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Optimal Sensor Distribution for Variation Diagnosis
In Multistation Assembly Processes
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Abstract—This paper presents a methodology for optimal al- Y, Observation vector on statign
location of sensors in a multistation assembly process for the pur- .o f. Degrees of freedom.
pose of diagnosing in a timely manner variation sources that are re- k Station index

sponsible for product quality defects. A sensor system distributed

in such a way can help manufacturers improve product quality ™ Dimension ofX Vk
while, at the same time, reducing process downtime. Traditional 7p Number of parts in an assembly.
approaches in sensor optimization fall into two categories: mul- my, Dimension ofPy.
tistation sensor allocation for the purpose of product inspection ¢, Dimension of Y.
(rat_he_r tha_n dlagn_03|s), and a_lllocatlon of sensors fort_he purpose of s; Number of sensors on pajt
variation diagnosis but at a single measurement station. In our ap- Coordinat iables (t lati
proach, sensing information from different measurement stations * Y1 # oordinate variables (translation).
is integrated into a state-space model and the effectiveness of a dis-vec(+) Vector operator.
tributed sensor system is quantified by a diagnosability index. This X Covariance matrix.
index is further studied in terms of variation transmissibility be- & State transition matrix.
tween stations as well as variation detectability at individual sta- p Input—output model matrix
tions. Based on an understanding of the mechanism of variation r E IsC. &, .B ’
propagation, we develop a backward-propagation strategy to de- ™ qua‘?’ k*k,i D .
termine the locations of measurement stations and the minimum @, 3, w Coordinate variables (rotation).
number of sensors needed to achieve full diagnosability. An as- p(-) Rank of a matrix.
sembly example illustrates the methodology. () x-transform.
Index Terms—Diagnosability, diagnosis of variation sources, M Diagnosability index.
multistation assembly process, sensor distribution. Ailk Transmissibility ratio.
T Detectability power.
NOMENCLATURE & Noise vector.
Ay Dynamic matrix. |. INTRODUCTION
g’“ gg:;rrcggﬁ ?r::ttgg?):‘kétatiob ECENT innovations in sensor technology have enabled
Dk Diaanosability matrix ’ manufacturers to distribute sensors in multistation manu-
DC];F Degrees of )I:reedon% of each riaid work iecefacturing processes. For example, optical coordinate measuring
DO% _ 3 for a 2-D riaid bod DOI% _ 6 fofa machines (OCMM) are built into automotive assembly lines and
3-D i _id bod 9 Y. o in-process CMMs are used in transfer-line machining processes.

I Numbgerof a>r/;cs involved in the assembl atstatioA distributed sensor system offers the enhanced capability of

k I P y Hiagnosing in a timely manner process variation sources that
N N.umber of manufacturing stations cause product quality defects. A distributed sensor system en-
P Input vector. the fixture dgviation véctor of stationables manufacturers to improve product quality and reduce pro-

k 3 P ' duction downtime. However, effective use of sensing data in di-
X, State vector, the part deviation vector on stafion agnosing variation sources depends to a great extent on the op-

timal design of the distributed sensor system. A poorly designed
sensor system is likely to generate an extensive amount of irrel-
) . . ___evant or even conflicting information and as such may not be
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TABLE |
COMPARISON OFSENSING DISTRIBUTION METHODOLOGIES

Problem Domain Methodologies
it Lindsay and Bishop [1], Britney [2], Eppen and Hurst
?ua ! i, Multi-stage Product [3], Yum and McDowell [4], Garcia-Diaz et al. [S], Yao
nsPec ton Inspection and Zheng [7,8], Viswanadham et al. [9], Chen and
-Oriented
Thornton [10],
Sinele Stati Udwadia [11], Fadale et al. [12], Khan et al. [13],
meie Station Wang and Nagaerkar [14].
Variation End-of-Line | 1y 00 or al. [16].
. . Sensing
Diagnosis- . - - - -
Oriented | Multiple Based on single fixture model and combinatorial
Stations | Distributed | optimization: Khan and Ceglarek [17].
Sensing Based on multi-station variation model and mechanism
of variation propagation: To be presented in this paper

Ina multistation production line, thaesign of a sensor systemin single-station optimization is to optimize the Fisher Informa-
involves the determination of (Q1) where to build sensing stien Matrix (FIM) [15], denoted ad/1, to ensure minimum esti-
tions, (Q2) the minimal number of sensors required at each mation error. Given the sensor number, Faddlel.[12] deter-
dividual sensing station, and (Q3) the location of sensors withimined optimal sensor locations by maximizibgt(IM), where
each individual sensing station. The design of such a sen&mt(-) is the determinant of a matrix. Khaet al. [13] deter-
system with multiple sensing stations can be referred to as thened sensor locations by maximizing the minimum distance
problem ofsensor distributioror distributed sensingPlease among variation pattern vectadsi)’s. Udwadia [11] discussed
note that the “location of a sensor” refers to the location ofthe issues of how to place the given sensors; and, how to
product feature that a sensor measures instead of the place wpéxee additionaé sensors whefm sensors are already installed,

a sensor is physically installed. In other words, the number aimdorder to maximizéDet(M) or minimize trace (M7 M)~1).
location of sensors refers to the number and location of measuéang and Nagarkar [14] used a prediction malixin com-
ment features on a product/part. By “install a sensor on statibmation withM, whereH is the measure of the relative con-
k,” we mean to select a product/part feature to be measuredrdiution of a sensor to the information provided by the sensor
stationk. In this sense, the problem of designing a sensor systeset. The sensor with the least contribution will be removed to
is selecting product features to measure on different stationg@auce redundancy. The algorithm stops before there is a sub-
a multistation process. stantial decrease iRet(M).

Relevant research in this area falls into two major categories:Research on sensor distribution for multistation systems,
sensor allocation for the purpose of multistage product inspeehich considers the effectiveness of variation diagnosis, is very
tion and, single-station sensing optimization. Optimal allocéimited. Khanet al. [16] and Khan and Ceglarek [17] studied
tion of inspection efforts has been studied for serial and noft) “end-of-line sensing,” where the sensing station is located
serial production lines with either perfect or imperfect inspeat the end of a manufacturing system, but variation sources
tion capability [1]-[5]. This type of research conducted prionclude those from upstream stations, and (2) “distributed
to 1990 was summarized in a survey [6]. More recent devedensing,” where sensing stations can be located in preselected
opment in this area is presented in [7], [8]. The objective gkt arbitrary places in a manufacturing system. Their approach
multistage product inspection is to minimize overall cost, irBptimized sensor layout by maximizing the minimum distances
cluding fixed inspection, variable inspection, scrap/repair afgtween any pair of variation patterns, which were obtained
warranty costs. The problem is often formulated as a dynamising the variation model of a single fixture. The final sensor
programming problem [6]. Other optimization methods used ifayout was obtained by aggregating variation patterns for all
clude nonlinear programming [4], genetic algorithms [9], anfixtures in the system. Their methodology does not consider
simulated annealing [9], [10]. the interaction effects of variation sources between different

In current industrial practices, product functional nonconfostations, which significantly impact the variation propagation
mities are often the result of unsatisfactory quality. If the wain assembly systems and need to be taken into consideration.
ranty cost is higher than other cost components, it can be mdable | presents the relationship between the proposed method-
effective to minimize the sensing cost with quality requirementdogy and those available in the literature.
as constraints. A critical aspect of this new problem formulation There are three critical challenges in achieving optimal sensor
is considering the mechanism and effectiveness of variation distribution in multistation systems: (1) sensing information ob-
agnosis, which leads to further diagnosis-oriented researchtamed at various sensing stations needs to be integrated and ef-
sensor optimization. fectively utilized; (2) a quantitative diagnosability measure is

Diagnosis-oriented sensor optimization has been conductezkded to benchmark the effectiveness of a sensor system; and
mainly at single-machine level rather than at system level, i.€3) based on the integrated sensing information and the quan-
the variation sources and locations of sensors are limited tditative diagnosability measure, an optimal strategy needs to be
single manufacturing station [11]-[14]. The main approach usddveloped.
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Fig. 2. Information flow in multistation manufacturing.

The first two challenges have been addressed in the authansa multistation process aims to identify fixture failure by uti-
earlier publications—the sensing information on different stdizing dimensional measurements of the finished product and/or
tions is integrated and coordinated in a station-indexed staté-intermediate subassemblies.
space model [19], [20], and, a diagnosability index is devel- The relationship between product measurements (e.g., mea-
oped to quantify the effectiveness of a distributed sensor systsarements at pointd/;—M;3 in Fig. 1) and fixture variation
[21]. This paper focuses on presenting an optimal strategy feas modeled in a state space representation for multistation
sensor distribution in a multistation assembly process, which essembly processes [19], [20]. The basic idea is to consider a
sentially answers the two aforementioned problems (Q1) anulltistation process as a sequential system but replace the time
(Q2). Problem (Q3) is then addressed using methods presentetx in a traditional state space model with a station index. For
in [11]-[14]. the process in Fig. 2, the station-indexed state space model can

Following this introduction, Section Il briefly reviews thebe expressed as
state space variation model and the development of the diag-
nosability index since they are integral parts of the develop-
ment of an optimal sensing strategy. Section Il presents the
optimal strategy for sensor distribution and justifies the mirnd
imum number of sensing stations and sensors. A multistation Y., =CXr+1n, ke{l,2,...,N} Q)
assembly system is presented in Section IV to illustrate the op-
timal sensing strategy. Finally, the paper is summarized in Sedheref is the station index andV is the number of stations.

Xi =Ap_1Xg-1 +BrPy + &,

tion V. The product dimensional state, which describes dimensional de-
viations that occur randomly, is denoted Xg. Let X, ;, =
[I. PROCESSVARIATION MODEL AND (6 1 8Ys 1 Ozi 1 St 1 6Bk Swi k)T (refer to Fig. 1 for the six
DIAGNOSABILITY ANALYSIS coordinate variables) be the random deviations associated with

%ch of the six degrees of freedom of paat stationk, where

s the deviation operator. Then the state of the product, which
mprisesy, parts, is represented B, = (X1, --- X 7.
garti has not yet appeared on statibnthe corresp%nding

ik = 0. The input vecto®;, represents the random devia-

Diagnosis-oriented sensor optimization, as presented in t
paper, often requires modeling of a physical manufacturi
system with specific domain(s) of variation sources. In th
paper, we focus on diagnosing dimensional variation sour

in a multistation assembly process. The variation domain : o :
é‘pns associated with fixture locators on stationMathemat-

limited to variation sources related to fixture failure (hereinaft . L . :
referred to as “fixture variation”), which was identified as th écally, fixture variations are characterized by the variances of

major contributor of variation in dimensional quality control inrandom yarlables '_'P’?’ which are called theariance compo-
assembly processes [22], [23]. nentsof fixture variation. Additional process errors including

A typical 3-2-1 fixture locating layout with five locatorg’(, un-modeled higher orFier ter.ms are rgpresenteﬂkaroduct
Py, C4—Cs) and three measurement pointsl—Ms) is shown measurements at statiérare included inY ;. For the example
in Fig. 1. In a multistation assembly process, fixture locators aireFig. 1, Y, is [0 M1, 6Mq, 6M;. R 6M;3.)T, i.e., the
key functional elements, providing parts support with Cartesiaeviations associated with measurement feattfesi/-, and
coordinates at each assembly station. A sensor system deploygd But Y, is not necessarily measured—if it so happens, then
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TABLE I
INTERPRETATION OFSYSTEM MATRICES
. . Assembl
Symbol | Name Relationship Interpretation Task y
Change of fixture layout
. Assembl
A Dynamic matrix X, ,—2= X, | between two adjacent y
. transfer
stations
o, Statg transition X % X, Change of fi.xture layout Assembly
' matrix ! among multiple stations transfer
Input matrix P, X, Fixture layout at station k Part positioning
C Observation matrix | X, —*—>Y, Sensor layout at station & Inspection

C, = 0. Sensor noise, denoted lgy, is a vector of uncorre- defined as the summation of all measured or estimable quantities

lated random variables with zero means. Y — T TY — £°. Then (4) can be simplified as
In the state space modé\,;, andB;, include process design _
information such as fixture layouts at each station, as well as r=r.27.17 (5)

the effect of fixture layout change across stations. Mafrix

includes sensor deployment information (the number and loca-Definition: The fixture variation in a multistation assembly
tion of sensors on statiok). The sensing information acrosssystem is diagnosable if the variance componentkidg(£”)
different stations is integrated through this state space modwin be uniquely determined, given the known/measured quan-
The corresponding physical interpretationAf B, andC is tity X, wherediag(-) extracts the diagonal elements from a ma-
presented in Table I, wher®,; = A,_1A;_»---A; and trix into a vector.

®,, =1 A derivation in [21] shows that (5) can be expressed as
A detailed diagnosability analysis of a multistation system _ ,
modeled by (1) was reported in [21]. We summarize the results vec(X) = (T) - diag(X") (6)
that will be used in this paper. The recursive expression in (1) . . .
can be formulated into an input—output relation as wherevec(+) is the vector operator [24%(-) is a matrix trans-
formation defined as
Y= P+Ty -Xo+e 2)
W(F) = ('Yl*')'l)T (,Yl*,yq)TE(,yQ*,yl)T
whereY” = [YT YT --- Y], PT = [PT PT ... PT],
el =[el el - €], e = %ic1 1Cr®s i€, + 1y, and o T
) ()t (@)
r C{B; 0 0
C»®, B, C,B, 0 and~* is the kth row vector ofT’, “*” represents a Hadamard
= , product [24].
: : r : Define matrixD y as
LCn®N1B1 Cn®n2B: -+ CyBy Dy =(T)
I 0161,0 ClBl 0
Cy®; Cy®,:B; C2B; e 0
Iy = _ . (©)] =7 ‘ . . _ (8)
LCn®npo Cy®y:1B; Cy®n2B: -+ CyBy

Since we are concerned with the variation of state variables aaxtd D  is called the diagnosability matrix. The diagnosable
input vectors, the original model (2) for random deviations isondition of fixture variations as stated in [21] is tHa, Dy
converted into a variation model. Assuming that product dexdhould be of full rank, which is equivalent to tHty is of full
ation X, fixture deviationP;,, and noise terma,;, are indepen- column rank. Meanwhile, a diagnosability indexs defined as
dent, we can have

_ p(Dy)

. = 9

2 =r.27 .17 4+ T8 T + ¥ 4) g e ©
In (4), £ is known from measurements obtained at the endherep(-) is the rank of a matrix anah;,, namely the dimension

of the precedent fabrication process. We also assumEftatn  of P, is the number of variance componentsling(£7). The

be estimated using data from a normal process condition whers a normalized quantity in [0, 1]. The condition pf= 1

no outstanding fixture error occurs. With this assumptBns is equivalent tdD XDy being of full rank. Thus, we say that a
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Fig. 3. \Variation transmission and detection.

sensor system provides the complete diagnosability if and ondyinstall sensors. The specific monetary cost is usually different

if © = 1. We would like to make the following remarks. for both cases. However, the cost differences between the two
Remark 2.1:1f £° will have to be estimated on-line usingcases are not considered in this paper.

production data, a new diagnosability condition should be devel-In order to diagnose all fixture variations, it is required that

oped. In fact, such a condition was recently developed in [25]. = 1 (9). With . = 1 as the constraint, the optimization

It depends on the structure of system matride®r ®), B, and scheme can be formulated as

C whether or not the noise covarianté can be separated from N
fixture variations. Jopt = min < ¢; - Z(# of sensors at statiok)
Remark 2.2: Diagnosability is based on the concept of the vt

rank of a matrix. Determining the rank of a matrix is a difficult +co - (# of sensing station$ subjectton =1 (10)
problem from a numerical perspective. However, with the help

of amathematical software package such as MATLAB, the diffivherec; andc, are the average cost per sensor and per sensing
culty associated with computing a matrix rank has been consfation, respectively.

erably alleviated. Similar rank-related conditions are commonly In this section, we will decompose the system-wide diag-
used in engineering applications, e.g., the controllability and oBosability in a multistation process into two steps (Fig. 3): 1)
servability conditions in control theory [26]. the transmission of variation from statiérto stationk, with

Remark 2.3:Based on the above diagnosable conditiof€ transmitted information modeled by state covariance matrix
any ¢ < 1 indicates that fixture variation is only partiallyzk and 2) the detection of fixture variation by sensors located
diagnosable. A single index is insufficient to characterize at stationk, with the overall information modeled by a mea-
a partially diagnosable system, of which the preferable diaglrement covariance matsxinformation transformationinthe
nosability condition may also depend on how nondiagnosati#0 steps is characterized by the transmissibility ratip and
variation sources are coupled. An analysis dedicated to partidfi detecting power;. (on stationk), respectively. The optimal
diagnosable systems is presented in [25] and is not repea$e@sor distribution is studied through: 1) achieving the optimal
here. But, for a sensor distribution problem, we should alwagi€tecting power on a single station; and 2) identifying stations
try to achieve full diagnosability, unless other evidence @t which error information is not completely transmitted (i.e.,

engineering experiences indicate that those nondiagnosable < 100%). The detailed development is organized as fol-
variation sources are not of practical concern. lows: Section I1I-B defines\;|;, and derives its properties for a

multistation assembly process. Rakig, will be used to deter-
mine where to build a sensing station. Section IlI-C studies the
) o ) effect of sensor layout at an individual station on its detecting
A. Sensing Cost and Objective Function powerr;, which leads to several practical rules for placing sen-
The objective of an optimal sensor-distribution strategy is &0rs on a single sensing station. The optimal sensor-distribution
achieve the desired diagnosability at a minimum cost. The cé$tategy given in Section I1I-D is a natural outcome of results
of a sensor system comes not only from sensors but also fréii®m Sections I1I-B and 11I-C.
the expense of building sensing stations. It is assumed that all = | o )
parts assembled at any station can be physically accessed by Senv@riation Transmissibility Ratio
sors at a downstream station for their positional and orientationWhen the transmission of variation is studied, we assume that
measurements. Thus, there are two ways of measuring procastfficient number of sensors are installed at statidve will
features during production: 1) sensors are installed directly @urther discuss the meaning of “a sufficient number of sensors”
the assembly station and measurements are taken after théraSection 11I-C. For the time being, let us assume it to mean
sembly operation is completed; or 2) the subassembly is trads; = I.
ferred to a dedicated station designed solely for taking measureWe notice that variation transmission is determined by
ments. In both cases, these stations are called sensing statiprexess configuration such as fixture layout geometry (modeled
A sensing station will incur extra cost when compared to aregy B,;) and the change in fixture layouts between stations
ular assembly station. This is clear for the second case witlfraodeled by®, ;). The 3-2-1 fixture shown in Fig. 1 can
dedicated sensing station. However, this is also true for the firsstrain DOF degrees of freedom (d.o.f.) of a rigid workpiece (a
case due to special requirements for upgrading a regular statieorkpiece could be a single part or a multipart subassembly),

I1l. OPTIMAL SENSORDISTRIBUTION STRATEGY
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whereDOF = 3 for a 2-D workpiece andDOF = 6 for Corollary 1: Under the same condition as Lemma 2, the di-
a 3-D workpiece. Suppose that there are'3-2-1’ fixtures agnosabilityu can be expressed as
on station; and each of them supports one rigid workpiece.
The total number of d.o.f. that these fixtures restrained is _ vazl Ai|N
p; - DOF = m; = dimensioiP;), which is the number of ZN '
independent variation sources associated withpthixtures.
Thusmn,; is the number of unknown variance components of Remark 3.1: The index);; is solely determined by fixture
fixture variation that we try to diagnose. On the other handesign configuration and, thus, it can be calculated after the
p(m(®B;)) represents the number of independent equatiopgocess is designed but before the sensor positions are allocated.
that we have in solving thex; unknown variance components.The values of\;|;’s are not modifiable after the process design
If p(7(®%,:B;)) < m,, not all variance components of fixturephase is completed. We will utilize Lemmas 1 and 2 to decide
variation on stationi can be uniquely solved. In that caseat which station(s) to place sensors to retrieve the information
some information regarding fixture variation on statida lost lost during the transmission step.
during the transmission step. We define a transmissibility ratioRemark 3.2: From (12), will be 1 if all A\; x's are 1, i.e.,
Aijr to quantify the variation transmission from statiorio fixture variations on all upstream stations are diagnosable by
stationk as taking measurements on statidh In such a case, we need in-
stall sensors only on the last statidh In many cases, not all
M (11) Xn's are equal to 1. If\;y < 1, the strategy of increasing
i transmissibility by installing sensors on any stations between
where \;; = 1 suggests that the complete information re-+ 1 andN' — 1 will not help, since\;);, = A; v < 1fork =
garding fixture variation has been transmitted from statiem ¢+ 1,..., N — 1, according to (P2) in Lemma 1. The only rec-
stationk. If loss of information occurs during the transmissio®mmended solution is to add sensors directly on stat&nce
step,(1 — A; ;) is used to quantify the information loss. Any in-A;;; = 1 (P1in Lemma 1). The same procedure will be repeated
formation loss during the transmission step suggests that fixti@e all stations with\; y < 1.
variations at stationare not fully diagnosable regardless of the Remarks 3.3:As indicated in Fig. 3, the actual information
number of sensors placed on statiarFurthermore, we have retrieved on statiok will also depend on the number and layout
Lemma 1: A transmissibility ratio possesses the followingf sensors on statioh (modeled byCy). Ideally, if there is no

12)

)\z|k =

properties: restriction on sensor number, we can place “a sufficient number
of sensors” to mak€; = I so that all information transmitted
(PN =15 (P2)\i; = Aije 2 bi k>j>i. toX; is retrlevablg. However, in order to minimize the sensing
bi cost, we need to find the most economical sensor layout at sta-

The proofs of both properties are presented in Appendixtion %, which places theninimumnumber of sensors but re-
The first property is intuitive because it implies that if werieves the complete transmitted informatiorsiy .
measure all the dimensional information of a workpiece (say, ) i
let C; = I), the variation of the fixture that is currently used td>- Sensor Placement on a Single Station
support the workpiece can be uniquely determined. The secon&uppose that sensors are installed on statowith the re-
property seems counterintuitive. It says that the variati®ultant diagnosability of.. The total number of variance com-
transmissibility from station to station;j(j > 7) is the same as ponents to be diagnosed from station 1\ds £\, m;. Then,
that from station to stationk which is located further down- the quantity ofi. - £\ ; m; is considered to be the amount of in-
stream;k > j > i. This is an important property describingformation retrieved by sensors on statidnandZ;_; ;| x - m;
transmission of fixture variation in a multistation assemblyepresents the amount of information of fixture variation trans-
process, under the condition that all measurement points omated from upstream stations. @, is assumed to bg, then
product/part can be measured at any station if needed. M'Ef\;lml always equals tEfil)\qN -m; (Corollary 1). How-
In[21], the diagnosability: is further partitioned into within- ever, given an arbitrary number and layout of sensors, we may
station and between-station diagnosability, respectively. Gengave the inequality: - Efvzlmi < zﬁil,\iw -m;. Then, we de-
ally, a system s fully diagnosable only if it is both within-statiorfine a detectability ratio- as
and between-station diagnosable. However, for a multistation ,
assembly process where new parts are added on downstream R (E?:l m;) 13
stations, it is possible to ensure between-station diagnosability T= ZN NN i (13)
through end-of-line sensing. This conclusion is stated in Lemma =t 2l L
2 and Corollary 1. The proof of Lemma 2 is included in Ap- Sensor placement on an individual station is considered as
pendix Il. Corollary 1 is a straightforward result from Lemma Baving a sufficient number of sensors if variation detectability
and its proof is thus omitted. 7 = 1. The minimum sufficient sensor number is studied for
Lemma 2: For a multistation assembly process where netwo cases: deviation detection and variation detection.
parts are added on downstream stations, given that a sufficient) The Minimum Sufficient Number of Sensors in Detecting
number of sensors are installed on statiénto measure the Product Positional Deviationsin an assembly process, coor-
final product), the between-station diagnosability condition witlinate sensors are used to measure the positional deviation of a
be satisfied. rigid workpiece. One coordinate sensor can measure 3 d.o.f. on
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a 3-D workpiece or 2 d.o.f. on a 2-D workpiece. In order to me&tere, 7 (I') T 7(T') is of full rank andq(q + 1)/2 =
sure all d.o.f. of a workpiece, three independent sensors areThus, we can solve for the variations Bf If we write down
quired for a 3-D case (or two sensors for a 2-D case). If all d.o¥” in terms of the variance component&liiag(ZP), it is
of each part in an assembly are measured, it can be concluded
that the positional deviations of the product in all directions have oY _ op +op, op,
been obtained. Recall that there ageparts in the assembly on o}, op, +0p,
station N. Then, we needn, (or 2n, for 2-D) sensors with
three sensors on every part to detect positional deviations ofwhere o, o%,, ando%, are three variance components in
parts. Once positional deviations of all parts are detected, Wiag(X ). From (16), we verify that the variance components
can calculate}?N from the deviational measurements. It is noin d1ag(2 ) cannot be uniquely solved from the diagonal vari-
true the other way around, though. That s, even if we kﬂiw ance terms irE* . The covariance term betwegn andys lets
we cannot reconstruct the deviational measurements. Thus, Yie= [y; y2]”) equalo?,, providing an additional equation,
condition for detecting the deviations of all parts is a sufficienith which all three variance components can be uniquely de-
condition for variation detection required in (13). In the case ¢érmined.
variation detection, it is possible to reduce the number of sen-We have explained why the number of sensors can be reduced
sors while still reaching = 1. for variation diagnosis. However, an important question remains
2) The Minimum Sufficient Number of Sensors in Detectingbe answered: how many sensors are necessary toread!?
Product Positional Variations: The reasoning behind a possibleThe minimum number of sensors satisfying= 1 depends on
sensor-number reduction lies in the application of thieans- how the sensors are allocated on different parts. For instance,
form in the variation model (6). Suppose that we have a devigiven a subassembly consisting of two parts, we can place six
tion relationship represented as= I'P. The d.o.f. of parts is sensors on one of the two parts, but the information they provide
the same as the dimension Bfif all parts are completely re- will be the same as that provided by three sensors placed on the
strained. In order to solve for fixture deviations, the dimensiagame part. A more efficient way is to place three sensors on each
of Y has to be at least the same as thaPadndI'’ T should of the two parts, respectively.
be of full rank. When fixture variations @ are considered, the The sensor placement on an individual station is modeled by
model becomesec(E" ) = «(T) - diag(E"), according to (6). Cj. In general, it is very difficult to show analytically how the
Since fixture deviations if® are physically independerE” is sensor placement will affect the rank ofl';), wherel’;, =
a diagonal matrix. Theliag(ﬁp), which contains all variance C,®,,;B; (refer to the information chain in Fig. 3). There-
components of fixture variation, is of the same siz&Paghis fore, we conduct a numerical study to produce certain practical
suggests that the number of unknowns is not changed from thales that we can follow. In the numerical study, for the sake of
of the deviation model, but the number of known quantities simplicity, we consider a two-station assembly process, which
vec(ZY) increases compared tothe number of elemen¥s.ii  consists of all assembly operations (such as part positioning,
Yisofgx1,vec(B¥ ) is then of sizey(¢+1)/2 x 1. These ad- joining, and transferring) so that it captures the interactions in
ditional terms invec(E"") are the covariances between the variC,®; ;B;. Sensors will be placed on the second station in this
ables inY. Ther-transform takes this change into account stwo-station assembly segment.
thatr(I") increases the number of rows but keeps the number ofThe numerical test results are summarized in Table Ill, where
columns the same as thatldfBased on the fact that the covari-r(s1,. .., s;) is the detectability when,, ..., s; sensors are
ance terms in the variation model provide more known quanfifaced on part 1, part 2,., partj, respectively. There are a lim-
ties, the required number of sensors can be reducedw et ited number of options in placing these sensors. The maximum
the dimension oP. As for the deviation model, the realizationnumber of sensors B, (3-D) or2n,, (2-D) for all product-de-
of diagnosability requires that > w andI'" T be of full rank. viations to be made detectable. For instance, if a subassembly
But for the variation model, it requires th@ty + 1)/2 > w and consists of two 2-D parts, the maximum number of sensors

(16)

7(I)?'x(T) be of full rank. needed is four. The possible sensor placements constitute the
Let us illustrate this by using a simple example. et 2, following sets: (0,4), (4,0), (1,3), (3,1), or (2,2). For each sensor
w = 3, andI’ be placement, we test detectabilitythrough a numerical calcula-
tion. Comparison among all the possible sensor placements will
1 -1 o0 lead us to the minimum sufficient number of sensors and the as-
_({r -1 0 Te_ | _ _ sociated scheme of sensor placement. It should be noticed that a
r so I''T 1 2 1. (14 L :
0 -1 1 0 -1 1 small position change of sensor locations on the same part may

not affect diagnosability: defined in (9). In this numerical test,

Apparently, we would not be able to solve for the deviation varihe position of each sensor is determined by following a sim-

ables inP sinceg < w andI''T'is singular. Ther(T") turns out plified procedure, which postulates that no two sensors can be
to be located at the same position and no positions of any three sen-

sors can be collinear. We observe the following.

(C1) Given the same number of sensors, the detectability is
larger if the sensors are placed on different parts in a
rigid multipart subassembly than if they are placed on
(15) the same part.

()= and 7(I)"'7(l)=

S O =
—
_ o O
S = =
— W =
— = O
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TABLE Il

NUMERICAL ANALYSIS OF SENSORPLACEMENT ON INDIVIDUAL STATION

#of

# of

TABLE IV

INTERPRETATION OFTHREE INDEXES ¢, A, AND T

parts Sensors Sensor placements and T Symbol | Name Interpretation _ A Impact
1 (0, 1)=1(1,00=0.43; Y Transmi- Beqchmarks ho‘.ﬁ m'uch 1nf01jmat10n Determine the locations of
— — — e ibility of fixture variation is transmitted sensing stations.
n,=2 2 10.2=%2,0=043; WL)=L; st from station i to station .
3 ©0,3)=13,0)= 0.43; 71 2)=t(2, )=1; Benchmarks how much information | Determine the minimum
4 U0.4)=t(4,0)= 0.43; ©(1,3)=t(3, )=1; ©2.2)=1; Detect- | among which has been transmitted | sufficient number of sensors
1 7(1,0.0=1(0,1,0)=1(0,0,1)=0.25; T ability | to station k can be detected by and the corresponding sensor
2 (2,0,0=1(0,0,2)=0.25; 1(0,2,0)=0.33; 1(1,0,1)=0.58; 1(1,1,0)=0.67; sensors installed on station £. layout on station .
7(0,1,1)=0.75; ) Characterize the overall information
5 7(3,0,0)=1(0.0,3)=0.25; %(0,3,0)=0.33; 1(2,0,1)=1(1,0,2)=0.58; i Dt:?’lﬁ“os’ retrieved by a sensor system, Combine the above two.
(1,2.0)= 42,1,0)=0.67; 7(0,1,2)=1(0,2,1)=0.75; 7(1,1,1)=1; DY u=).
n,=3 (4,0,0)=1(0,0,4)=0.25; 1(0,4,0)=0.33;
4 7(3,0,1)=1(1,0,3)=7(2,0,2)=0.58; 1(1,3,0)=1(3,1,0)=7(2,2,0)=0.67;
7(0,1,3)=1(0,3,1)=7(0,2,2)=0.75; 1(1,1,2)=1(2;1,1)=7(1,2,1)=1; Strategy Of Sensor Distribution:
5 only for 1=1. 7(1,1,3)=7(3,1,1)=1(1,3,1)=1(2,2,1)=7(2,1,2)=1(1,2,2)=1 . .
¢ | onlyfort=. (L IA)=rd,LD=r(1 4. )=13.2.)=t23,)=2(3,1.2)= Step 1) On statiok = N (the last station), place one sensor
%2.L3)=u1.3. )=, 23)=1(2.2.2)=1 on each part. Ifs = 1, then stop, else, go to Step 2.
7(4,0,0,0)=7(0,0,0,4)=0.20; 1(0,4,0,0)=(0,0,4,0)=0.27; 7(1,0,0,3)= ) A
3,0,0,1)=0.47; 1(1,3,0,0)=1(3,1,0,0)=7(1,0,3,0)=1(3,0,1.0)=0.53; Step 2) Letk = k — 1, given the installed sensors at all
4 | HO13.0=1003,100=1(0.0.1,3)=r(0.03,1)=7(0,1,03)=t(0,3.0,)=06: downstream stations + 1,k + 2,..., N, check
n, =4 2(1,1,2,0)=1(1,1,0,2)=1(1,0,1,2)=(1,0,2,1)=1(1,2,1,0)=1(1,2,0, 1)= ) X / e ! .
70,1,1,2)=1(0,1,2,1)= if A\x;v equals to 1, install sensors on station with
0.2,1,1)=02,0,1,1)=t2,1.0,1)=1(2.1.1,0)=0.8; T(L, L L.V=L; Akinv # 1. The installation procedure follows the
cases with the number of sensors = 3, 6, 7, 8 were omitted. general rule Of sensor placement on an indiVidual

station. If Ay = 1, then do not install any sensor
on that station.

Step 3) Stop ifu = 1, otherwise repeat Step 2 fér =
N—-1,N-2,...,1.

Theorem: The above sensor-distribution strategy attains the

optimization objective in (10).

) . Proof: Let I, denote the number of parts (including the

In Table IIl, we list only the detectability values uprig = 4. parts in a multipart subassembly) on statienwherel;,_; of
This type of exercise can be continued for more parts with mojigam are in the major subassembly from the previous station
sensors. Recall that the reason why the number of sensors cap gel and(I; — I,_) are the new parts added at statiariet

reduced is due to the extra information generated from the ¢Qs compare the situations when sensors are installed at station
variance terms between variables¥n The fact that the number and stationV — 1, respectively. When sensors are installed at

of covariance terms is a quadratic function of the number of VaQtationN, In_1 sensors are installed on the major subassembly
ables inY will gain us more information when additional part%oming from stationV — 1 to maker = 1, following Lemma
are involved. Thus, when more parts are involved, the abo¥&, gection 111-C. Sensors are also placed on the remaining
conclusions shall hold true. We summarize this idea in the quIN — In_1) number of parts that are newly added at station
lowing Lemma. ) N . However, since our intention is to find on which station (i.e.,
Lemma 3:When each part in an assembly has the same_ o1 ) sensors should be placed so that the same amount
number of degrees of freedom, sensors should be uniforngly\ ariation information can be detected using less number of
allocated among all parts within an individual station so thaknsors, we consider that a fair comparison is to exclude the
one sensor per part will make= 1. number of those sensors on thie, — Iy_1) new parts, given
the fact that there is no alternative way of measuring these parts
other than placing sensors on statiin

Lemmas 1 and 2 in Section I1I-B indicate that, if a variation The average information regarding fixture variation detected

source can be diagnosed in the next station, it will be diagnobéf a single sensor is

able in any subsequent station. On the other hand, if fixture vari—zf\;1 i N
ation is not diagnosable at the following station, sensors will
have to be placed right on the station where the fixture error oc- a7
curs; such a station will be indicated byAg,, < 100%. Mean- If I sensors are installed on statidh— 1 to measure the
while, Lemma 3 in Section IlI-C shows that if one wants to useamely_; number of parts to make = 1, the average infor-
the minimal number of sensors to detect all the transmitted vamiation regarding fixture variation detected by one sensor is
ation in £, one sensor should be allocated to each part. We «~~-1 A ' N-2 ) 4
use Table IV to summarize the meaninggf\, andr, as well 2oz AN-1 T izt ANt
as the above understandings regarding variation transmissibilit{ﬂV—2+ (IN-1=IN-2) In-1
and sensor placement on individual stations. According to (P2) in Lemma 1; xy_1 = A\jn, i € [1, N — 2]
The following algorithm, which distributes sensors in the
multistation assembly process, is a natural outcome of the
results from Sections III-B and IlI-C.

(C2) In order to make = 1, at least one sensor should be
placed on each part.

(C3) The minimum sufficient number of sensorsujsand
the associated distribution is one sensor per part.

D. Optimal Strategy of Sensor Distribution

N—2
i NN AN N mN—1 N

In In_q

. (18)

N—-2

E )‘i\N'mi
i=1

N-2
in (17)=) Ajjy—1-m; in (18). (19)
=1
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ook (arget line IV. CASE STUDY
sensors on stationk ..
/J The optimal strategy of sensor distribution is illustrated by
(s;nss;:;r&)l:stNalled [ '\ opt|m|z|ng a sensor system in a three—statlo_n agsembly process
— with four parts marked as 1, 2, 3, and 4 in Fig. 5. The as-
i~ saturation of  for the sembly process can be described in three steps: 1) parts 1 and
given # of stations 2 are assembled at Station | [Fig. 5(a)]; 2) subassembly “1
> 2" is joined with parts 3 and 4 at Station Il [Fig. 5(b)]; and 3)
New sensing New sensing ... # of sensor the final assembly is inspected for surface finish and welding
station station quality at Station IlI [Fig. 5(c)]. A part or a subassembly is re-
Fig. 4. Diagnosability property related to sensor distribution. strained by a fixture, which has a four-way pinhole locating pair

that controls motion in botl andz directions; and, a two-way
pinslot locating pair that controls motion only in thelirection

(only a 2-D case is presented in this example). After two parts
are assembled, a subassembly still needs a four-way pin and a
two-way pin to completely control its d.o.f. For example, sub-
assembly “1+ 2" is positioned by the fixture locatosP; , Py}

Notice that\x_y |y > (pv—1— 1)/(pn—1) (again P2 in Lemma
1)

/\N—1|N MM N—] = /\N_1|N~]7N_1~DOF> (pN_l—l)~DOF

=mpy_—DOF that are on part 1 and part 2, respectively [Fig. 5(b)].
N—2 Parameters used in this example afe= 3; DOF = 3;
Equaﬂonm)ZZizl )‘i\JV"mi+mN'—1+mN'_DOF_ the number of fixtures on each station are = 2, p, = 3,
Ing andps = 1. In such a 2-D caséX; ;. = [6zik 0z 6Bi k],

(20) which are deviations associated with two translational and one
rotational d.o.f. of part on stationk. The state equations of this
Also, my = py - DOF > DOF, then, (17)> (18), which indi- three-station process are
cates that sensors installed on statidmre more effective than
sensors installed on statig — 1 in the sense of information X, =B,P; +§;
detected per sensor. Following the mathematical induction ap;
proach, it can be shown that sensors installed on stéfien1
are more effective than those on statiin— 2 and so on. We
then conclude that the backward propagation strategy is an op-
timal strategy. [0 where the initial stat&,, representing part deviation from de-
We expect to see the change of diagnosabhilitas shown in  sign nominals caused by the stamping process, is assumed neg-
Fig. 4, when sensors are sequentially installed in a productigible. Numerical expressions foA and B of the assembly
line, which is elaborated as follows. process shown in Fig. 5 are given in (22) and (23), shown at
()  When sensors are placed on statiénthe entire trans- the bottom of the next page. Based on them, the transmissibility
mitted information regarding fixture variation is de[atiosA;|y are calculated as;; = 0.667; Ay = 15 Agp3 = 1.
tected and the system diagnosability increases rapidlyStep 1) On the last statidh= N = 3, install one sensor on

Xi=Ap_1Xpo1 +BiPr+ &, £=2,3  (21)

with more sensors placed on statioh If A\;xy # 1 every part.

for some station, the maximum. that can be achieved The value ofu is calculated given different num-

with sensors placed only on statidhis always smaller bers of sensors. The value pf keeps increasing

than 1, i.e.p = (E]2 Ayjw ;) /(Birqm;) < 1 [from until it saturates (Curve-1 in Fig. 6) at the level of

(12)]. This is illustrated in Fig. 4 as a dotted flat line; 0.889 for four sensors, one sensor per part. Further

we say that the diagnosability level is saturated. increase in the number of sensors on Station Ill does
(I)  Thus, we should place some sensors at the upstream not increase the index (the dash line of Curve-1

station(s) where\; x # 1. Since);; = 1, the installa- in Fig. 6). The saturated value of can be com-

tion of sensors directly on statiarcan help further in- puted by = (Zle Aij3 " pi - DOF)/(Z,?:lpi .

crease the system diagnosability (step increases in di- DOF) =(0.667-2-3+1-3-34+1-1-3)/(2-3+

agnosability are seen in Fig. 4). The diagnosability ob- 3-3+1-3) =0.889, according to (12).

tained by sensors on statidnis \; v -m; (transmitted ~ Step 2) On statioh = N — 1 = 2. Check)y)s.

information), and the diagnosability obtained by sen- Since)y3 = 1, we need not place any sensor on

sors on station is (1 — A;n) - m; (information loss Station II. A numerical calculation conducted by au-

during transmission to statiaW). However, given that thors verifies thaj, does not change even if addi-

XN 2 (pi—1)/pi, Mijy > (1= \yn) forp; > 2, the tional sensors are placed on Station II.

slope of the curve (to the right) is less steep than theStep 3) & = N — 2 = 1. Check)3, and minimize the

curve discussed in item (). Again, the diagnosability number of sensors on Station | to reack= 1.

will saturate at a higher level until sensors are installed Since\ 3 = 0.667 < 1, we should place sen-

on all stations where; y # 1. Following this proce- sors on Station |. Provided that some sensors were

dure full diagnosability is achieved apd= 1. already installed on the downstream station, it is
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(b) Station 1I 2
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60| 500
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Fig. 5. The three-station assembly process with the optimal sensor distribution.

usually the case that we do not have to install sen-
sors on every part on Station I. A combinatorial

test trying different numbers of sensors is neces-
sary to find out the minimum number of sensors re-

P, —locating points

M; — measurement points
@ - active 4-way pinhole
@ - active 2-way slot

-

4-way locator, 2
associated variation
sources

ol Pg O -inactive 4-way pinhole 2-way locator, 1
O o) Ology @ M O - inactive 2-way slot ¢ associated variation
5 R - sensor location sources

quired to reachu 1. Given [}, parts on station
k, the maximal number of possible combinations is
Sk, Ct , whereC?, is the combinatorial operator
for integersz andb. In this example}" 'L, Cy =3,

0 0 0 0 0 0 1
0 0 0[03%6 10 0 0
0 0 0o o 0 ; 0 0.0005 1 0 —0.0005 —0.2392
O 0 00 0 0 -0 0 o 0 0
0 0.0007 1 0 —0.0007 —0.3497 0 —0.5550 0F 0 —0.4450 —222.49
o 0 0.0005 0|I%6[0 —0.0005 —0.2392
Aj=|-1 0 01 0 0o |o Ay = 22)
0 08407 0 0 03407 —395 17 1 —0.2153 0 0 02153 107.655
0 0000r 0 0 60007 Oen0s 0 —0.2392 0 0 —0.7608 —380.38
5550 s 0 0.0005 0 0 —0.0005 —0.2392
I J1ox1o 1 0 0 1 =0.0005 0
0 —0.2392 0]03%6 [0 0.2392 —380.38
L0 0.0005 0 0 —0.0005 0.7608 |,
10 0 0 0 0
0 1 0 0 0 0
0 —0.0014 00014 0 0 0
B,=|0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 —0.002 0.002
06X6
L 14 12%x6
10 0 . 10 0 7
0o 1 0 0 1 0
0 —0.0007 0.0007 066 0 —0.0005 0.0005
10 0 10 0
0 03497 0.6503 0 05550 0.4450
0 —0.0007 0.0007 0 —0.0005 0.0005
B, = 10 0 0 0 0 Bs=11 02153 —02153 (23)
0 1 0 0 o0 0 0 02392 0.7608
063 0 —0.002 0.002 0 0 0 0 —0.0005 0.0005
0 0 0 1 0 0 10 0
0 0 0 0 1 0 0 02392 0.7608
i 0 0 0 0 —0.002 0.002] ., L0 —0.0005 0.0005 .,
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Station lli

0.8~ Sensor installed on 1
Station I further
increases yu, make
itto 100%

2 06

Cur&

When sensors are only
installed on Station Il
u saturates when
sensor number > 4

04

0'24 New Sensing Station

/o

1 2 3 4 5 6 7 8
Sensor Number

Fig. 6. The impact of sensor number gn

wherel; = 2. The three possible sensor placements TABLE V
are (1,0), (0,1), and (1,1). In fact, adding one more EXACT COORDINATES OFFIVE SENSORS INFIG. 5 (UNIT: mm)

sensor on Station |, either on part 1 or on part 2, will - ;

X . .. . . Sensor Points Coordinates (X, z)
result ing = 1. The optimal sensor distribution is to -
place a total of five sensors at two stations (marked M (on Station Y (950.900)
asM; ~ Ms in Fig. 5). In Fig. 5(a), sensa¥/s is M (on Station ITh (1630, 1100)
placed on part 2; but it can alternatively be placed on M; (on Station IIT) (2280, 1000)
part 1. Furthermore, we use the algorithm in [14] to M, (on Station IIT) (2280, 150)
determine the exact coordinates of each sensor (see Ms (on Station I) (1630, 1100)

Table V). In order to reduce the computation load,

the resolution of coordinates is chosen at the 1-mBensing layout is defined as placing a sufficient number of sen-
level, which should be accurate enough for sensgprs at thdast station to measure the d.o.f of all parts. Satu-
locations on a part with dimensions of several huriated sensing layout is defined as placing a sufficient number of
dred millimeters. sensors to measure the d.o.f of all partsgerystation. In the
cases of end-of-line and saturated sensing layouts, “a sufficient
For such a sensor distribution, matri€@'s are given in (24). number of sensors” means two sensors per part (for a 2-D as-
Calculaten using theseéC matrices. Fig. 6 demonstrates that sembly process). Thus, in this example, the end-of-line sensing
reaches 1 when Station | is upgraded into an additional sensiagout will install eight sensors on Station IIl and the saturated
station, verifying the argument we provided for Fig. 4 in Secensing layout needs twenty sensors, two sensors on each part
tion 111-D, shown in (24) at the bottom of the page. on every station. The results of all three sensing layouts are pre-
The abovementioned distributed sensing layout can be cosented in Table VI.
pared with two traditional sensing layouts: end-of-line sensing It shows that the optimal algorithm yields the minimum
and saturated sensing, which are discussed in [21]. End-of-lmeémber of sensors and sensing stations while simultaneously

[ (1) (1) _7‘}5%0 023 023 023
Lo 650 02><3 (1](1) _5%%0 02><3 02><3
—0o
Ci = [Om 0 1 550 OM} Cs = 10—100 (24)
2x12 02><3 02><3 02><3
01 490
10 300
02><3 02><3 02><3
L 01490 1gy 1
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TABLE VI What is the dimension aNull(®;;)? The®, ; is the ma-
COMPARISON AMONG SENSORE'SSSTEF;;BB‘S'ONS FOR THETHREESTATION iy that models the part transition from statiomo stationk.
The part transferring operation happens after all components
#of sensors | # of stations | W Jopt in an assembly are joined and released from fixtures (Fig. 7).
Saturated sensing 20 3 100% 3c,+20c;  That gives the whole subassembly DOF degrees of freedom be-
End-of-line sensing 8 1 88.9% cr+8c) fore it is restrained in a new fixture on the subsequent station.
Optimal strategy 5 2 100% | 2ex#5c  Therefore,A has less full rank and so dods. ; Vk # i. The
rank of A should be DOF less than its dimension. Thus, the di-
attaining 100% system diagnosability, = 1). The cost mension ofNull(A) is DOF, which is the number of degrees
reduction in comparing the optimal sensing strategy with titd freedom that the subassembly possessed after being released.
scheme of saturated sensing is This number does not change (it is always DOF) after more parts
e are assembled into the subassembly, suggesting that the dimen-
cost reduction in station constructioca — sion of Null(®, ;) is also DOF.
362 L e . .
o However, since the part-positioning described By takes
=33.3% (25) o L . :
15¢, place at station before the joining operation (Fig. 7), the
cost reduction in sensor implementati@ﬂf deviation among parts can be freely generatedBby There-
1 fore, Null(®, ;) C R(B;), suggesting that = DOF. Given
=75%. (26) :

p(BZ) =pi- DOF, we can havep(tI’kLBL) = (pi — 1) -DOF.
Then,p(®x,;Bi) = p(®;:Bi) = (p; — 1) - DOF, V k, j # i.
That is one step short of showing thatr(®,,B;)) =
. . . . . p(w(@NBb)) Given p(ék,sz) = p(éj,sz)v if the linear
This paper investigates a strategy for sensor d|str|but|%pendem relationship among columnabip, B; is the same
in a multistation assembly system based on the state spgggnat in®; ;B;, p(r(®..B;)) wil equalp(ﬁ(éj_iBi)). That
variation model and an analytical diagnosability study of thg i fact the case. After parts are assembled on staitere

same process. A backward propagation algorithm is presenfggins a certain linear relationship among the columns, e.g.,
for theallocation of sensing statioraong the process and th "™ ajp; = 0, wherea; is a constant, ang; is the jth

o - o y
determination of the minimal number of sensors within eaej,mn vector o, ;B;. This relationship will not change be-

sensing statioriWhen the unique properties (Lemmas 1, 2, 3) Qfayse it is determined by the relative position among all assem-
variation propagation in a multistation process are considergghq parts in the subassembly, which is fixed by the “joining”
the resulting strategy of sensor distribution is optimal, i.e., ““cﬁ)eration on station Thus, after a subassembly is transferred
sensing cost is minimized. This procedure of sensor distributigilgownstream stations, we can conclude that following relation
is illustrated using one case study of a three-station assemglyrue, i.e.p(r(®.:B;)) = p(n(®;,B;)) Yk, j # i. More-
process. The optimal scheme renders 33% decrease in seng{;&g' it was provéd in [21] tha,b(r’(ék_iBi)) > p(®4.:B;),
station cost and 75% decrease in sensor cost in comparisogyigs ’ ’
the scheme of saturated sensing.

Even though the current study focuses on an assembly, — p ((®r,iBi)) >

V. SUMMARY

p(QkZBL) _ (pi—l) -DOF _ pi—l

process and the diagnosis of fixture variation, it is worthwhile pi - DOF pi - DOF pi - DOF Di

to note that the state space model for variation propagation, the O
diagnosability measure, and the resulting strategy of sensor dis-

tribution are fairly general for various types of manufacturing APPENDIX I

systems. Following the framework, a similar sensor-distribution

strategy can be developed for dimensional variation diagnosis PROOF OFLEMMA 2 IN SECTION I1I-B

in other manufacturing systems. . .
g sy If sensors are placed on statioW, I' in (3) becomes

[y --- Ty --- I'y], whereI'y, = Cny®y Bi. Meanwhile,
given the assumption of “sufficient sensor number,” we can
setCy = I without loss of generality. Therd}, is further
simplified as® y ,Bj. Given an assembly process where new
Proof of (P1): \ii; = p(m(®;:B;))/(p: - DOF). Since parts are assembled with an existent subassembly at each inter-
®;,; =1, \ij; = p(n(By))/(p; - DOF). Fixture design requires mediate station, the nonzero variables in the state v&ttwill
that all degrees of freedom of a rigid workpiece are fully rekeep growing. As a result, the nonzero elements in the columns
strained byp; fixtures on station. Thus,p(7(B;)) = p;-DOF.  of T';, will increase in accordance to the growth of nonzero
That leads to the property (P1). 0 elements inX,. Notice that/, monotonically increases, i.e.,
Proof of (P2): \;; = Ajx is equivalent to 1, <[, < ... < Iy, and,P; will contribute to deviations only
saying p(m(®x:Bi)) = p(n(®;:B;)). Let us first onpart1to parf; at stationk. Hence[', can be partitioned as
take a look atp(®;;B;). According to [26, Figs. 2-6],
p(®r;B;) = p(B;) — d, whered is the dimension of the 'y, =®N,:Bx
intersection of the column spade(B;) and the null space _ [ } corresponding to part 1
Null(® ;). B [0] } corresponding to parts aftér+1

APPENDIX |

PrROOF OF(P1)AND (P2)IN LEMMA 1IN SECTION III-B

(27)
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subassembly .
from station k-1 positioning . subassembly
. 1 DOF — releasing & i b itioned
Operations joining [ {ransferring [T to be positione
2;\:; (ﬁful:s on &y positioning on station k+1
Ik — Ix1)-DOF
Degrees of i A, for one step transferring
freedom | Ui+ D)-DOF &, for multi-step transferning

Fig. 7. Assembly operations and their mathematical models.

where “x” is the nonzero block corresponding to part 1 to part[14]
I, that have already been joined together in the assembly after
operation on statiot. Apparently, the columns ib';, are in- [15]
dependent of those ii;, V j # k. Based orProperty 20f =
transform [21], we know that columns #(I';,) will also be in-  [16]
dependent of those in(I';) for j # k. Note thatr(I';) and

w(T';) are in factll, andII; defined in [21], respectively. Ac- [17]
cording to [21, Th. 3], we conclude that the between-station di-

agnosability condition is satisfied. O
(18]
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