f) Our plug-in estimator (truncated)
20 20
10 104
o 0 o 0
-10 -10 1
—20 20
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Table 3. Error rates of various methods for breast can- Table 4. Error rates of various methods for image seg-
cer data. mentation data.
Type-1 error  Type-II error Type-1 error  Type-II error
Method (false alarm) (miss detection) Misclassification Method (false alarm) (miss detection) Misclassification
OC-SVM 0.1088 0.0490 0.0718 OC-SVM 0.0947 0.0247 0.0283
SVDD 0.0534 0.1163 0.0925 SVDD 0.0707 0.0241 0.0265
KMVCE 0.0490 0.0936 0.0766 KMVCE 0.0646 0.0621 0.0622
DTT 0.0944 0.0033 0.0480 Dyadic tree 0.0670 0.0161 0.0201
Plug-in 0.0604 0.0045 0.0258 Plug-in 0.1017 0.0090 0.0138
(Gaussian) (Gaussian)
Plug-in 0.0610 0.0045 0.0260 Plug-in 0.1028 0.0089 0.0138
(truncated) (truncated)

699 instances of cancer cases, among which there are 458
benign instances and 241 malignant instances. Each case
is represented by nine cancer-related attributes. The nine
attributes are reduced to two principal components by per-
forming the PCA.

Figure 3 shows the decision boundaries of the six meth-
ods, based on one random formation of the training and test
data sets along with the data points. All three kernel meth-
ods overemphasize the long extruding region just to cover
a few benign instances so that it misses many malignant
cases. Their decision boundaries echo what we observed
in the artificial data sets, namely, that the kernel methods
appear sensitive to outlying training data points. The dyadic
decision tree method and the two versions of the plug-in
estimators show similar performance, all providing reason-
ably tight boundaries describing the benign data. This qual-
itative analysis on Figure 3 is reaffirmed by the quantitative
results in Table 3. The plug-in estimators have the type-
I error rates close to the target value 5%, and the type-II
error rates are at most one-tenth of the type-II errors of the
kernel methods. The DDT method performs similarly to
the plug-in methods in terms of type-II error rates, but its
type-I error rate is elevated due to its over-tight boundary.

3.4. Image Segmentation

This data set, also available from the UCI Machine Learn-
ing Repository, has 2,310 instances of the features describ-
ing one of the seven different images (a brick face, a
sky, a foliage, a cement, a window, a path, and a grass
image, respectively). The number of instances for each
type of image is equal to 330. Each image is character-
ized by a set of 19 attributes such as colors, hue, satu-
ration, and line density, among others. It was used as a
data set for testing multiclass classification methods, but
here we modify this data set to test novelty detection meth-
ods. We treat the 330 instances from the brick face image
as the normal events and treat the rest of the images as
abnormal events. The PCA is again used to reduce the 19-
dimensional attribute to two principal components.

As shown in Figure 4, all methods generate good com-
pact supports of the sample points from the brick face
image. However, the three kernel methods again make

extruded regions to cover a few outliers. Table 4 shows that
the plug-in estimators have the smallest misclassification
error rate among all methods.

3.5. lonosphere Data

This data set is radar data, available on the UCI Machine
Learning Repository, collected by a system in Goose Bay,
Labrador for the information on the ionosphere. It has 351
signals received from the system, and each signal consists
of 17 pulse numbers. A pulse number is complex, so that
it has a real part and an imaginary part, i.e., each sig-
nal consists of 34 attributes. The objective is to check if
the received signals are good enough to contain meaning-
ful information on the ionosphere. Among the 351 signals,
225 were labeled as “Good” and the remaining as “Not
Good.” We treat the “Good” signals as normal events and
the “Not Good” signals as abnormal events. As in the pre-
vious examples, the PCA is used to perform data reduc-
tion before novelty detection is conducted. In this case,
the reduced dimension is five. For data dimension higher
than two, it is difficult to present the graphical illustration.
Therefore, we report only numerical performance measures
in Table 5. In this case, the plug-in estimators have rela-
tively higher type-I error rates but lower type-II error rates
than other methods. The plug-in estimators perform the best
in terms of misclassification error rate.

3.6. Speech (Vowel) Recognition

This data set, also available on the UCI Machine Learning
Repository, consists of 11 vowel sounds pronounced by 15
individual speakers. Each speaker says each vowel 6 times,
so we have a total of 990 vowel sounds. Each sound is
represented by 10 sample points of the sound signal, so
there are 10 attributes. To test the novelty detection meth-
ods, we treat the first 3 vowel sounds as normal events and
the rest of the vowel sounds as abnormal events. The PCA
reduces the 10 attributes to 4. As in the ionosphere data
example, we cannot show the graphical illustration here
but simply present the numerical performance measures in
Table 6. Again, the plug-in methods have relatively higher
type-I error rates but smaller type-II error rates. The plug-in
methods are superior to other methods in terms of misclas-
sification error rate.
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Figure 3. Data and detection boundaries of various methods for the breast cancer data set (solid dots: training data;
circles: test data from normal events; crosses: test data from abnormal events; solid lines: detection boundary
from each method): (a) OC-SVM, (b) SVDD, (c) KMVCE, (d) DDT, (e) plug-in estimator with Gaussian
kernel, (f) plug-in estimator with truncated Gaussian kernel.
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Figure 4. Data and detection boundaries of various methods for the image segmentation data set (solid dots: training
data; circles: test data from normal events; crosses: test data from abnormal events; solid lines: detection
boundary from each method): (a) OC-SVM, (b) SVDD, (c) KMVCE, (d) DDT, (e) plug-in estimator with
Gaussian kernel, (f) plug-in estimator with truncated Gaussian kernel.
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Table 5. Error rates of various methods for ionosphere Table 6. Error rates of various methods for vowel
data. recognition data.
Type-1 error  Type-II error Type-1 error  Type-II error
Method (false alarm) (miss detection) Misclassification Method (false alarm) (miss detection) Misclassification
OC-SVM 0.1109 0.3292 0.2478 OC-SVM 0.0769 0.2331] 0.2157
SVDD 0.1292 0.2676 0.2164 SVDD 0.0652 0.1999 0.1851
KMVCE 0.0048 0.9251 0.5817 KMVCE 0.0489 0.4766 0.4290
DDT 0.1873 0.2260 0.2075 DDT 0.2933 0.0518 0.0901
Plug-in 0.1952 0.1524 0.1684 Plug-in 0.1724 0.0502 0.0638
(Gaussian) (Gaussian)
Plug-in 0.1984 0.1457 0.1654 Plug-in 0.1756 0.0476 0.0618
(truncated) (truncated)

3.7. Operating Characteristic Analysis

So far, we compared the error rates of various methods
for different data sets for a fixed target type-I error rate.
In this subsection, we present an alternative performance

comparison by using a modified operating characteristic
curve (OC curve), where we plot the realized type-1 error
rate versus the realized type-II error rate. More precisely,
we randomly form training and test data sets as in the

Operating characteristic curves for four real data sets: each curve plots the type-II error rates of each method

given specific type-I error rates. (A curve going through the left and lower portion of the graph represents a

Figure 5.
better method.)
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previous subsections, where the test data set contains one-
third of the normal events and all abnormal events. For each
target o value that ranges from 0.005 to 0.2 by step size
0.005, we apply all methods on the training data set and
compute the type-I and type-II error rates on the test data
set. We repeat 500 times the process of randomly forming
the training and test data sets, applying the methods and
computing the error rates. The error rates averaged over 500
repetitions are then used in the plot of a modified OC curve.

The modified OC curves for four methods (i.e., the OC-
SVM, SVDD, DDT, and the plug-in estimator) are plotted
in Figure 5 separately for the four real data sets. We do not
consider KMVCE because there is no way to control its
a level. The results of the plug-in estimator with the stan-
dard Gaussian kernel are omitted because they are almost
the same as those based on the truncated Gaussian ker-
nel. In Figure 5, the modified OC curves for the plug-in
estimator are almost always located at the lower-left cor-
ner, representing smaller type-I and type-II error rates than
other methods.

4. Conclusion

The computable plug-in estimator for novelty detection has
the following features. First, the type-I error, i.e., the false
alarm rate, can be directly controlled. This is different
from other machine learning methods (such as the one-class
SVM) or heuristics-based methods. Second, the type-II
error of novelty detection is minimized. Third, the com-
putable plug-in estimator does not require the normality
assumption. When the normality assumption does hold, the
plug-in estimator produces an acceptance region similar to
the T? control region. Finally, the computable plug-in esti-
mator has a practical algorithm that is straightforward to
implement. The computable plug-in estimator is not a new
methodology (Hyndman 1996), but lack of theoretical sup-
port and empirical evaluation makes it less well known. We
hope this paper will improve the acceptance of this simple
but powerful methodology as an alternative to many other
novelty detection methods.

5. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://or.
journal.informs.org/. This electronic companion contains a
proof of consistency of the computable plug-in estimator.
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