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Optimal Sensor Distribution for Variation Diagnosis
in Multistation Assembly Processes

Yu Ding, Pansoo Kim, Dariusz Ceglarek, Member, IEEE, and Jionghua Jin

Abstract—This paper presents a methodology for optimal al-
location of sensors in a multistation assembly process for the pur-
pose of diagnosing in a timely manner variation sources that are re-
sponsible for product quality defects. A sensor system distributed
in such a way can help manufacturers improve product quality
while, at the same time, reducing process downtime. Traditional
approaches in sensor optimization fall into two categories: mul-
tistation sensor allocation for the purpose of product inspection
(rather than diagnosis); and allocation of sensors for the purpose of
variation diagnosis but at a single measurement station. In our ap-
proach, sensing information from different measurement stations
is integrated into a state-space model and the effectiveness of a dis-
tributed sensor system is quantified by a diagnosability index. This
index is further studied in terms of variation transmissibility be-
tween stations as well as variation detectability at individual sta-
tions. Based on an understanding of the mechanism of variation
propagation, we develop a backward-propagation strategy to de-
termine the locations of measurement stations and the minimum
number of sensors needed to achieve full diagnosability. An as-
sembly example illustrates the methodology.

Index Terms—Diagnosability, diagnosis of variation sources,
multistation assembly process, sensor distribution.

NOMENCLATURE

Dynamic matrix.
Input matrix of station .
Observation matrix of station.
Diagnosability matrix.

DOF Degrees of freedom of each rigid workpiece,
for a 2-D rigid body, for a

3-D rigid body.
Number of parts involved in the assembly at station

.
Number of manufacturing stations.
Input vector, the fixture deviation vector of station

.
State vector, the part deviation vector on station.
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Observation vector on station.
d.o.f. Degrees of freedom.

Station index.
Dimension of .
Number of parts in an assembly.
Dimension of .
Dimension of .
Number of sensors on part.

, , Coordinate variables (translation).
Vector operator.
Covariance matrix.
State transition matrix.
Input–output model matrix.
Equals .

, , Coordinate variables (rotation).
Rank of a matrix.

-transform.
Diagnosability index.
Transmissibility ratio.
Detectability power.

, Noise vector.

I. INTRODUCTION

RECENT innovations in sensor technology have enabled
manufacturers to distribute sensors in multistation manu-

facturing processes. For example, optical coordinate measuring
machines (OCMM) are built into automotive assembly lines and
in-process CMMs are used in transfer-line machining processes.
A distributed sensor system offers the enhanced capability of
diagnosing in a timely manner process variation sources that
cause product quality defects. A distributed sensor system en-
ables manufacturers to improve product quality and reduce pro-
duction downtime. However, effective use of sensing data in di-
agnosing variation sources depends to a great extent on the op-
timal design of the distributed sensor system. A poorly designed
sensor system is likely to generate an extensive amount of irrel-
evant or even conflicting information and as such may not be
able to provide the desired diagnosability in identifying varia-
tion sources.

The effectiveness of a sensor system is characterized by the
diagnosability it offers, which is its capability to identify major
variation sources. The efficiency of the system can be bench-
marked by the sensing cost in achieving certain levels of diag-
nosability. The sensing cost considered in this paper is repre-
sented by the number of sensors and sensing stations that house
them. The optimal design of a sensor system in terms of its ef-
fectiveness and efficiency is to realize the desired diagnosability
at minimum cost.

1042-296X/03$17.00 © 2003 IEEE
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TABLE I
COMPARISON OFSENSING DISTRIBUTION METHODOLOGIES

In a multistation production line, thedesign of a sensor system
involves the determination of (Q1) where to build sensing sta-
tions, (Q2) the minimal number of sensors required at each in-
dividual sensing station, and (Q3) the location of sensors within
each individual sensing station. The design of such a sensor
system with multiple sensing stations can be referred to as the
problem ofsensor distributionor distributed sensing. Please
note that the “location of a sensor” refers to the location of a
product feature that a sensor measures instead of the place where
a sensor is physically installed. In other words, the number and
location of sensors refers to the number and location of measure-
ment features on a product/part. By “install a sensor on station

,” we mean to select a product/part feature to be measured at
station . In this sense, the problem of designing a sensor system
is selecting product features to measure on different stations in
a multistation process.

Relevant research in this area falls into two major categories:
sensor allocation for the purpose of multistage product inspec-
tion and, single-station sensing optimization. Optimal alloca-
tion of inspection efforts has been studied for serial and non-
serial production lines with either perfect or imperfect inspec-
tion capability [1]–[5]. This type of research conducted prior
to 1990 was summarized in a survey [6]. More recent devel-
opment in this area is presented in [7], [8]. The objective of
multistage product inspection is to minimize overall cost, in-
cluding fixed inspection, variable inspection, scrap/repair and
warranty costs. The problem is often formulated as a dynamic
programming problem [6]. Other optimization methods used in-
clude nonlinear programming [4], genetic algorithms [9], and
simulated annealing [9], [10].

In current industrial practices, product functional nonconfor-
mities are often the result of unsatisfactory quality. If the war-
ranty cost is higher than other cost components, it can be more
effective to minimize the sensing cost with quality requirements
as constraints. A critical aspect of this new problem formulation
is considering the mechanism and effectiveness of variation di-
agnosis, which leads to further diagnosis-oriented research in
sensor optimization.

Diagnosis-oriented sensor optimization has been conducted
mainly at single-machine level rather than at system level, i.e.,
the variation sources and locations of sensors are limited to a
single manufacturing station [11]–[14]. The main approach used

in single-station optimization is to optimize the Fisher Informa-
tion Matrix (FIM) [15], denoted as , to ensure minimum esti-
mation error. Given the sensor number, Fadaleet al. [12] deter-
mined optimal sensor locations by maximizing , where

is the determinant of a matrix. Khanet al. [13] deter-
mined sensor locations by maximizing the minimum distance
among variation pattern vectors ’s. Udwadia [11] discussed
the issues of how to place the given sensors; and, how to
place additional sensors when sensors are already installed,
in order to maximize or minimize trace .
Wang and Nagarkar [14] used a prediction matrixin com-
bination with , where is the measure of the relative con-
tribution of a sensor to the information provided by the sensor
set. The sensor with the least contribution will be removed to
reduce redundancy. The algorithm stops before there is a sub-
stantial decrease in .

Research on sensor distribution for multistation systems,
which considers the effectiveness of variation diagnosis, is very
limited. Khanet al. [16] and Khan and Ceglarek [17] studied
(1) “end-of-line sensing,” where the sensing station is located
at the end of a manufacturing system, but variation sources
include those from upstream stations, and (2) “distributed
sensing,” where sensing stations can be located in preselected
yet arbitrary places in a manufacturing system. Their approach
optimized sensor layout by maximizing the minimum distances
between any pair of variation patterns, which were obtained
using the variation model of a single fixture. The final sensor
layout was obtained by aggregating variation patterns for all
fixtures in the system. Their methodology does not consider
the interaction effects of variation sources between different
stations, which significantly impact the variation propagation
in assembly systems and need to be taken into consideration.
Table I presents the relationship between the proposed method-
ology and those available in the literature.

There are three critical challenges in achieving optimal sensor
distribution in multistation systems: (1) sensing information ob-
tained at various sensing stations needs to be integrated and ef-
fectively utilized; (2) a quantitative diagnosability measure is
needed to benchmark the effectiveness of a sensor system; and
(3) based on the integrated sensing information and the quan-
titative diagnosability measure, an optimal strategy needs to be
developed.
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Fig. 1. A layout of 3-2-1 fixture with marked Ps, Cs and Ms points.

Fig. 2. Information flow in multistation manufacturing.

The first two challenges have been addressed in the authors’
earlier publications—the sensing information on different sta-
tions is integrated and coordinated in a station-indexed state-
space model [19], [20], and, a diagnosability index is devel-
oped to quantify the effectiveness of a distributed sensor system
[21]. This paper focuses on presenting an optimal strategy for
sensor distribution in a multistation assembly process, which es-
sentially answers the two aforementioned problems (Q1) and
(Q2). Problem (Q3) is then addressed using methods presented
in [11]–[14].

Following this introduction, Section II briefly reviews the
state space variation model and the development of the diag-
nosability index since they are integral parts of the develop-
ment of an optimal sensing strategy. Section III presents the
optimal strategy for sensor distribution and justifies the min-
imum number of sensing stations and sensors. A multistation
assembly system is presented in Section IV to illustrate the op-
timal sensing strategy. Finally, the paper is summarized in Sec-
tion V.

II. PROCESSVARIATION MODEL AND

DIAGNOSABILITY ANALYSIS

Diagnosis-oriented sensor optimization, as presented in this
paper, often requires modeling of a physical manufacturing
system with specific domain(s) of variation sources. In this
paper, we focus on diagnosing dimensional variation sources
in a multistation assembly process. The variation domain is
limited to variation sources related to fixture failure (hereinafter
referred to as “fixture variation”), which was identified as the
major contributor of variation in dimensional quality control in
assembly processes [22], [23].

A typical 3-2-1 fixture locating layout with five locators (,
, – ) and three measurement points (– ) is shown

in Fig. 1. In a multistation assembly process, fixture locators are
key functional elements, providing parts support with Cartesian
coordinates at each assembly station. A sensor system deployed

in a multistation process aims to identify fixture failure by uti-
lizing dimensional measurements of the finished product and/or
of intermediate subassemblies.

The relationship between product measurements (e.g., mea-
surements at points – in Fig. 1) and fixture variation
was modeled in a state space representation for multistation
assembly processes [19], [20]. The basic idea is to consider a
multistation process as a sequential system but replace the time
index in a traditional state space model with a station index. For
the process in Fig. 2, the station-indexed state space model can
be expressed as

and

(1)

where is the station index and is the number of stations.
The product dimensional state, which describes dimensional de-
viations that occur randomly, is denoted as. Let

(refer to Fig. 1 for the six
coordinate variables) be the random deviations associated with
each of the six degrees of freedom of partat station , where

is the deviation operator. Then the state of the product, which
comprises parts, is represented by .
If part has not yet appeared on station, the corresponding

. The input vector represents the random devia-
tions associated with fixture locators on station. Mathemat-
ically, fixture variations are characterized by the variances of
random variables in , which are called thevariance compo-
nentsof fixture variation. Additional process errors including
un-modeled higher order terms are represented by. Product
measurements at stationare included in . For the example

in Fig. 1, is
...

... , i.e., the
deviations associated with measurement features, , and

. But is not necessarily measured—if it so happens, then
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TABLE II
INTERPRETATION OFSYSTEM MATRICES

. Sensor noise, denoted by, is a vector of uncorre-
lated random variables with zero means.

In the state space model, and include process design
information such as fixture layouts at each station, as well as
the effect of fixture layout change across stations. Matrix
includes sensor deployment information (the number and loca-
tion of sensors on station). The sensing information across
different stations is integrated through this state space model.
The corresponding physical interpretation of, , and is
presented in Table II, where and

.
A detailed diagnosability analysis of a multistation system

modeled by (1) was reported in [21]. We summarize the results
that will be used in this paper. The recursive expression in (1)
can be formulated into an input–output relation as

(2)

where , ,
, , and

...
...

...
...

...
(3)

Since we are concerned with the variation of state variables and
input vectors, the original model (2) for random deviations is
converted into a variation model. Assuming that product devi-
ation , fixture deviation , and noise term are indepen-
dent, we can have

(4)

In (4), is known from measurements obtained at the end
of the precedent fabrication process. We also assume thatcan
be estimated using data from a normal process condition when
no outstanding fixture error occurs. With this assumption,is

defined as the summation of all measured or estimable quantities
. Then (4) can be simplified as

(5)

Definition: The fixture variation in a multistation assembly
system is diagnosable if the variance components in
can be uniquely determined, given the known/measured quan-
tity , where extracts the diagonal elements from a ma-
trix into a vector.

A derivation in [21] shows that (5) can be expressed as

(6)

where is the vector operator [24], is a matrix trans-
formation defined as

...

...
... (7)

and is the th row vector of , “ ” represents a Hadamard
product [24].

Define matrix as

...
...

.. .
...

(8)

and is called the diagnosability matrix. The diagnosable
condition of fixture variations as stated in [21] is that
should be of full rank, which is equivalent to that is of full
column rank. Meanwhile, a diagnosability indexis defined as

(9)

where is the rank of a matrix and , namely the dimension
of , is the number of variance components in . The

is a normalized quantity in [0, 1]. The condition of
is equivalent to being of full rank. Thus, we say that a
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Fig. 3. Variation transmission and detection.

sensor system provides the complete diagnosability if and only
if . We would like to make the following remarks.

Remark 2.1: If will have to be estimated on-line using
production data, a new diagnosability condition should be devel-
oped. In fact, such a condition was recently developed in [25].
It depends on the structure of system matrices(or ), , and

whether or not the noise covariancecan be separated from
fixture variations.

Remark 2.2:Diagnosability is based on the concept of the
rank of a matrix. Determining the rank of a matrix is a difficult
problem from a numerical perspective. However, with the help
of a mathematical software package such as MATLAB, the diffi-
culty associated with computing a matrix rank has been consid-
erably alleviated. Similar rank-related conditions are commonly
used in engineering applications, e.g., the controllability and ob-
servability conditions in control theory [26].

Remark 2.3:Based on the above diagnosable condition,
any indicates that fixture variation is only partially
diagnosable. A single index is insufficient to characterize
a partially diagnosable system, of which the preferable diag-
nosability condition may also depend on how nondiagnosable
variation sources are coupled. An analysis dedicated to partially
diagnosable systems is presented in [25] and is not repeated
here. But, for a sensor distribution problem, we should always
try to achieve full diagnosability, unless other evidence or
engineering experiences indicate that those nondiagnosable
variation sources are not of practical concern.

III. OPTIMAL SENSORDISTRIBUTION STRATEGY

A. Sensing Cost and Objective Function

The objective of an optimal sensor-distribution strategy is to
achieve the desired diagnosability at a minimum cost. The cost
of a sensor system comes not only from sensors but also from
the expense of building sensing stations. It is assumed that all
parts assembled at any station can be physically accessed by sen-
sors at a downstream station for their positional and orientation
measurements. Thus, there are two ways of measuring product
features during production: 1) sensors are installed directly on
the assembly station and measurements are taken after the as-
sembly operation is completed; or 2) the subassembly is trans-
ferred to a dedicated station designed solely for taking measure-
ments. In both cases, these stations are called sensing stations.
A sensing station will incur extra cost when compared to a reg-
ular assembly station. This is clear for the second case with a
dedicated sensing station. However, this is also true for the first
case due to special requirements for upgrading a regular station

to install sensors. The specific monetary cost is usually different
for both cases. However, the cost differences between the two
cases are not considered in this paper.

In order to diagnose all fixture variations, it is required that
(9). With as the constraint, the optimization

scheme can be formulated as

of sensors at station

of sensing stations subject to (10)

where and are the average cost per sensor and per sensing
station, respectively.

In this section, we will decompose the system-wide diag-
nosability in a multistation process into two steps (Fig. 3): 1)
the transmission of variation from stationto station , with
the transmitted information modeled by state covariance matrix

and 2) the detection of fixture variation by sensors located
at station , with the overall information modeled by a mea-
surement covariance matrix. Information transformation in the
two steps is characterized by the transmissibility ratio and
the detecting power (on station ), respectively. The optimal
sensor distribution is studied through: 1) achieving the optimal
detecting power on a single station; and 2) identifying stations
at which error information is not completely transmitted (i.e.,

). The detailed development is organized as fol-
lows: Section III-B defines and derives its properties for a
multistation assembly process. Ratio will be used to deter-
mine where to build a sensing station. Section III-C studies the
effect of sensor layout at an individual station on its detecting
power , which leads to several practical rules for placing sen-
sors on a single sensing station. The optimal sensor-distribution
strategy given in Section III-D is a natural outcome of results
from Sections III-B and III-C.

B. Variation Transmissibility Ratio

When the transmission of variation is studied, we assume that
a sufficient number of sensors are installed at station. We will
further discuss the meaning of “a sufficient number of sensors”
in Section III-C. For the time being, let us assume it to mean

.
We notice that variation transmission is determined by

process configuration such as fixture layout geometry (modeled
by ) and the change in fixture layouts between stations
(modeled by ). The 3-2-1 fixture shown in Fig. 1 can
restrain DOF degrees of freedom (d.o.f.) of a rigid workpiece (a
workpiece could be a single part or a multipart subassembly),



548 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 4, AUGUST 2003

where for a 2-D workpiece and for
a 3-D workpiece. Suppose that there are‘3-2-1’ fixtures
on station and each of them supports one rigid workpiece.
The total number of d.o.f. that these fixtures restrained is

dimension , which is the number of
independent variation sources associated with thefixtures.
Thus is the number of unknown variance components of
fixture variation that we try to diagnose. On the other hand,

represents the number of independent equations
that we have in solving the unknown variance components.
If , not all variance components of fixture
variation on station can be uniquely solved. In that case,
some information regarding fixture variation on stationis lost
during the transmission step. We define a transmissibility ratio

to quantify the variation transmission from stationto
station as

(11)

where suggests that the complete information re-
garding fixture variation has been transmitted from stationto
station . If loss of information occurs during the transmission
step, is used to quantify the information loss. Any in-
formation loss during the transmission step suggests that fixture
variations at stationare not fully diagnosable regardless of the
number of sensors placed on station. Furthermore, we have

Lemma 1: A transmissibility ratio possesses the following
properties:

The proofs of both properties are presented in Appendix I.
The first property is intuitive because it implies that if we
measure all the dimensional information of a workpiece (say,
let ), the variation of the fixture that is currently used to
support the workpiece can be uniquely determined. The second
property seems counterintuitive. It says that the variation
transmissibility from station to station is the same as
that from station to station which is located further down-
stream; . This is an important property describing
transmission of fixture variation in a multistation assembly
process, under the condition that all measurement points on a
product/part can be measured at any station if needed.

In [21], the diagnosability is further partitioned into within-
station and between-station diagnosability, respectively. Gener-
ally, a system is fully diagnosable only if it is both within-station
and between-station diagnosable. However, for a multistation
assembly process where new parts are added on downstream
stations, it is possible to ensure between-station diagnosability
through end-of-line sensing. This conclusion is stated in Lemma
2 and Corollary 1. The proof of Lemma 2 is included in Ap-
pendix II. Corollary 1 is a straightforward result from Lemma 2
and its proof is thus omitted.

Lemma 2: For a multistation assembly process where new
parts are added on downstream stations, given that a sufficient
number of sensors are installed on station(to measure the
final product), the between-station diagnosability condition will
be satisfied.

Corollary 1: Under the same condition as Lemma 2, the di-
agnosability can be expressed as

(12)

Remark 3.1:The index is solely determined by fixture
design configuration and, thus, it can be calculated after the
process is designed but before the sensor positions are allocated.
The values of ’s are not modifiable after the process design
phase is completed. We will utilize Lemmas 1 and 2 to decide
at which station(s) to place sensors to retrieve the information
lost during the transmission step.

Remark 3.2:From (12), will be 1 if all ’s are 1, i.e.,
fixture variations on all upstream stations are diagnosable by
taking measurements on station. In such a case, we need in-
stall sensors only on the last station. In many cases, not all

’s are equal to 1. If , the strategy of increasing
transmissibility by installing sensors on any stations between

and will not help, since for
, according to (P2) in Lemma 1. The only rec-

ommended solution is to add sensors directly on stationsince
(P1 in Lemma 1). The same procedure will be repeated

for all stations with .
Remarks 3.3:As indicated in Fig. 3, the actual information

retrieved on station will also depend on the number and layout
of sensors on station (modeled by ). Ideally, if there is no
restriction on sensor number, we can place “a sufficient number
of sensors” to make so that all information transmitted
to is retrievable. However, in order to minimize the sensing
cost, we need to find the most economical sensor layout at sta-
tion , which places theminimumnumber of sensors but re-
trieves the complete transmitted information in .

C. Sensor Placement on a Single Station

Suppose that sensors are installed on stationwith the re-
sultant diagnosability of . The total number of variance com-
ponents to be diagnosed from station 1 tois . Then,
the quantity of is considered to be the amount of in-
formation retrieved by sensors on station, and
represents the amount of information of fixture variation trans-
mitted from upstream stations. If is assumed to be, then

always equals to (Corollary 1). How-
ever, given an arbitrary number and layout of sensors, we may
have the inequality . Then, we de-
fine a detectability ratio as

(13)

Sensor placement on an individual station is considered as
having a sufficient number of sensors if variation detectability

. The minimum sufficient sensor number is studied for
two cases: deviation detection and variation detection.

1) The Minimum Sufficient Number of Sensors in Detecting
Product Positional Deviations:In an assembly process, coor-
dinate sensors are used to measure the positional deviation of a
rigid workpiece. One coordinate sensor can measure 3 d.o.f. on
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a 3-D workpiece or 2 d.o.f. on a 2-D workpiece. In order to mea-
sure all d.o.f. of a workpiece, three independent sensors are re-
quired for a 3-D case (or two sensors for a 2-D case). If all d.o.f.
of each part in an assembly are measured, it can be concluded
that the positional deviations of the product in all directions have
been obtained. Recall that there areparts in the assembly on
station . Then, we need (or for 2-D) sensors with
three sensors on every part to detect positional deviations of all
parts. Once positional deviations of all parts are detected, we
can calculate from the deviational measurements. It is not
true the other way around, though. That is, even if we know,
we cannot reconstruct the deviational measurements. Thus, the
condition for detecting the deviations of all parts is a sufficient
condition for variation detection required in (13). In the case of
variation detection, it is possible to reduce the number of sen-
sors while still reaching .

2) The Minimum Sufficient Number of Sensors in Detecting
Product Positional Variations:The reasoning behind a possible
sensor-number reduction lies in the application of the-trans-
form in the variation model (6). Suppose that we have a devia-
tion relationship represented as . The d.o.f. of parts is
the same as the dimension ofif all parts are completely re-
strained. In order to solve for fixture deviations, the dimension
of has to be at least the same as that ofand should
be of full rank. When fixture variations of are considered, the
model becomes , according to (6).
Since fixture deviations in are physically independent, is
a diagonal matrix. The , which contains all variance
components of fixture variation, is of the same size as. This
suggests that the number of unknowns is not changed from that
of the deviation model, but the number of known quantities in

increases compared to the number of elements in. If
is of , is then of size . These ad-

ditional terms in are the covariances between the vari-
ables in . The -transform takes this change into account so
that increases the number of rows but keeps the number of
columns the same as that of. Based on the fact that the covari-
ance terms in the variation model provide more known quanti-
ties, the required number of sensors can be reduced. Letbe
the dimension of . As for the deviation model, the realization
of diagnosability requires that and be of full rank.
But for the variation model, it requires that and

be of full rank.
Let us illustrate this by using a simple example. Let ,

, and be

so (14)

Apparently, we would not be able to solve for the deviation vari-
ables in since and is singular. The turns out
to be

and

(15)

Here, is of full rank and .
Thus, we can solve for the variations of. If we write down

in terms of the variance components in , it is

(16)

where , , and are three variance components in
. From (16), we verify that the variance components

in cannot be uniquely solved from the diagonal vari-
ance terms in . The covariance term between and lets

) equal , providing an additional equation,
with which all three variance components can be uniquely de-
termined.

We have explained why the number of sensors can be reduced
for variation diagnosis. However, an important question remains
to be answered: how many sensors are necessary to reach?
The minimum number of sensors satisfying depends on
how the sensors are allocated on different parts. For instance,
given a subassembly consisting of two parts, we can place six
sensors on one of the two parts, but the information they provide
will be the same as that provided by three sensors placed on the
same part. A more efficient way is to place three sensors on each
of the two parts, respectively.

The sensor placement on an individual station is modeled by
. In general, it is very difficult to show analytically how the

sensor placement will affect the rank of , where
(refer to the information chain in Fig. 3). There-

fore, we conduct a numerical study to produce certain practical
rules that we can follow. In the numerical study, for the sake of
simplicity, we consider a two-station assembly process, which
consists of all assembly operations (such as part positioning,
joining, and transferring) so that it captures the interactions in

. Sensors will be placed on the second station in this
two-station assembly segment.

The numerical test results are summarized in Table III, where
is the detectability when sensors are

placed on part 1, part 2, , part , respectively. There are a lim-
ited number of options in placing these sensors. The maximum
number of sensors is (3-D) or (2-D) for all product-de-
viations to be made detectable. For instance, if a subassembly
consists of two 2-D parts, the maximum number of sensors
needed is four. The possible sensor placements constitute the
following sets: (0,4), (4,0), (1,3), (3,1), or (2,2). For each sensor
placement, we test detectabilitythrough a numerical calcula-
tion. Comparison among all the possible sensor placements will
lead us to the minimum sufficient number of sensors and the as-
sociated scheme of sensor placement. It should be noticed that a
small position change of sensor locations on the same part may
not affect diagnosability defined in (9). In this numerical test,
the position of each sensor is determined by following a sim-
plified procedure, which postulates that no two sensors can be
located at the same position and no positions of any three sen-
sors can be collinear. We observe the following.

(C1) Given the same number of sensors, the detectability is
larger if the sensors are placed on different parts in a
rigid multipart subassembly than if they are placed on
the same part.
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TABLE III
NUMERICAL ANALYSIS OF SENSORPLACEMENT ON INDIVIDUAL STATION

(C2) In order to make , at least one sensor should be
placed on each part.

(C3) The minimum sufficient number of sensors isand
the associated distribution is one sensor per part.

In Table III, we list only the detectability values up to .
This type of exercise can be continued for more parts with more
sensors. Recall that the reason why the number of sensors can be
reduced is due to the extra information generated from the co-
variance terms between variables in. The fact that the number
of covariance terms is a quadratic function of the number of vari-
ables in will gain us more information when additional parts
are involved. Thus, when more parts are involved, the above
conclusions shall hold true. We summarize this idea in the fol-
lowing Lemma.

Lemma 3: When each part in an assembly has the same
number of degrees of freedom, sensors should be uniformly
allocated among all parts within an individual station so that
one sensor per part will make .

D. Optimal Strategy of Sensor Distribution

Lemmas 1 and 2 in Section III-B indicate that, if a variation
source can be diagnosed in the next station, it will be diagnos-
able in any subsequent station. On the other hand, if fixture vari-
ation is not diagnosable at the following station, sensors will
have to be placed right on the station where the fixture error oc-
curs; such a station will be indicated by a . Mean-
while, Lemma 3 in Section III-C shows that if one wants to use
the minimal number of sensors to detect all the transmitted vari-
ation in , one sensor should be allocated to each part. We
use Table IV to summarize the meaning of, , and , as well
as the above understandings regarding variation transmissibility
and sensor placement on individual stations.

The following algorithm, which distributes sensors in the
multistation assembly process, is a natural outcome of the
results from Sections III-B and III-C.

TABLE IV
INTERPRETATION OFTHREE INDEXES�, �, AND �

Strategy of Sensor Distribution:

Step 1) On station (the last station), place one sensor
on each part. If , then stop, else, go to Step 2.

Step 2) Let , given the installed sensors at all
downstream stations , check
if equals to 1, install sensors on station with

. The installation procedure follows the
general rule of sensor placement on an individual
station. If , then do not install any sensor
on that station.

Step 3) Stop if , otherwise repeat Step 2 for
.

Theorem: The above sensor-distribution strategy attains the
optimization objective in (10).

Proof: Let denote the number of parts (including the
parts in a multipart subassembly) on station, where of
them are in the major subassembly from the previous station

and are the new parts added at station. Let
us compare the situations when sensors are installed at station

and station , respectively. When sensors are installed at
station , sensors are installed on the major subassembly
coming from station to make , following Lemma
3 in Section III-C. Sensors are also placed on the remaining

number of parts that are newly added at station
. However, since our intention is to find on which station (i.e.,

or ) sensors should be placed so that the same amount
of variation information can be detected using less number of
sensors, we consider that a fair comparison is to exclude the
number of those sensors on the new parts, given
the fact that there is no alternative way of measuring these parts
other than placing sensors on station.

The average information regarding fixture variation detected
by a single sensor is

(17)
If sensors are installed on station to measure the
same number of parts to make , the average infor-
mation regarding fixture variation detected by one sensor is

(18)

According to (P2) in Lemma 1, ,

in in (19)
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Fig. 4. Diagnosability property related to sensor distribution.

Notice that (again P2 in Lemma
1)

Equation

(20)

Also, , then, (17) (18), which indi-
cates that sensors installed on stationare more effective than
sensors installed on station in the sense of information
detected per sensor. Following the mathematical induction ap-
proach, it can be shown that sensors installed on station
are more effective than those on station and so on. We
then conclude that the backward propagation strategy is an op-
timal strategy.

We expect to see the change of diagnosability, as shown in
Fig. 4, when sensors are sequentially installed in a production
line, which is elaborated as follows.

(I) When sensors are placed on station, the entire trans-
mitted information regarding fixture variation is de-
tected and the system diagnosability increases rapidly
with more sensors placed on station. If
for some station, the maximum that can be achieved
with sensors placed only on stationis always smaller
than 1, i.e., [from
(12)]. This is illustrated in Fig. 4 as a dotted flat line;
we say that the diagnosability level is saturated.

(II) Thus, we should place some sensors at the upstream
station(s) where . Since , the installa-
tion of sensors directly on stationcan help further in-
crease the system diagnosability (step increases in di-
agnosability are seen in Fig. 4). The diagnosability ob-
tained by sensors on stationis (transmitted
information), and the diagnosability obtained by sen-
sors on station is (information loss
during transmission to station). However, given that

, for , the
slope of the curve (to the right) is less steep than the
curve discussed in item (I). Again, the diagnosability
will saturate at a higher level until sensors are installed
on all stations where . Following this proce-
dure full diagnosability is achieved and .

IV. CASE STUDY

The optimal strategy of sensor distribution is illustrated by
optimizing a sensor system in a three-station assembly process
with four parts marked as 1, 2, 3, and 4 in Fig. 5. The as-
sembly process can be described in three steps: 1) parts 1 and
2 are assembled at Station I [Fig. 5(a)]; 2) subassembly “1
2” is joined with parts 3 and 4 at Station II [Fig. 5(b)]; and 3)
the final assembly is inspected for surface finish and welding
quality at Station III [Fig. 5(c)]. A part or a subassembly is re-
strained by a fixture, which has a four-way pinhole locating pair
that controls motion in both and directions; and, a two-way
pinslot locating pair that controls motion only in thedirection
(only a 2-D case is presented in this example). After two parts
are assembled, a subassembly still needs a four-way pin and a
two-way pin to completely control its d.o.f. For example, sub-
assembly “1 2” is positioned by the fixture locators
that are on part 1 and part 2, respectively [Fig. 5(b)].

Parameters used in this example are ; ;
the number of fixtures on each station are , ,
and . In such a 2-D case, ,
which are deviations associated with two translational and one
rotational d.o.f. of part on station . The state equations of this
three-station process are

and

(21)

where the initial state , representing part deviation from de-
sign nominals caused by the stamping process, is assumed neg-
ligible. Numerical expressions for and of the assembly
process shown in Fig. 5 are given in (22) and (23), shown at
the bottom of the next page. Based on them, the transmissibility
ratios are calculated as: .

Step 1) On the last station , install one sensor on
every part.

The value of is calculated given different num-
bers of sensors. The value of keeps increasing
until it saturates (Curve-1 in Fig. 6) at the level of
0.889 for four sensors, one sensor per part. Further
increase in the number of sensors on Station III does
not increase the index (the dash line of Curve-1
in Fig. 6). The saturated value of can be com-
puted by

, according to (12).
Step 2) On station . Check .

Since , we need not place any sensor on
Station II. A numerical calculation conducted by au-
thors verifies that does not change even if addi-
tional sensors are placed on Station II.

Step 3) . Check , and minimize the
number of sensors on Station I to reach .

Since , we should place sen-
sors on Station I. Provided that some sensors were
already installed on the downstream station, it is
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Fig. 5. The three-station assembly process with the optimal sensor distribution.

usually the case that we do not have to install sen-
sors on every part on Station I. A combinatorial
test trying different numbers of sensors is neces-
sary to find out the minimum number of sensors re-

quired to reach . Given parts on station
, the maximal number of possible combinations is

, where is the combinatorial operator
for integers and . In this example, ,

(22)

(23)
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Fig. 6. The impact of sensor number on�.

where . The three possible sensor placements
are (1,0), (0,1), and (1,1). In fact, adding one more
sensor on Station I, either on part 1 or on part 2, will
result in . The optimal sensor distribution is to
place a total of five sensors at two stations (marked
as in Fig. 5). In Fig. 5(a), sensor is
placed on part 2; but it can alternatively be placed on
part 1. Furthermore, we use the algorithm in [14] to
determine the exact coordinates of each sensor (see
Table V). In order to reduce the computation load,
the resolution of coordinates is chosen at the 1-mm
level, which should be accurate enough for sensor
locations on a part with dimensions of several hun-
dred millimeters.

For such a sensor distribution, matrices’s are given in (24).
Calculate using these matrices. Fig. 6 demonstrates that
reaches 1 when Station I is upgraded into an additional sensing
station, verifying the argument we provided for Fig. 4 in Sec-
tion III-D, shown in (24) at the bottom of the page.

The abovementioned distributed sensing layout can be com-
pared with two traditional sensing layouts: end-of-line sensing
and saturated sensing, which are discussed in [21]. End-of-line

TABLE V
EXACT COORDINATES OFFIVE SENSORS INFIG. 5 (UNIT: mm)

sensing layout is defined as placing a sufficient number of sen-
sors at thelast station to measure the d.o.f of all parts. Satu-
rated sensing layout is defined as placing a sufficient number of
sensors to measure the d.o.f of all parts oneverystation. In the
cases of end-of-line and saturated sensing layouts, “a sufficient
number of sensors” means two sensors per part (for a 2-D as-
sembly process). Thus, in this example, the end-of-line sensing
layout will install eight sensors on Station III and the saturated
sensing layout needs twenty sensors, two sensors on each part
on every station. The results of all three sensing layouts are pre-
sented in Table VI.

It shows that the optimal algorithm yields the minimum
number of sensors and sensing stations while simultaneously

(24)
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TABLE VI
COMPARISONAMONG SENSORDISTRIBUTIONS FOR THETHREE-STATION

ASSEMBLY

attaining 100% system diagnosability . The cost
reduction in comparing the optimal sensing strategy with the
scheme of saturated sensing is

cost reduction in station construction

(25)

cost reduction in sensor implementation

(26)

V. SUMMARY

This paper investigates a strategy for sensor distribution
in a multistation assembly system based on the state space
variation model and an analytical diagnosability study of the
same process. A backward propagation algorithm is presented
for theallocation of sensing stationsalong the process and the
determination of the minimal number of sensors within each
sensing station. When the unique properties (Lemmas 1, 2, 3) of
variation propagation in a multistation process are considered,
the resulting strategy of sensor distribution is optimal, i.e., the
sensing cost is minimized. This procedure of sensor distribution
is illustrated using one case study of a three-station assembly
process. The optimal scheme renders 33% decrease in sensing
station cost and 75% decrease in sensor cost in comparison to
the scheme of saturated sensing.

Even though the current study focuses on an assembly
process and the diagnosis of fixture variation, it is worthwhile
to note that the state space model for variation propagation, the
diagnosability measure, and the resulting strategy of sensor dis-
tribution are fairly general for various types of manufacturing
systems. Following the framework, a similar sensor-distribution
strategy can be developed for dimensional variation diagnosis
in other manufacturing systems.

APPENDIX I

PROOF OF(P1)AND (P2)IN LEMMA 1 IN SECTION III-B

Proof of (P1): . Since
, . Fixture design requires

that all degrees of freedom of a rigid workpiece are fully re-
strained by fixtures on station. Thus, .
That leads to the property (P1).

Proof of (P2): is equivalent to
saying . Let us first
take a look at . According to [26, Figs. 2–6],

, where is the dimension of the
intersection of the column space and the null space

.

What is the dimension of ? The is the ma-
trix that models the part transition from stationto station .
The part transferring operation happens after all components
in an assembly are joined and released from fixtures (Fig. 7).
That gives the whole subassembly DOF degrees of freedom be-
fore it is restrained in a new fixture on the subsequent station.
Therefore, has less full rank and so does . The
rank of should be DOF less than its dimension. Thus, the di-
mension of is DOF, which is the number of degrees
of freedom that the subassembly possessed after being released.
This number does not change (it is always DOF) after more parts
are assembled into the subassembly, suggesting that the dimen-
sion of is also DOF.

However, since the part-positioning described by takes
place at station before the joining operation (Fig. 7), the
deviation among parts can be freely generated by. There-
fore, , suggesting that . Given

, we can have .
Then, , .

That is one step short of showing that
. Given , if the linear

dependent relationship among columns in is the same
as that in , will equal . That
is in fact the case. After parts are assembled on station, there
forms a certain linear relationship among the columns, e.g.,

, where is a constant, and is the th
column vector of . This relationship will not change be-
cause it is determined by the relative position among all assem-
bled parts in the subassembly, which is fixed by the “joining”
operation on station. Thus, after a subassembly is transferred
to downstream stations, we can conclude that following relation
is true, i.e., . More-
over, it was proved in [21] that ,
thus

APPENDIX II

PROOF OFLEMMA 2 IN SECTION III-B

If sensors are placed on station, in (3) becomes
, where . Meanwhile,

given the assumption of “sufficient sensor number,” we can
set without loss of generality. Then, is further
simplified as . Given an assembly process where new
parts are assembled with an existent subassembly at each inter-
mediate station, the nonzero variables in the state vectorwill
keep growing. As a result, the nonzero elements in the columns
of will increase in accordance to the growth of nonzero
elements in . Notice that monotonically increases, i.e.,

, and, will contribute to deviations only
on part 1 to part at station . Hence, can be partitioned as

corresponding to part 1 to
corresponding to parts after

(27)
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Fig. 7. Assembly operations and their mathematical models.

where “ ” is the nonzero block corresponding to part 1 to part
that have already been joined together in the assembly after

operation on station. Apparently, the columns in are in-
dependent of those in , . Based onProperty 2of
transform [21], we know that columns in will also be in-
dependent of those in for . Note that and

are in fact and defined in [21], respectively. Ac-
cording to [21, Th. 3], we conclude that the between-station di-
agnosability condition is satisfied.
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