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Abstract—A linear system whose model matrix is of size n X p is con-
sidered structured if some p row vectors in the model matrix are linearly
dependent. Computing the degree of redundancy for structured linear sys-
tems is proven NP-hard. Previous computation strategy is divide-and-con-
quer, materialized in a bound-and-decompose algorithm, which, when the
required conditions are satisfied, can compute the degree of redundancy
on a set of much smaller submatrices instead of directly on the original
model matrix. The limitation of this algorithm is that the current decom-
position conditions are still restrictive and not always satisfied for many
applications. We present a mixed integer programming (MIP) formulation
of the redundancy degree problem and solve it using an existing MIP solver.
Our numerical studies indicate that our approach outperforms the existing
methods for many applications, especially when the decomposition condi-
tions are not satisfied. The main contribution of the paper is that we tackle
this challenging problem from a different angle and test a promising new
approach. The resulting approach points to a path that can potentially solve
the problem in its entirety.

Note to Practitioners—People have long realized the importance of
having sensor or measurement redundancy in a system as this redundancy
safeguards the system against sensor failures or measurement anomalies,
so much so that the degree of redundancy is a reflection of the system’s re-
liability or fault-tolerance capability. Because of dependence relationship
among the system’s components or subsystems, computing the degree of
redundancy is not a straightforward matter for practical systems which
embed certain structure. There were just a few methods available for
computing the degree of redundancy, and none of them can handle a wide
variety of applications. Our paper presents an easy-to-use new method,
which, although does not solve the computational issues entirely, does
present a faster, competitive alternative for many applications wherein the
existing methods were not able to calculate the degree of redundancy.

Index Terms—Degree of redundancy, mixed integer programming,
NP-hard, structured linear model.

I. INTRODUCTION

HE research effort reported in this paper is concerned with an
T integer programming (IP) approach for evaluating the measure-
ment redundancy level in linear systems. In the engineering literature,
a linear model of the following format has been a popular choice for
establishing connections between sensor measurements y and system
states x, through a system matrix H

y=Hx+e (D

where y and e are n X 1 vectors, x isa p X 1 vector,and Hisann X p
matrix of rank p. The last term e is the residual term, including mea-
surement noises as well as the higher order nonlinear effects neglected
by the above model due to the action of linearization. This in fact is the
observation equation used in a typical linear state-space model [1] and
in the Kalman filter [2].
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In (1), the number of measurements, n, should be greater than the
number of states, p; otherwise one will run into an ill-posed system
where there is no unique estimation of the states. Since there are more
measurements than system states, loosely speaking, those beyond the
smallest number of measurements necessary for uniquely estimating x
are considered redundant. The degree of redundancy, d*, was formally
defined in the literature (see, for example, [3]) as follows:

d* = min {d — 1 : there exists H_g) s.t. 7 (H(,d)) < p} 2)

where H(_ 4y is areduced matrix after deleting d rows from the original
H matrix, and r(+) is the rank function. The interpretation of the above
condition is simply that the redundancy degree of the linear system
is characterized by how many sensor failures (or measurement out-
liers) the system can tolerate without sacrificing the identifiability of
any state.

Researchers consider the measurement redundancy as an index of the
system’s reliability [3]-[5] and this explains the importance of quanti-
tatively calculating it. When the system has no intrinsic structure, math-
ematically it means that any p row vectors of H are linearly indepen-
dent and the degree of redundancy is n — p. In this case, H is called
unstructured. However, when there exists some intrinsic structure in
the system, some p row vectors of H are linearly independent and H
is called structured. In this case, the degree of redundancy is smaller
than n — p but evaluating it quantitatively is no longer a straightfor-
ward task. Structured linear systems are pervasive in engineering ap-
plications. Some instances reported in the literature include a wireless
sensor network [6], a distributed (wired) sensor system in multistation
assembly [7], and sensor systems in electric power networks [8].

Due to the relevance of structured model matrices in engineering
systems, it is important to devise efficient methods to quantitatively
evaluate the degree of redundancy for such systems. There are not
that many, but only a couple of methods available, which we will re-
view in Section II. One difficulty in devising methods to address the
above-posed technical question is that theoretically evaluating the de-
gree of redundancy for a structured H is an NP-hard problem [9], which
makes solving the problem very challenging, especially for large-scale
systems.

The recently reported effort in [7] and [9] has made significant
improvements toward devising efficient evaluation algorithms but the
resulting methods therein work well under some restrictive conditions,
and consequently, these methods are efficient for a subset of problems
satisfying the required conditions but not so efficient otherwise.
In this paper, we propose to look at the problem from a different
angle. We formulate the redundancy evaluation problem as a (mixed)
integer programming (IP) problem and solve the IP problem using
a branch-and-cut method embedded in the commercial optimization
solver CPLEX [10]. Our computational studies show merits of using
the IP approach, and also point to the areas for potential improvement.

The remainder of this paper is organized as follows. Section II re-
views the existing methods. Section III provides the details of our IP
approach. Section IV includes the computational studies, as well as dis-
cussions on merits and limitations of the approaches (including the IP
approach). Finally, we conclude our paper in Section V.

II. RELATED WORK

By definition, calculating the degree of redundancy in a linear system
reduces to the problem of finding the minimum number of row vec-
tors in matrix H that if removed, rank of H, i.e., r(H), reduces. We
introduce the following notations: for a V' C {1,...,n}, Hy de-
notes the matrix obtained by removing from H all rows h;, for ¢ €
{1,...,n} \ V. Also, define the operator I as I(Hy) = V. The
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problem of evaluating the degree of redundancy is to find the min-
imum integer value d* such that there existsa V' C {1,...,n} where
V| =n—d* —1and 7(Hv) < p. The exhaustive rank testing pro-
cedure that finds d* is to search over all row subsets of H as follows:

Algorithm 1. (Exhaustive Rank Testing [3])

Step 0—Set d = 1.

Step 1—Check all subsets V' C {1,...,n} where [V| = n — d, to
see if there exists any such that r(Hy ) < p. If yes,d” =d — 1
and stop. Else set d = d 4 land repeat Step 1.

We note that the assumption that »(H) = p is what is usually the
case in practice. The case of 7(H) < p can obviously be handled by
Algorithm 1 in a similar fashion.

If H possesses some special structure, the bound-and-decompose al-
gorithm [7] has substantial computational benefits. By applying a trans-
formation algorithm [7], [11], H becomes a bordered block diagonal
form (BBDF) [7]

B
B-
B.
S, S, --- S,

where the block B; is an n; X p; matrix, and S; is an ns X p;

matrix for ¢ = 1,...,r. The S; matrices form the border. We
have n, + > i m = n and ), ,p+ = p. The unwritten
elements are zero. Let U be a subset of {1,...,7}, and define

H[U] as the reduced BBDF obtained by removing from H the
submatrices B; and S; for ¢ € {1,...,7} \ U. Then, for any
E e {1,....r} if g*(H") > ((k 4+ 1)/k)ns — 1, we have
g (H?) = ming{g"(H[U]") : U C {1,...,r} and |U| = k},
where g* (H) is the cogirth of the vector matroid defined over columns
of the matrix H (for the concepts of matroid and cogirth, please refer

to [9]).

Algorithm 2. (Bound-and-Decompose [7])

Step 0—Set d = 1.

Step 1—If d < (r/(r —1))ns — 1,set k* = r go to
Step 2; otherwise find k" that gives minimum number of
matrices to be rank-tested based on the decomposition property:
k" = argming, g /(d—ng41)<h<r [ZUQ{LM,W'};HH:k
('LS+ZthU "),

Step 2—Check all H[U]v, where U C {1,...,7}, |U| = k*,
V C I(H[U]) and |V| = n — d, to see if there is any such that
r(H[U]v) < p: If yes, set g* (HT) = d; stop. Else setd = d + 1
and go to Step 1. In the end, the redundancy degree
d* = g*(HY) - 1.

III. 0-1 MIXED INTEGER PROGRAMMING APPROACH

Efficiency of Algorithm 2 is related to the sparsity of the original
system: if the system is highly sparse, meaning the subsystems are of
very small sizes (i.e., small block sizes in BBDF) AND the intercon-
nections are in small number (i.e., fewer border rows) as well, then the
bound-and-decomposition can work effectively. Although sparse sys-
tems do exist, it is unfortunately not guaranteed that actual engineering
systems always satisfy the required sparsity condition.

To address this issue, we propose a novel 0-1 Mixed Integer Pro-
gramming (0-1 MIP) [12], [13] formulation for the redundancy degree
problem and use it to find the redundancy degree of a structured linear
system. Our 0-1 MIP formulation for the redundancy degree problem
is based on the concept of null space (or kernel) of a matrix. The null
space of H, denoted by null(H ), is the set of vectors x € R”, where
Hx = 0.1f r(Hy ) = p then based on a fundamental property in linear
algebra null(Hv ) = {0}, and if »(Hy) < p then the null space will
be of a higher dimension and contains nonzero vectors too. In fact, we
have r(Hy ) + ¢(Hy ) = p, where ¢(Hy ) denotes the nullity of Hy/,
i.e., the dimension of its null space.

As such, the redundancy degree problem can be solved by finding the
minimum number of vectors that if eliminated from H, the remaining
matrix, i.e., Hy«, has a nonzero null space (V* is the index set of
the remaining vectors). The redundancy degree would be one less than
this minimum. This means that if x € R? is the nonzero vector in
null(Hy+ ), the number of h;’s, i = 1,...,n for which h;x # 0
is minimized. Our 0-1 MIP formulation looks for such a vector x. We
assume that all the row vectors of H are scaled such that ||h;||, =
>—1 |hij| = 1.1n other words, if [|hi[|, # 1 thenh; « h;/|[h|,.
Then, our 0-1 MIP formulation is as follows:

min Z qi 3)
=1

s.t.
P
—qiSZhi]ﬂrij,‘ i=1,...,n “4)
j=1
— 1422, <a, <1 j=L....p 5)

r

Y oz=t ©6)

J=1
x; €ER, ¢, z;€{0,1} i=1,...,n; j=1,...,p. @)

Based on constraints (4), if h;x # 0 for any ¢, then the 0-1 variable g;
will get a value of 1 and if h,x = 0 it will get a value of zero because the
objective is to minimize the summation of all ¢;’s. Therefore, objective
(3) is minimizing the total number of vectors outof allh;,i = 1,...,n
for which h;x # 0. For this reason, the optimal objective value will
be d* + 1. We will have V* = {i : ¢; = 0}. However, we need to
make sure that the vector x is nonzero because with only constraint (4),
x = 0 will produce a trivial solution in which all ¢;’s are zeros while
minimizing objective (3).

Constraints (5) and (6) are to force the requirement that x is nonzero.
Based on the combination of these two constraints at least one element
of z, say x;+, will be equal to 1 where we will have z;+ = 1. The other
elements will be between —1 and 1. Therefore, x will be a nonzero
vector, where ||x||sc = max; |2;| = 1, which covers all possibilities
in R” up to a scaling factor.

In practical applications, it is usually true that 7(H) = p and, there-
fore, the formulation (3)—(7) can be used to solve the problem. How-
ever, we would like to note that with a slight modification this formu-
lation can also be used for the case where r(H) < p. If r(H) < p,
then the nonzero vector x would already exist without eliminating any
rows of H. Then, the formulation (3)—(7) cannot be used directly.

On the other hand, a basis for the null space of H can be easily found
using the usual techniques in linear algebra such as row reduction [14].
This basis will consist of p — (H) linearly independent vectors, say
hi,..., h;fr(H y- Now, we can solve the redundancy degree problem
by adding the following set of constraints to formulation (3)—(7):

14

!
E a;;r; =0

7j=1

i=1,....,p—r(H). (©)]
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TABLE I
PROPERTIES OF TEST INSTANCES

Model Matrix H

No. | Size(nxp) | ng| r | bound* | d*
1 26 x 12 2 4 1.67 4
2 66 x 27 3 8 2.42 7
3 154 x 72 2 2 3 4
4 221 x 55 2 11 1.2 13
5 318 x 144 8 4 9.67 4
6 1009 x 252 1 41 0.025 15
7 500 x 383 9 4 11 <5

Notes: #: this is the bound (7/(r — 1))n, — 1
used in Algorithm 2.

TABLE II
COMPUTATION TIMES OF ALGORITHMS 1, 2, AND 3 FOR TEST INSTANCES

Computation Time

No. | Algorithm 1 Algorithm 2 Algorithm 3

1 8 sec. 0.1 sec. 0.1 sec.

2 > 120 hours 6.1 min 15 sec.

3 > 120 hours 120 min 66 sec.

4 > 120 hours 16.5 min 76 min

5 > 120 hours > 120 hours 140 sec

6 | >120 hours 38.2 min > 10 hours
7 > 120 hours > 120 hours >10 hours *

Notes: ## : out of memory.

These constraints force the vector x to be in the row space of H, and
so the optimal objective value to formulation (3)—(8) will give the min-
imum number of h;’s that must be removed in order to have a nonzero
vector x orthogonal to all the remaining h;’s in the row space of H.

We note that our 0-1 MIP formulation is completely general and can
be applied to find the degree of redundancy of any linear system. This
0-1MIP formulation can be solved using existing MIP solution proce-
dures [15]. Readers who may not be familiar with the MIP solution
technique can consult references [12] and [13].

Several computer software packages are available for solving gen-
eral 0-1 MIP problems using the techniques explained above. CPLEX
is one of the best-known packages for this purpose [10], and thus is
indeed what we used for solving our MIP formulation for several test
instances.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we run some numerical experiments to test our
proposed method, and compare its performance with the two existing
methods, reviewed in Section II. Our 0-1 MIP method is called Al-
gorithm 3. The criterion for comparison is of course the computation
time.

The test results are summarized in Tables I and II. We take most of
the testing instances from the literature. In fact, the first six instances
are from three different papers: instances 1 and 2 are associated with
multistation assembly applications, taken from [9], instances 3 and 5
are associated with the wireless sensor network applications, reported
in [6], and instances 4 and 6 are reported in [7]. Instance 7 is a hy-
pothetical instance created by us in order to illustrate some points we
would like to make.

For each instance, Table I shows the size (n and p), number of border
rows (ns), number of blocks (r), the bound used in Step 1 of Algo-
rithm 2 for decomposition, and the degree of redundancy (d*). Table II
shows the computation time using each algorithm. When *“>120 hours”
is listed in the table, it means that the routine is manually terminated

after the reported amount of time. All the methods are tested on the
same computer. Algorithms 1 and 2 were coded in C, and for Algo-
rithm 3, we coded the formulation (3)—(7) in AMPL modeling language
[16] and used CPLEX 10.0 solver to solve the generated formulation
for each instance.

It is not surprising that Algorithm 1 is only appropriate to handle
the small problems (instance 1). For smaller size instances 1, 2, and
3, the MIP performs significantly better than Algorithm 2 even for the
cases where it is possible for Algorithm 2 to do a significant level of
decomposition. In such cases, the 0-1 MIP solver is simply faster than
the exhaustive searches that Algorithm 2 has to do on the submatrices.

For larger instances, we observe that only when Algorithm 2 can do
significant decomposition, that is when the bound is much smaller than
the degree of redundancy (d), it does better than 0-1 MIP (instances
4 and 6). However, when that is not the case (instance 5), MIP does
significantly better. In instance 5, Algorithm 2 does no decomposition
at any iteration because the bound condition is not satisfied.

Instance 5 demonstrates the superiority of 0-1 MIP over Algorithm
2. This case, which is from wireless sensor network, was originally
reported in [6] and Algorithm 2 fails to find the exact degree of redun-
dancy since the decomposition conditions are not satisfied. Structures
like instance 5 are prevalent in the engineering applications and the 0-1
MIP approach not only can be used to find the exact solution but also
can be incorporated into the lower bound-finding procedure in [6] to
substantially speed up the lower bound-finding computation. However,
note that if the problem is too large and significant decomposition in
Algorithm 2 is not possible, all algorithms have difficulty in solving it.
This is demonstrated by our hypothetical instance 7. As we see none of
the algorithms is able to solve this instance within the given time limit.

It is important to note that even when 0-1 MIP is not able to solve
the problem to optimality, it provides upper and lower bounds on the
degree of redundancy, which could be useful in practice. Every feasible
0-1 MIP solution that is found in branch-and-cut gives an upper bound
and the smallest LP relaxation optimal value over all active nodes gives
alower bound [12], [13]. For example, in instance 7 after about 4 hours
of computation, our 0-1 MIP approach finds an upper bound of 5 and a
lower bound of 1 for d*. Unfortunately, it is not able to close this gap
(find the optimal value) even in 10 hours and ultimately it runs out of
memory because of the large size of the resulting branch-and-bound
tree.

V. CONCLUDING REMARKS

We proposed a new method to calculate the degree of redundancy
in linear systems using a 0-1 mixed integer programming formulation
and its solution technique. This method significantly outperforms the
existing algorithms in many cases, especially when the decomposition
conditions are not satisfied. Combining the comparison results and ob-
servations made above, we would like to further articulate the following
points.

(a) The main contribution of our research is to provide a new and
useful MIP formulation for the redundancy degree problem,
which can readily be solved by a commercial software. Fur-
thermore, even if it is not able to solve a problem completely it
provides upper and lower bounds on the degree of redundancy
which may be useful in practice. Note that the proposed 0-1 MIP
does not always outperform the previous bound-and-decompose
method, especially for very large problems because it does not
exploit explicitly and fully the structure embedded in the model
matrix.

(b) The success of Algorithm 3 observed so far also indicates that
a MIP formulation provides a promising solution approach. We
believe that the true solution for this computational problem lies
in efforts that ingeniously exploit the structure of a large-scale
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system, beyond what has been done in the bound-and-decom-
position algorithm. This does not appear to be an easy research
problem, and is indeed our ongoing effort.
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