
This article was downloaded by: [Texas A&M University Libraries]
On: 23 April 2014, At: 06:58
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

IIE Transactions
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/uiie20

Bayesian site selection for fast Gaussian process
regression
Arash Pourhabib a , Faming Liang b & Yu Ding a
a Department of Industrial and Systems Engineering , Texas A&M University , College
Station , TX , 77843-3143 , USA
b Department of Statistics , Texas A&M University , College Station , TX , 77843-3143 , USA
Accepted author version posted online: 25 Oct 2013.Published online: 05 Feb 2014.

To cite this article: Arash Pourhabib , Faming Liang & Yu Ding (2014) Bayesian site selection for fast Gaussian process
regression, IIE Transactions, 46:5, 543-555, DOI: 10.1080/0740817X.2013.849833

To link to this article: http://dx.doi.org/10.1080/0740817X.2013.849833

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/uiie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/0740817X.2013.849833
http://dx.doi.org/10.1080/0740817X.2013.849833
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

IIE Transactions (2014) 46, 543–555
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/0740817X.2013.849833

Bayesian site selection for fast Gaussian process regression

ARASH POURHABIB1, FAMING LIANG2 and YU DING1,∗

1Department of Industrial and Systems Engineering and 2Department of Statistics, Texas A&M University, College Station,
TX 77843-3143, USA
E-mail: yuding@iemail.tamu.edu

Received April 2012 and accepted June 2013

Gaussian Process (GP) regression is a popular method in the field of machine learning and computer experiment designs; however,
its ability to handle large data sets is hindered by the computational difficulty in inverting a large covariance matrix. Likelihood
approximation methods were developed as a fast GP approximation, thereby reducing the computation cost of GP regression by
utilizing a much smaller set of unobserved latent variables called pseudo points. This article reports a further improvement to the
likelihood approximation methods by simultaneously deciding both the number and locations of the pseudo points. The proposed
approach is a Bayesian site selection method where both the number and locations of the pseudo inputs are parameters in the model,
and the Bayesian model is solved using a reversible jump Markov chain Monte Carlo technique. Through a number of simulated and
real data sets, it is demonstrated that with appropriate priors chosen, the Bayesian site selection method can produce a good balance
between computation time and prediction accuracy: it is fast enough to handle large data sets that a full GP is unable to handle, and
it improves, quite often remarkably, the prediction accuracy, compared with the existing likelihood approximations.

Keywords: Bayesian model averaging, Gaussian process computation, large data sets, reversible jump MCMC

1. Introduction

Since its introduction, Gaussian Process (GP) regression
has gained popularity among experts ranging from com-
puter scientists and statisticians to engineers. GP’s flexibil-
ity, nonlinearity, and inherent nonparametric structure are
the key features that have made it of use to a wide range
of researchers (Rasmussen and Williams, 2006). GP regres-
sion has proliferated in recent years due to the widespread
availability of data. On the other hand, however, the vast
amount of data, while furnishing adequate information to
train the model, could hamper computationally efficient
implementation of GP regression. As the Gaussian distri-
bution is central to the GP regression, in almost all methods
of full GP regression one needs to invert matrices of size
equal to the number of data points; this could be a burden-
some task as its complexity is of order O(N3); it should be
noted that most methods require executing this matrix in-
version many times to guarantee successful implementation
of the algorithms.

Spurred on by GP’s popularity, research has been con-
ducted in recent years to address the computational issue
of handling large data sets. There are two main schools of

∗Corresponding author
Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/uiie.

thought: sparse approximation and low-rank approxima-
tion. The sparse approximation methods employ a com-
pactly supported covariance function in a way that results
in a sparse covariance matrix, still of size N, but in-
verting this sparse matrix using sparse matrix algorithms
(Gneiting, 2002; Furrer et al., 2006) can lead to a sub-
stantial reduction in computational effort. Although the
theoretical complexity of this method is difficult to deter-
mine, Furrer et al. (2006) observed, through a number of
numerical case studies, that the training computation in-
creases almost linearly in N. This class of algorithms, how-
ever, suffers from a high order of complexity during the test
stage, which is also linear in N, whereas the low-rank ap-
proximation, as we will briefly review below, can do faster
than O(N) during testing.

The second school of thought, the low-rank approxi-
mation, tries to reduce the computational complexity by
inverting a matrix of reduced rank instead of the orig-
inal covariance matrix. Utilizing different techniques to
produce the reduced-rank matrix, the low-rank approxima-
tion can be categorized into three groups: matrix approx-
imation, localized regression, and likelihood approxima-
tion. The algorithms based on matrix approximation seek
substitutions for the original covariance matrix, which has
truncated bases (e.g., Nyström method), resulting in a rank
reduction, and can therefore be handled less expensively
(Quiñonero-Candela and Rasmussen, 2005). Localized re-
gression assumes that data points far from each other do

0740-817X C© 2014 “IIE”

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

544 Pourhabib et al.

not share any measure of similarity and one can employ a
GP on a local region by merely taking the data points in the
region of interest into account (Park et al., 2013). The likeli-
hood approximation methods (Seeger et al., 2003; Snelson
and Ghahramani, 2007; Snelson, 2007) try to reduce the
computational cost by making use of a set of unobserved
latent variables called pseudo points. Assuming the con-
ditional independence of the observed variables given the
pseudo outputs, one needs to invert matrices of a size equal
to that of the pseudo points M, and doing so can save sig-
nificant time if one chooses M � N (Seeger et al., 2003;
Snelson, 2007; Snelson and Ghahramani, 2007). Specifi-
cally, assuming that each training and test point in the data
set is independent from others given the pseudo points, one
can achieve a computational complexity ofO(NM2) for the
training stage and O(M2) for testing (Snelson and Ghahra-
mani, 2006). This complexity expression is generally true
for other methods in the school of low-rank approximation
methods, although the meaning of M in a specific method
differs.

Although the methods in the low-rank approximation
class typically mitigate the computational burdens, they
suffer from other problems. For instance, the matrix ap-
proximation algorithms may lead to poor estimation and
lack of interpretability (Snelson and Ghahramani, 2006),
and its prediction variance is not guaranteed to be positive
(Park et al., 2013). In localized regression algorithms, it is
not a straightforward task to select independent subsets.
Localized regression predictions, in general, lack continu-
ity on boundaries, and the existing methods to address this
problem cannot handle data sets other than those from
one- or two-dimensional spaces (Park et al., 2013). In like-
lihood approximation, despite the fact that the accuracy
and computation of the algorithm rely heavily on the num-
ber of pseudo points selected, there are no strict guidelines
regarding how to choose them and, currently, M is typically
fixed a priori.

In this article, we choose to make a further improvement
for the likelihood approximation methods because they are
easy to use and do not have problems such as higher com-
plexity in testing (associated with the spare approximation)
or discontinuity in prediction (with the localized GP). How-
ever, as we previously mentioned, one major improvement
needed for the likelihood approximation methods is a more
flexible way of deciding the number of pseudo points. The
current inflexibility often causes the likelihood approxima-
tion methods to have a higher prediction error (measured
by the mean squared errors using a testing data set).

For the purpose of improving the likelihood approxima-
tion, we propose a Bayesian Site Selection (BSS) method
that allows the data to decide simultaneously the number
and locations of pseudo inputs. Specifically, BSS consid-
ers the pseudo inputs as a new set of parameters in the
model and selects them from a subspace of the training
data. Then, BSS tries to estimate the posterior predictive
distribution via a Markov Chain Monte Carlo (MCMC)
method. We call the new set of parameters in the BSS sites,

which are the counterparts of the pseudo inputs in the like-
lihood approximation methods. We generate an artificial
GP defined on the sites and condition our real response
on those artificially generated outputs to reduce the order
of computational complexity. Note that Park and Liang
(2013) also used the same name for their method but the
methods as well as the targeted applications are different.

Compared with the current likelihood approximation
methods, BSS tries to systematically discover the number
of sites used as the pseudo inputs. The efforts spent in find-
ing the appropriate sites are valuable as those lead to a less
subjective algorithm and produce more accurate results. In
addition, BSS chooses the locations of sites based on an
MCMC algorithm, and by applying MCMC, BSS employs
more than one GP approximation and can thereby provide
more accurate prediction results through the mechanism of
Bayesian model averaging (Hoeting et al., 1999).

Understandably, performing all of these tasks in BSS
comes at a higher computational cost than the existing like-
lihood approximation methods. The theoretical computa-
tional complexities of the likelihood approximation meth-
ods and BSS, if using the same number of sites, are of the
same order; for training, it is at O(LNM2), where L is the
number of iterations a method employs to fit the model—
the model fitting process is also known as hyperparameter
learning in GP research (Rasmussen and Williams, 2006).
Because the current likelihood approximation methods use
a deterministic gradient-based optimization method, its L
in practice is smaller than that in BSS; L in BSS is the num-
ber of iterations of the MCMC. However, we would like
to point out that BSS, with appropriately chosen priors,
can produce a practically sensible balance between com-
putation time and prediction accuracy; it is fast enough to
handle large data sets that a full GP is unable to han-
dle, while it improves, quite often remarkably, the pre-
diction accuracy, compared with deterministic likelihood
approximations.

The remainder of this article is organized as follows.
Section 2 gives the GP regression formulation and uses
the method proposed in Snelson and Ghahramani (2006)
to explain the basic thoughts behind the likelihood ap-
proximation. Section 3 presents the details of the BSS ap-
proach, including discussions about the implementation of
the method. In Section 4, we implement our method on
several simulated and real data sets and show that the BSS
method outperforms the existing methods for several test
cases. Finally, we conclude the article in Section 5 with
additional discussions and comments.

2. Likelihood approximation based on pseudo inputs

A Gaussian process is a continuous stochastic process in
which any finite number of variables have a joint Gaussian
distribution (Rasmussen and Williams, 2006). That is, if
f = { f1, f2, . . . , fN} represents a finite collection of these
variables, where each fi is defined over its corresponding

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

Bayesian site selection 545

index xi , then we have

π(f|X) = N (μ, K), (1)

where X = {x1, x2, . . . , xN}, and N (μ, K) denotes a mul-
tivariate Gaussian distribution over x ∈ R

d with mean μ
and covariance matrix K whose entries are defined by the
covariance function K(., .):

K(xi , x j) = σ 2
f exp

[
−1

2

d∑
�=1

(
xi� − xj�

η�

)2
]

, (2)

where η� is the �th component of the vector of the length-
scale parameter η = {η1, η2, . . . , ηd}, xi� and xj� are the
�th components of xi and x j , respectively, and d is the
dimension of the input space. As we can always subtract
a constant from the response values before using the data,
without loss of generality we can assume μ = 0.

Having defined a GP, we are interested in employing
the GP for the regression task. We assume that we observe
y = {y1, y2, . . . , yN} as a sum of the GP f = { f1, f2, . . . , fN}
and some additive white Gaussian noise:

yi = fi + εi for i = 1, 2, . . . , N, (3)

where εi ∼ N (0, σ 2), and cov(εi , ε j) = 0 for any i �= j .
To estimate the model parameters, we can optimize the
marginal likelihood π(y|X,θ) with respect to θ where
θ = {σ, σ f ,η} (Rasmussen and Williams (2006), p. 112).
If we want to make a prediction at some test input x∗, the
distribution of the corresponding response (i.e., y∗) will be
Gaussian with mean μ∗ and variance σ 2

∗ , where

μ∗ = K∗N(KN + σ 2I)−1y,

σ 2
∗ = K∗ − K∗N(KN + σ 2I)−1KN∗ + σ 2. (4)

In the above, the subscript of the covariance matrix im-
plies the data points for which the covariance matrix is
formed. For example, KN is the N × N covariance matrix
of all training data points, {x1, x2, . . . , xN}. For a covari-
ance matrix between a single point and a set of points,
such as the test point x∗, we explicitly denote the point in
the covariance notation. Therefore, K∗N denotes the 1 × N
covariance matrix between the test input x∗ and the train-
ing points {x1, x2, . . . , xN}. Finally, K∗ is used to denote
K(x∗, x∗), the prior variance associated with the test site
x∗. The same symbolism is used throughout this article.

The computational issue mentioned earlier is related to
the inversion of (KN + σ 2I). This inversion happens during
the learning stage of the parameters at the order of O(N3).
Note that once the parameter learning is done, the calcula-
tion of the mean and variance of a test point x∗ costs O(N)
and O(N2), respectively.

The likelihood approximation method we aim at improv-
ing in this article is the one using a Sparse Pseudo in-
put Gaussian (SPGP) process (Snelson and Ghahramani,
2006). The SPGP method works as follows. Instead of using
the N observations of y directly, which are too numerous

and cause the computational problem, one can consider
using a much smaller set of inputs of size M � N to ap-
proximate the full GP model. If this smaller set of inputs is a
subset of the actual N data points, that method is called the
Subset of Data Approximation (SDA; Quiñonero-Candela
and Rasmussen (2005)). However, researchers have realized
that the simple SDA usually does poorly in approximating
the full GP because the possible subsets are restricted to the
locations where the data were observed. If that restriction
is lifted, meaning that if the input locations can be strategi-
cally selected to be at places where there are not necessarily
any observations, the resulting GP approximation can be
considerably improved, and the unrestricted inputs are then
called pseudo inputs.

Following the notations in Snelson (2007), let X̄ = (x̄)M
m=1

denote the pseudo inputs and f̄ = (f̄)M
m=1 denote the pseudo

outputs. The bar notation shows that the pseudo inputs
(and outputs) reside in the same spaces as those of real data,
but they cannot be observed. Another important point is
that since pseudo outputs are not actually observed, it does
not make sense to include observation noise (i.e., ε) in them,
which is why f̄ is used instead of ȳ. Based on the same
reasoning presented for the selection of the GP prior in
Equation (1), we can assume the following prior for pseudo
outputs:

π(f̄) = N (0, KM), (5)

and if assuming the outputs are independently and identi-
cally distributed given the inputs, one can have:

π(y | f̄, X, X̄,θ) =
N∏

n=1

π(yn | f̄, X, X̄,θ)

= N (
KNMK−1

M f̄, diag(KN − QN) + σ 2I
)
,

(6)

where KNM is the N × M covariance matrix between the N
training points and the M pseudo inputs (Snelson (2007),
p. 38). The matrix QN is the low-rank covariance matrix
whose entries are defined by the low-rank covariance func-
tion Q(., .),

Q(x, x′) = KxMK−1
M KMx′ . (7)

Next, integrating out the pseudo outputs produces the
marginal likelihood

π(y | X, X̄,θ) =
∫

π(y | f̄, X, X̄,θ) π(f̄ | X̄,θ)df̄

= N (0, QN + diag(KN − QN) + σ 2I). (8)

The predictive distribution can be obtained by first writ-
ing the joint distribution of π(y∗, y), which is multivariate
normal and takes the same form as in Equation (8). From
the joint distribution of π(y∗, y), the prediction distribution
π(y∗|y) can be obtained using the conditional normal dis-
tribution formula (Rasmussen and Williams (2006), p. 200).

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

546 Pourhabib et al.

The resulting π(y∗|y) is as follows:

π(y∗ | y, X, X̄,θ) = N (μ∗, σ 2
∗),

μ∗ = Q∗N(QN + diag(KN − QN) + σ 2I)−1y,

σ 2
∗ = K∗ − Q∗N(QN + diag(KN − QN) + σ 2I)−1QN∗ + σ 2.

(9)

Despite entailing N × N matrix inversions in Equation (9),
using the matrix inversion lemma one can show that the
computational complexity is actually O(NM2) (Snelson
(2007), p. 40). The reason is simply that after using the
matrix inversion lemma, the N × N matrices will become
diagonal whose inversion is O(N) and, consequently, the
computation is no longer dominated by inverting those
matrices.

The parameters in the above model can be categorized
into two groups:

1. The so-called hyperparameters that are also used by
other GP models, usually denoted by θ. Here θ =
{σ, σ f ,η}.

2. The locations of pseudo inputs X̄.

To estimate all of the model parameters (θ, X̄) together, one
can use gradient ascent methods to optimize the marginal
likelihood in Equation (8). The details of the optimization
procedure as well as how to take the gradients can be found
in Snelson ((2007), pp. 126–129). For the SPGP method, the
cost for computing the marginal likelihood in Equation (8)
once isO(NM2), due to the fact that QN is of rank M (lower
than N). If the optimization method takes l steps to con-
verge, then the training cost—i.e., that for hyperparameter
learning—is O(l NM2). We will refer to the SPGP method
as Deterministic Site Selection (DSS) hereafter. This name
is chosen because it helps highlight the difference between
the existing likelihood approximation and our proposed
Bayesian method.

3. BSS

One drawback of the DSS mechanism in SPGP is that
the number of pseudo inputs—i.e., the cardinality of X̄—is
fixed at M. Given the important role that the number of
pseudo inputs plays in both computation and prediction
accuracy, it would be desirable that the number of pseudo
inputs can change in the algorithm and be decided by the
data. That is indeed the objective of the research presented
in this article, through a method we label as BSS.

To establish a Bayesian framework for this problem, we
begin by emphasizing that the goal is to make an inference
about the posterior predictive distribution π(y∗|y, X,θ).
As we are interested in utilizing the information inherent
in the pseudo inputs, we consider the pseudo inputs as a
set of new parameters through which we can represent the

predictive distribution, namely:

π(y∗|y, X,θ) =
∫

π(y∗|y, X, X̄,θ) π(X̄|y, X,θ)dX̄. (10)

Equation (10) requires specifying the posterior distribution
π(X̄|y, X,θ), which can be expressed as

π(X̄|y, X,θ) ∝ π(X̄) π(y|X, X̄,θ). (11)

Note that π(y|X, X̄,θ) follows a normal distribution ac-
cording to Equation (8). Moreover, as the new observations
y∗ and y are jointly normally distributed, π(y∗|y, X, X̄,θ) is
also normally distributed with parameters shown in Equa-
tion (2). Therefore, the only term to be determined in order
to fully specify the model is the prior distribution of the
pseudo inputs. A suitable prior distribution should take
into account the number of pseudo inputs so that we can
update our belief about their number in light of the ob-
served data. Considering X̄ as an M × d matrix, one rea-
sonable choice for the prior could be

π(X̄) ∝ λ|X̄|

|X̄| × I(kl ≤ |X̄| ≤ ku), (12)

where |X̄| denotes the number of rows in X̄ (i.e., the num-
ber of pseudo inputs), and I(.) is the indicator function.
The prior considers a range for the number of locations
(kl ≤ |X̄| ≤ ku), which describes the smallest and the largest
number of pseudo inputs we would like to consider in our
model. The new hyperparameter λ reflects our belief re-
garding the average number of pseudo inputs in the prior.

Having specified the terms constituting the integrand in
Equation (10), we want to evaluate the value of the inte-
gral. Unfortunately, the integral in Equation (10) cannot
be solved analytically and, consequently, we need to re-
sort to numerical methods to approximate the integral. In
fact, if we can generate Markov samples {X̄1, X̄2, . . . , X̄T}
from π(X̄|y, X,θ), then we can approximate the integral in
Equation (10) by

π̂(y∗|y, X,θ) =
T∑

t=1

π(y∗|y, X, X̄t,θ). (13)

Then, the problem is reduced to how to draw samples from
π(X̄|y, X,θ).

The difficulty associated with drawing samples from
π(X̄|y, X,θ) is that a direct application of MCMC fails
as it requires the state space of the Markov chain to be
of a fixed dimension, but the dimension of X̄ may actu-
ally vary. To overcome this issue, we can use the Reversible
Jump Markov Chain Monte Carlo (RJMCMC) algorithm
(Green, 1995), which allows the dimension of the state
space of the Markov chain to vary. The underlying idea is
that RJMCMC introduces three types of moves: exchange,
birth, and death. Exchange means that the chain remains
in the space with the same dimension but moves into a new

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

Bayesian site selection 547

state. Birth and death are the moves that change the dimen-
sion of the state space. Intuitively, a birth step augments the
state space by adding new states, whereas a death step re-
duces the dimension of the state space. At each iteration,
the type of move, whether an exchange, birth, or death, is
randomly chosen, and one accepts the new state using a
Metropolis–Hastings rule. To see full details and examples,
refer to Green (1995).

3.1. Algorithm

Specifically, to generate the sample {X̄1, X̄2, . . . , X̄T}, we
build a Markov chain whose space is a subset of R

d×s for
varying values of s, so that at stage t the corresponding
set of pseudo inputs X̄t may have a number of elements
different from previous stages. This allows the number of
pseudo inputs to change so that we can seek simultaneously
the number and location of the pseudo inputs.

To employ the RJMCMC, we need to introduce some
new notations and make some extra assumptions. We re-
strict the space from which the pseudo inputs can be
chosen by imposing it to be finite. Specifically, let S de-
note the whole space of explanatory variables, so if x
is an element in X or X̄, then x ∈ S. Let S̃ ⊂ S de-
note a finite discretized subspace in the sense that |S̃| <

∞. For an x := {x1, x2, . . . , xd} ∈ S̃, xi ∈ {x̃i
min, x̃i

min +
ξ, x̃i

min + 2ξ, . . . , x̃i
max}, ∀i ∈ {1, 2, . . . , d}, where x̃i

min and
x̃i

max are the minimum and maximum values to consider in
the i th dimension of S, respectively, and ξ is the discretiza-
tion step. We choose the locations of the pseudo inputs
from S̃ instead of from the original S for the sake of ease
of computation. As such, X̄ ⊂ S̃ and we refer to the X̄ as
“sites” in our approach. Note that if ξ is taken to be a small
number and |x̃i

min| and |x̃i
max| are large enough, then S̃ can

approximate S reasonably well.
As in other RJMCMC-based algorithms, we also use

three types of moves: birth, death, and exchange. Birth and
death are used to add or remove points to the current X̄,
and exchange is used to update the locations of sites with
their number being kept unchanged. Recall that the set of
parameters for this model is (θ, X̄), where θ = {σ, σ f ,η}.
In order to optimize θ, a full Bayesian approach is to in-
corporate both θ and X̄ in the RJMCMC algorithm and
update them both as the chain evolves. Based on our nu-
merical analysis, this approach, although theoretically ap-
pealing, does not provide stable results numerically; at least
we have not found a robust enough numerical procedure
that leads to that outcome. Therefore, we choose to employ
the gradient ascent method to find a θ that maximizes the
marginal likelihood (8) for a fixed set of X̄. That is to say,
after every few iterations we seek for the optimal value of θ
conditioned on the current value of X̄, and then we update
X̄ using RJMCMC moves, conditioned on the newly found
value of θ. We denote the number of RJMCMC iterations
between two consecutive optimizations of θ by κ. We also
want to note that the algorithm used here to maximize the

marginal likelihood (8), for a given X̄, is the same as that in
the full GP.

Next, we present the specific formulations of the RJM-
CMC moves. In the following, q(A → B) is the proposal
distribution denoting the probability of going from a set
A ⊂ S̃ to B ⊂ S̃, and a and b are the probabilities of per-
forming birth and death operations, respectively; both will
be explained after the formulations.

Birth: Choose a point from S̃\X̄, say x∗, and add it to the
current site set X̄ with probability p so that the new site set
is X̄ ∪ {x∗}, where

p = min

(
1,

π(X̄ ∪ {x∗}|y, X,θ) q(X̄ ∪ {x∗} → X̄)

π(X̄|y, X,θ) q(X̄ → X̄ ∪ {x∗}) × b
a

)
.

Death: Choose a point from X̄, say x∗, and remove it from
the current site set X̄ with probability p so that the new site
set is X̄\{x∗}, where

p = min

(
1,

π(X̄\{x∗}|y, X,θ) q(X̄\{x∗} → X̄)

π(X̄|y, X,θ) q(X̄ → X̄\{x∗}) × a
b

)
.

Exchange: Choose a point from S̃\X̄, say x∗, and a point
from X̄, say x∗∗, and exchange the two points with proba-
bility p where

p = min

(
1,

π(X̄ ∪ {x∗}\{x∗∗}|y, X, θ) q(X̄ ∪ {x∗}\{x∗∗} → X̄)

π(X̄|y, X, θ) q(X̄ → X̄ ∪ {x∗}\{x∗∗})

)
.

Note it is straightforward to show that the Jacobian of
transformation for the Birth and Death moves collapses
to 1. Regarding the choice of the proposal distribution
q(A → B) used in the moves, we choose to use a uniform
function that assigns equal weights to all of the points in
the sets S̃\X̄ and X̄. For example, q(X̄ ∪ {x∗} → X̄) can
be expressed as 1/(|X̄| + 1) and q(X̄ → X̄ ∪ {x∗}) is equal
to 1/(|S̃| − |X̄|). Choosing the uniform proposal and ex-
pressing the posteriors as the product of the priors and the
likelihoods, we will get the following forms for the accep-
tance probabilities of birth, death, and exchange processes,
respectively:

pB =min

(
1,

λ|X̄|(|S̃| − |X̄|) f (y|X, X̄ ∪ {x∗},θ)

(|X̄| + 1)2 f (y|X, X̄,θ)
× b

a

)
,

pD =min

(
1,

|X̄|2 f (y|X, X̄\{x∗},θ)

λ(|S̃| − |X̄| − 1)(|X̄| − 1) f (y|X, X̄,θ)
× a

b

)
,

pE =min

(
1,

f (y|X, X̄ ∪ {x∗}\{x∗∗},θ)

f (y|X, X̄,θ)

)
.

Other valid proposal distributions could be used as well; for
a few other proposal distributions, see Liang et al. (2010).

Algorithm 1 presents the procedure of this RJMCMC,
which generates a Markov chain of sites whose stationary
distribution is π(X̄|y, X,θ). Once we have {X̄t}T

t=1 from the

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

548 Pourhabib et al.

posterior distribution of X̄t, we can use Equation (13) to
make a prediction at any untried points. In Algorithm 1, the
values a and b can be selected as a = b = 1/3, which means
that the probability of performing each of the operations
birth, death, and exchange is equal.

Algorithm 1 BSS for SPGP

Choose X̄0 as a uniformly random draw from S̃ where
|X̄0| = M
Optimize the value of θ for a fixed X̄0
repeat

Draw u uniformly from [0, 1]
if u ≤ a then

Perform Birth
else

if a < u ≤ a + b then
Perform Death

else
Perform Exchange

end if
end if
After each κ steps optimize the value of θ for a fixed
X̄t
After burn-in steps store the values of X̄t

until The number of RJMCMC iterations reaches the
pre-specified value of MCMC Length

To choose the optimal number and locations of the
pseudo inputs, BSS’s order of complexity for the train-
ing stage is O(LMN2), and for the test stage it is O(LM2),
where L is the length of the MCMC chain. Comparing
the BSS’s computational complexity with that of the full
GP, which is O(N3) for the training stage and O(N2) for
the test stage, one can see a considerable cost reduction as
long as M is chosen such that M � N. Comparing the BSS
with the DSS, BSS costs more because L in the MCMC is
longer than its counterpart in a gradient-based optimiza-
tion, namely, the number of optimization iterations l. How-
ever, BSS generally produces results with better accuracy
than those of DSS, as will be demonstrated in Section 4.

Finally, it should be noted that since the BSS method
is a Bayesian approach, it naturally provides the posterior
distribution that inherently contains information about the
uncertainty associated with the method. Once the method
is established, one only needs to sample from its posterior
distribution enough times to get the mean prediction and
the confidence intervals.

3.2. Computational details

As the new algorithm employs GP and MCMC methods,
the reader can consult Rasmussen and Williams (2006) for
general advice related to GP implementation and Liang
et al. (2010) concerning MCMC.

The bottleneck for the computation comes from invert-
ing the matrix of size N: (i) when we evaluate the likelihood

in the birth, death, and exchange steps in RJMCMC and
(ii) when we evaluate the posterior predictive distribution
after burn-in steps. The computation of evaluating the like-
lihood in RJMCMC is on the order of O(NM2) (Snelson
(2007), p. 40), but the computation can be further reduced.
Since the low-rank covariance in Equation (7) after each
move changes moderately, we can exploit the similar struc-
tures of last obtained matrix to calculate the new one. To
illustrate, assume that we want to perform the birth step.
Let xb be the newly added point to the site set X̄. As such,
the new low-rank covariance is

Qnew = KN(M+1)K−1
M+1K(M+1)N, (14)

which can be written as

Qnew = [
KNM KNxb

] [
KM KMxb

Kxb M Kxbxb

]−1 [
KMN

Kxb N

]
. (15)

Let k = Kxbxb and use the matrix inversion formula for
a partitioned matrix (Rasmussen and Williams (2006),
p. 201), we get

Qnew = [
KNM KNxb

]
⎡
⎢⎣ �M −1

c
K−1

M KMxb

−1
c

Kxb MK−1
M

1
c

⎤
⎥⎦

×
[

KMN

Kxb N

]
, (16)

where c = k − Kxb MK−1
M KMxb and �M = K−1

M + (1/c)
K−1

M KMxb Kxb MK−1
M . Therefore, to evaluate Qnew instead of

inverting KM+1 as in Equation (14), Equation (16) allows
us to use the inverse of KM from the previous step. Similar
actions can be taken to facilitate the computation in the
death and exchange steps.

3.3. Choices of other parameters

We share our thoughts on choosing the parameters when
initializing the BSS algorithm. The first is what to choose
for λ in the site prior (12). The effect of λ can be understood
as follows. A small value of λ forces the algorithm to choose
a smaller number of sites, whereas a large value of λ has the
reverse effect. The latter typically results in a more accurate
prediction but at the expense of a longer computation time.
Taking this trade-off into consideration, one can decide the
value of λ by selecting a subset of data to train the model for
different values of λ. Then the trained model can be used to
predict the responses of another unused subset of data to
observe the prediction accuracy. As the computation time
can approximately be extrapolated over the whole data set,
this method can provide us with the information about
the accuracy and computation time trade-off as a result
of choosing different values for λ. In our implementation,
the value of λ is selected to be 1.5(M/10td), where M is
the initial number of sites, d is the dimension of the input
space, and t is selected from the interval [1, 4].

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

Bayesian site selection 549

The second parameter is the size of the discretized sub-
space, S̃\X̄, from which we choose the sites. The discretized
subspace should be constructed based on the trade-off be-
tween computation time and accuracy. A larger |S̃\X̄| yields
more accurate results but could slow the computation. As
a rule of thumb, one can choose |S̃\X̄| = 10N.

The next set of parameters is the initial locations of sites,
decided in three steps: first, we randomly choose a subset
of the training points; second, we find the new locations
(with the number of pseudo inputs being kept fixed) by
maximizing the marginal likelihood; and, finally, we find
the closest points in the discretized steps to those locations.

The other set of parameters is the range of the pseudo
inputs, namely, the lower and upper bounds kl and ku used
in the site prior of Equation (12). Our analysis shows that
the values of kl and ku do not affect the method as long as
the range is selected wide enough. However, if a user wants
to prevent the algorithm from choosing a large number of
locations (for instance, due to the time constraint), he or she
can choose a relatively small number for the upper bound
ku. On the other hand, if the user wants to make sure that
the accuracy of the method is over some threshold, he or she
can choose a relatively large number for the lower bound
kl, so that the algorithm will not choose a number of lo-
cations less than that limit. In the current implementation,
the range is decided based on the initial number of pseudo
inputs M and the number of data points in the training
set N. Specifically, kl = M/tl, and ku = tu1 M + (N/tu2) for
some constants tl, tu1 , and tu2 .

Finally, we want to note that the stopping criterion for
this algorithm is decided based on the trade-off between
computation time and accuracy, not necessarily based on
the probabilistic convergence of a Markov chain. Doing
so can be justified by noting two facts: first, the BSS is
a Bayesian model averaging approach and, theoretically
speaking, as the chain evolves, the results get more accu-
rate. Second, letting the chain run for a very long time is
counterproductive to the original purpose of the algorithm,
which is to approximate the GP regression and provide a
reasonable result in a relatively short period of time. As
such, we would recommend that the stopping criterion be
decided based on the presumed reduction in the mean-
squared error in a specified period of time, which can be
evaluated through cross-validation.

4. Experimental results

In this section we present the results obtained by applying
the proposed method to some real and simulated data sets.
First, we compare BSS with the Full GP (FGP) and Treed
Gaussian Processes (TGP; Gramacy and Lee (2008)) for
some small- to moderate-sized data sets. Then, we com-
pare BSS with the DSS (Snelson, 2007) for some large data
sets. Through both comparisons, we reinforce our claim
that BSS provides a good trade-off: on the one hand, it

can handle the large data sets that FGP and TGP usually
can-not and, on the other hand, it is more accurate than
DSS in terms of mean squared prediction errors. All of the
numerical studies were performed on a computer with two
3.16 GHz quadcore CPUs.

4.1. Data sets and performance criterion

We used four real data sets: the first two data sets are avail-
able at the UCI Machine Learning Repository (UCI, 2010),
and the other two are satellite data from NASA. The first
set is the Abalone data set, which consists of 4177 points
and each data record has an input vector x of dimension
d = 7. The response in the Abalone data set is the abalone
age, and its inputs in x are related to different properties
in an abalone’s body. The second set is the Sarcos data set,
which consists of 48 933 data points and d = 27. The data
are related to the dynamics of a robot. The two NASA data
sets, the third and fourth real data sets, are spatial data; both
have d = 2. The third data set is TCO, which consists of 48
331 measurements of the total column of ozone around
the globe, collected by the NIMBUS-7/TOMS satellite on
October 1, 1988. The fourth data set is MOD08-CL, which
is the data collected by the Moderate Resolution Imag-
ing Spectroradiometer on NASA’s Terra satellite. The data
points, 64 800 in total, are the measurements of the aver-
age of cloud fractions around the globe from January to
September in 2009.

We also tested the proposed method on a set of simulated
data sets generated using the revised Ackley’s path function
(Joseph and Kang, 2011), which is defined as

f (x) = −α exp

⎛
⎝−β

√√√√ d∑
�=1

x2
�

d

⎞
⎠ − exp

(
d∑

�=1

cos(γ x�)
d

)

+ α + exp(1), x ∈ [−2, 2]d , (17)

where α = 2d, β = 0.2, and γ = 2π . To generate a set of
data, d and N need to be specified. Additionally, the loca-
tions of the data points need to be selected, and following
Joseph and Kang (2011), we used the Latin hypercube de-
signs (Wu and Hamada, 2009) for this purpose.

To evaluate the performance of a method, we partitioned
each simulated data set so that 80% was for training and
the remaining 20% was for testing, and for the real data sets
we used a five-fold cross-validation.

The primary evaluation criterion was the Mean Squared
Error (MSE), defined as

MSE =
Nt∑

i=1

(yi − ŷi)2

Nt
,

where yi is the observed value, ŷi is the predicted value,
and Nt is the number of test cases. When comparing BSS
and DSS on the real data sets, in addition to MSE, which
measures the accuracy of the mean prediction, we employed

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

550 Pourhabib et al.

a Predictive Log Score Measure (PLSM; Hoeting et al.
(1999)), which takes into account the predictive uncertainty
of a method. PLSM is formally defined as

PLSM = −
∑
δ∈DT

log

{∑
M∈A

Pr(δ|M, DB)Pr(M|DB)

}
, (18)

where DB and DT are the build data (i.e., training data)
and test data, respectively. Specifically, DB = {(xi , yi); i =
1, 2, . . . , N} and DT = {(x̂i , ŷi); i = 1, 2, . . . , Nt}, where
(xi , yi) is the i th input–output pair for training and (x̂i , ŷi)
is the i th input–output prediction pair in which x̂i is the
test input and ŷi is the corresponding prediction. The set A
contains all of the models used in a prediction; for the BSS,
A is the set of all pseudo input-based approximations based
on the set of pseudo inputs X̄t for t > burn-in, and for the
DSS A is simply one approximation based on a fixed num-

ber of pseudo inputs. A smaller PLSM indicates an overall
better predictive performance of a method, considering all
uncertainties involved.

4.2. A one-dimensional example

To illustrate how the algorithm works, we first generated
a simulated data set from Equation (17) for d = 1 and
N = 5000 and applied the BSS algorithm with λ = 0.1.
Figure 1 presents four plots showing the results. Figure
1(a), the top left plot, displays half of the 4000 points se-
lected as the training data set. Here we plot only the positive
half as the revised Ackley’s path is symmetric around the
y-axis. Figure 1(b), the bottom left plot, illustrates how the
sites (locations of the pseudo inputs) change as the MCMC
chain evolves. Figure 1(c), the top right plot, displays the
number of sites versus the number of MCMC iterations.

Fig. 1. (a) The revised Ackley’s path when d = 1 and N = 5000 (the plot only shows 2000 training points whose inputs are positive),
(b) the initial locations of sites and their new locations after every 1000 MCMC iterations (on the positive side of the axis), (c) number
of sites verus MCMC iterations, and (d) MSE versus MCMC iterations after the burn-in period.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

Bayesian site selection 551

Considering the plots in Figs. 1(b) and 1(c), one can ob-
serve how the number and locations of sites change; dur-
ing the first 1000 iterations, the number of sites increases
to around 110. After that, the number of sites oscillates
around 110, and the locations change as a combined result
of the birth, death, and exchange operations. Although the
plot indicates that the number of sites at a given iteration
might be the same as that of a few iterations before, the
locations of sites are not necessarily the same. The last
plot, Fig. 1(d), displays how the MSE changes after the
1000 burn-in iterations. Initially, we observe a significant
reduction in MSE and, then the decrease levels off. This
example provides insights regarding how the BSS works:
the method is initialized by selecting a number of sites, and
through RJMCMC, BSS chooses different sites in terms of

both location and quantity. In general, the predictive MSE
has a decreasing trend and the number of sites converges
toward a specific range, depending on the value of λ used.

4.3. Performance comparison

We first used the simulated data set from the revised
Ackley’s path in experiments to compare BSS with FGP,
TGP, and DSS. The dimension of the revised Ackley’s
path was fixed at d = 10 but two data set sizes were used:
N = 1000 and N = 5000. These data set sizes are moderate,
so that FGP and TGP could handle them. Figure 2 illus-
trates the results of the proposed method as well as that of
the other three methods.

Fig. 2. Top: the results of BSS comparing with DSS, FGP, and TGP for the revised Ackley’s path with d = 10 and N = 1000. In the
left-hand-side plot, the number of initial sites for BSS and the (fixed) number of sites for DSS are 64, and on the right-hand side they
are 128. Bottom: the results of the BSS comparing with DSS and FGP for the revised Ackley’s path with d = 10 and N = 5000. In
the left-hand-side plot, the number of initial sites for BSS and the (fixed) number of sites for DSS are 64, and on the right-hand side
they are 128.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

552 Pourhabib et al.

Table 1. Summary of the results presented in Fig. 2

N = 1000, d = 10 N = 5000, d = 10

Computation Computation
Algorithm time (s) MSE time (s) MSE

BSS (64) 26.9 0.0617 277.1 0.0588
53.9 0.0581 554.1 0.0574
80.8 0.0581 831.1 0.0570

DSS (64) 6.4 0.0685 14.4 0.0656
6.3 0.0688 15.8 0.0646

BSS (128) 49.2 0.0633 534.3 0.0588
98.5 0.0603 1068.5 0.0585

147.6 0.0591 1602.8 0.0582
DSS (128) 35.8 0.0597 77.6 0.0596

35.8 0.0599 78.2 0.0593
FGP 125.2 0.0607 2417.5 0.0624
TGP 8145.0 0.0585 N/A N/A

For BSS, three MSEs are presented in Fig. 2, each
of which corresponds to some pre-determined RJMCMC
chain length. As the length of the chain increases, the MSE
in general decreases. For DSS, the different results are due
to the different initial locations (randomly selected) used
in the gradient-based optimization. For TGP, we used the
default parameter settings in its R package. The top part of
the figure presents the results for N = 1000. As evident in
the figure, BSS produces MSE results close to those of FGP
while requiring less computer time. When we allow BSS to
spend nearly the same amount of time as FGP, it can pro-
duce smaller MSE values. DSS here uses a fixed number of
sites, the same as the initial number of sites used in BSS,
and then tries to find the optimal locations of those sites.
As we see for this case, BSS obviously spends more time
but produces more accurate predictions than does DSS.
TGP produces very competitive MSE results but takes the
longest time. The bottom part of the figure presents the
results for N = 5000, at which data set size TGP takes too
long to run, so the figure includes only the results of BSS,
DSS, and FGP. The observations made earlier also apply
here. In fact, compared with FGP, BSS performs notice-
ably better in less time. This could be due to the fact that
the dimension of the data set (d = 10) is relatively high,
which makes it difficult for FGP to learn the hyperparame-
ters and, consequently, a poor estimate of hyperparameter
hinders its performance. A summary of these results is also
presented in Table 1.

We also ran an experiment to compare BSS with DSS
using the real, generally larger-sized data sets; for the data
sets larger than 1000 data points, FGP and TGP were too
computationally expensive to run, so that we do not in-
clude FGP and TGP in the subsequent comparisons. To
reach a more definite conclusion, we ran a five-fold cross-
validation. The five-fold cross-validation provides average
MSE/PLSM values as well as their standard deviations
from the five trials.

Table 2 presents the MSE results for BSS and DSS when
both are applied to the four real data sets. As shown in the
table, BSS always produces a smaller average MSE than
DSS: on the two spatial data cases the reduction in MSE is
impressive, around two-fold smaller than that of DSS; on
Sarcos data, BSS provides a remarkable 35% decrease in
the average MSE, and on Abalone data, the two methods
performed similarly, especially considering the standard de-
viation of the MSE.

Table 3 shows the PLSMs of the two methods for the
data sets used in this article. It is observed that except for
the Abalone data set, the BSS has a significantly smaller av-
erage PLSM than that of the DSS. Recall that PLSM mea-
sures the combined effect from the accuracy of the mean
prediction and the predictive variance. Smaller PLSM and
MSE values for the Sarcos, TCO, and MOD08-CL data sets
are strong indicators that BSS outperforms DSS not only
in terms of mean prediction but also with lower overall un-
certainty. On Abalone data, the two methods perform sim-
ilarly: BSS and DSS have almost indistinguishable MSEs
but BSS has a slightly worse PLSM.

Admittedly, the improvement in accuracy by BSS comes
at the cost of more computation time. The computation
times of BSS, however, still reside in a region desirable for
practical purposes. For example, BSS produces the results
in less than 8 minutes for the Abalone data, 230 minutes
for the Sarcos data, and less than 100 minutes for both the
MOD08-CL and TCO data sets. Corresponding computa-
tion times for DSS are 10 seconds for Abalone, 8 minutes
for Sarcos, and around 3 minutes for the MOD08-CL and
TCO data sets. Should FGP be applied to a data set of a
size similar to TCO, based on extrapolation from FGP’s
run times for solving smaller data sets, it would take more
than 20 days.

4.4. Sensitivity analysis

Recall that we embed an optimization procedure within the
RJMCMC moves. We ran experiments to investigate how

Table 2. Comparing BSS with DSS in terms of MSE. The numbers in the parentheses are standard deviations

Data set Dimension (d) Number of data points (N) BSS DSS

Abalone 7 4177 4.4081 (0.2018) 4.4454 (0.2008)
Sarcos 27 48 933 0.0558 (0.0082) 0.0754 (0.0059)
MOD08-CL 2 64 800 0.0058 (0.0004) 0.0147 (0.0010)
TCO 2 48 331 197.8 (37.4) 337.2 (37.5)

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

Bayesian site selection 553

Table 3. PLSM values for M = 32, and for BSS, the MCMC
chain runs 2000 iterations with 1000 burn-in iterations. The
numbers in the parentheses are standard deviations

Data PLSM-BSS PLSM-DSS

Abalone 8600.1 (40.13) 8461.1 (23.1)
Sarcos −7039.3 (1155.8) −2123.2 (1007.6)
MOD08-CL −92 458.3 (2608.6) −44 563.2 (1793.5)
TCO 177 695.2 (4112.2) 206 905.6 (3040.9)

the running of the optimization would affect the results of
BSS.

There were two parameters involved: one was the num-
ber of MCMC iterations between two consecutive opti-
mizations of hyperparameters, which we denoted by κ, and
the second parameter, intuitively speaking, concerned how
“well” we performed the optimization, which can be char-
acterized by the number of gradient steps used in the opti-

mization procedure. The number of gradient steps was de-
noted by l in DSS; here we adopt the same notation. Using
the revised Ackley’s path case with d = 2 and N = 10 000,
we ran an ANalysis Of VAriance (ANOVA) taking κ and l
as the factors. The value of κ was chosen from seven levels
{1, 5, 10, 25, 50, 75, 100} and l was chosen from six levels
{10, 20, 40, 100, 150, 200}. Note that in DSS, the number of
gradient search iterations was generally fixed around 200.
The response values were the MSE value under each com-
bination of factors. The value of λ was randomized so it
would not have a significant effect on the responses. We ran
three replications in a full factorial design. Table 4 shows
the resulting ANOVA table.

The result in Table 4 based on 5000 MCMC iterations.
This ANOVA table suggests none of the factors is signif-
icant under α = 0.05. However, among the parameters
investigated, the parameter l has the smallest p-value.
Based on other experiments conducted on the same data
set, l can be found to be significant under α = 0.05 when

Fig. 3. (a) MSE versus MCMC iterations (after burn-in period) for different values of κ and l for the revised Ackley’s path with d = 2
and N = 10 000, (b) normalized computation time versus MCMC iterations, and (c) number of sites versus MCMC iterations.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

554 Pourhabib et al.

Table 4. ANOVA analysis for revised Ackley path with d = 2,
N = 10 000 and 5000 MCMC iterations

Sum of Degrees of Mean of
Source squares freedom squares F Prob > F

κ 0.0046 6 0.0008 0.9850 0.4350
l 0.0053 5 0.0011 1.3397 0.2467
κ × l 0.0156 30 0.0005 0.6630 0.9140

Error 0.2963 378 0.0008
Total 0.3218 419

shorter MCMC chains are used. We believe that this
analysis suggests that if the length of the MCMC chain is
long enough, the BSS method becomes less sensitive (or
insensitive) to the change in parameters. This conclusion
is supported by most of the other data sets we used.

To gain more insight concerning the effect of the
parameters, we decided to look further into the behavior
of the algorithm for different values of κ and l. Figure 3
shows the change in the MSE, the normalized computation
time, and the number of sites for different values of κ

and l as the chain evolves, based on an MCMC chain
truncated at 2000 for the revised Ackley’s path with d = 2
and N = 10 000. The normalized computation time is
the computation time under a combination of κ and l,
normalized by dividing the longest computation time
among all possible κ–l combinations.

We would like to make a number of observations about
Fig. 3.

1. Intuitively people might think that a larger l leads to a
smaller MSE since a larger l means a deeper optimiza-
tion of θ at each iteration. In reality, it turns out that a
smaller l helps reduce the MSE more. The reason behind
this is because a model’s MSE depends much more on
the number and locations of the sites than the optimiza-
tion of θ. Long iterations in the optimization routine
could overfit the data with a smaller number of sites and
a refined θ, which may very well end up with a higher
MSE.

2. Given the previous observation, in order to get smaller
MSE values, people would understandably use a smaller
l (e.g., l = 10). The other factor to consider is the com-
putation. On the surface, a smaller l could mean a fast
computation, and pairing with the small l, a large κ

should be chosen to further reduce the computation. Al-
though the large κ choice is generally correct, a small l
does not necessarily lead to fast computation. For exam-
ple, for the combination κ = 1 and l = 10 the algorithm
has a longer computation time and results in a smaller
MSE, compared with κ = 1 and l = 100. The reason is
again the number of sites the algorithm chooses, and
the computation depends much more on the number of
sites than the value of l. Generally speaking, a smaller l
causes the selection of a larger number of sites, leading
to a smaller MSE but causing a longer computation.

This can be seen by comparing Figs. 3(b) and 3(c). Our
experience indicates that a general practice is to choose
a relatively large l, say l = 40, paired with a large κ, say
κ = 25, that can arrive at a good compromise between
prediction quality and computation expense.

5. Conclusions and summary

This article presents an approximation algorithm to re-
duce the computation time of GP regression when dealing
with large data sets. We tackle the problem by trying to
approximate the likelihood function using a set of artifi-
cial data points and labeling them as “sites.” We devise a
BSS method and solve it using the RJMCMC algorithm
to simultaneously find the number of sites and their loca-
tions. Our method can handle large data sets with general
dimensions and outperforms the DSS method, which de-
cides the locations of sites but with the site number fixed
a priori.

As evident in the case studies presented in Section 4,
the proposed BSS method produces similar or even smaller
MSE values compared with FGP, while being able to do
so faster. It can handle large data sets that FGP is not
practically able to handle, while producing MSEs smaller
than the DSS method. The computation time related to
BSS can be reduced further by reducing the number of
MCMC iterations in RJMCMC. Understandably, this may
come at the expense of a decrease in prediction accuracy.
Our current analysis indicates that with appropriate priors
chosen, BSS generally provides a good trade-off between
the two conflicting objectives.

There is still room for improvement in the proposed
method. One possible improvement, as we mentioned be-
fore, is a full Bayesian treatment that updates θ at the same
time as the site locations x̄s, as opposed to using the gra-
dient method for θ within the RJMCMC iterations. That
is to say, in each birth, death, or exchange step, in addition
to proposing a value for x̄, we can also propose a value
for θ and use the ratio test to either accept or reject it.
One issue that we have not yet resolved is what proposal
distribution to use. For the typical ones we have tested,
they have not worked effectively. That is certainly an issue
worthy of continuing efforts of exploration. Another im-
provement is for BSS to choose the sites from a continuous
subspace, as opposed to from a discretized subspace in its
current version. We believe that lifting the site selection re-
striction can particularly help the performance of BSS in
the high-dimensional data problems.

Funding

Arash Pourhabib and Yu Ding were supported in part
by NSF grants CMMI-0926803 and CMMI-1000088;
Yu Ding was also supported by the NSF grant
CMMI-0726939; Faming Liang’s research was partially
supported by NSF grants CMMI-0926803, DMS-1007457,

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

Bayesian site selection 555

and DMS-1106494 and an award (KUS-C1-016-04) made
by King Abdullah University of Science and Technology.

References

Furrer, R., Genton, M.G. and Nychka, D. (2006) Covariance tapering
for interpolation of large spatial datasets. Journal of Computational
and Graphical Statistics, 15, 502–523.

Gneiting, T. (2002) Compactly supported correlation funtions. Journal
of Multivariate Analysis, 83(2), 493–508.

Gramacy, R.B. and Lee, H.K.H. (2008) Bayesian treed Gaussian process
models with an application to computer modeling. Journal of the
American Statistical Association, 103, 1119–1130.

Green, P.J. (1995) Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination. Biometrika, 82, 711–732.

Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T. (1999)
Bayesian model averaging: a tutorial. Statistical Science, 14(4), 382–
417.

Joseph, V. and Kang, L. (2011) Regression-based inverse distance weight-
ing with applications to computer experiments. Technometrics, 53,
254 –265.

Liang, F., Liu, C. and Carroll, R. (2010) Advanced Markov Chain Monte
Carlo Methods: Learning from Past Samples, John Wiley & Sons,
Hoboken, NJ.

Park, C., Huang, J.Z. and Ding, Y. (2011) Domain decomposition ap-
proach for fast Gaussian process regression of large spatial data sets.
Journal of Machine Learning Research, 12, 1697–1728.

Park, J. and Liang, F. (2013) A Prediction-oriented Bayesian site ap-
proach for large spatial data. Journal of Statistical Research, 47,
11–30.

Quiñonero-Candela, J. and Rasmussen, C.E. (2005) A unifying view of
sparse approximate Gaussian process regression. Journal of Machine
Learning Research, 6, 1939–1959.

Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian Processes for
Machine Learning, MIT Press, Cambridge, MA.

Seeger, M., Williams, C.K.I. and Lawrence, N.D. (2003) Fast forward
selection to speed up sparse Gaussian process regression, Presented
at the Workshop on Artificial Intelligence and Statistics 9, January
3–6, 2003, Key West, FL.

Snelson, E. (2007) Flexible and efficient Gaussian process models for ma-
chine learning. Ph.D. Thesis, Gatsby Computational Neuroscience
Unit, University College London, London, UK.

Snelson, E. and Ghahramani, Z. (2006) Sparse Gaussian processes using
pseudo-inputs. Advances in Neural Information Processing Systems,
18, 1257–1264.

Snelson, E. and Ghahramani, Z. (2007) Local and global sparse Gaussian
process approximations. Presented at the International Conference
on Artifical Intelligence and Statistics 11, March 21–24, 2007, San
Juan, Puerto Rico.

UCI. (2010) UCI machine learning repository. Available from http://
archive.ics.uci.edu/ml (accessed January 2014).

Wu, C.F.J. and Hamada, M.S. (2009) Experiments: Planning, Analysis,
and Optimization, second edition, John Wiley & Sons, Hoboken,
NJ.

Biographies

Arash Pourhabib received his B.S. in Industrial Engineering from Sharif
University of Technology in 2008. He is currently a Ph.D. candidate
in the Department of Industrial and Systems Engineering at Texas
A&M University. He has been a Research Assistant in the Advanced
Metrology Laboratory since January 2009. His research interests are
in the area of system informatics and control and statistical machine
learning. He is a member of INFORMS.

Faming Liang received a B.S. degree in Statistics from Fudan University,
Shanghai, China, in 1992, and a Ph.D. degree in Statistics from the
Chinese University of Hong Kong, Hong Kong, China, in 1997. He
is currently a Professor in the Department of Statistics, Texas A&M
University. He is a fellow of the American Statistical Association and
the Institute of Mathematical Statistics and an elected member of the
International Statistical Institute. His current research interests include
Markov chain Monte Carlo methods, big data analysis, bioinformatics,
and machine learning.

Yu Ding received his B.S. degree in Precision Engineering from the Uni-
versity of Science and Technology of China in 1993; his M.S. degree
in Precision Instruments from Tsinghua University, China, in 1996; his
M.S. degree in Mechanical Engineering from Pennsylvania State Uni-
versity in 1998; and his Ph.D. degree in Mechanical Engineering from
the University of Michigan in 2001. He is currently the Mike & Sugar
Barnes Professor of Industrial and Systems Engineering and Professor
of Electrical and Computer Engineering at Texas A&M University. His
research interests are in the area of system informatics and quality and
reliability engineering. He currently serves as a Department Editor of IIE
Transactions. He is a member of IIE, a senior member of IEEE, and a
member of INFORMS and ASME.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 0
6:

58
 2

3
A

pr
il

20
14

