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Abstract
Wind farms produce electricity and provide a source of renewable energy. The growth in wind farm installations in the
past 10 years has led to an increase in the number of wind turbines reaching the end of their manufacturing warranties.
As a consequence, the wind industry is now facing a rising cost of unscheduled maintenance, which is pushing up the
operation and maintenance expenditures. Wind turbines experience stochastic loading due to seasonal variations in
wind speed and direction. These harsh operational conditions lead to failures of wind turbine components, which are dif-
ficult to predict. Consequently, it is challenging to schedule maintenance actions that will avoid failures. In this paper, we
derive algorithms for scheduling wind farm maintenance for wind turbines modeled explicitly as comprising multiple
components: the gearbox, power generator, blades and control system. We perform simulations based on a real wind
farm with 100 turbines and report on several wind farm performance measures. The results we obtain provide insights
regarding how to efficiently manage limited maintenance resources in wind farms. For example, the results show that
maintenance policies that consider performing maintenance on multiple components of a wind turbine on the same
maintenance scheduled trip provides significant cost savings while reducing the number of turbine failures.
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1. Introduction

Wind farms use a collection of wind turbines to generate

electricity using wind. The number of planned wind farms

in the USA is growing rapidly and wind power capacity is

expected to constitute 20% of the total power capacity by

2030.1 Wind farms are usually located in parts of the world

with high-speed winds throughout the year. Due to harsh

weather conditions and seasonal variations in wind speed

and direction, wind turbines experience large stochastic

forces that often lead to component failures. Failures result

in costly repairs, but also revenue losses due to unavailabil-

ity of the wind turbine to generate electricity. Operation

and maintenance (O&M) costs are a significant part of the

overall power generation cost and account for roughly

20% of the total cost of energy.2 Consequently, scheduling

maintenance to avoid wind turbine component failures is

critical. Since many wind farms are located in remote areas

or offshore, they are less accessible. Furthermore, the

uncertain nature of the forces experienced by wind turbines

makes it difficult to predict the actual condition of wind

turbine components, such as the gearbox, power generator,

control system and blades, for maintenance purposes.

Current maintenance practices are based mostly on

industry experience. Scheduled maintenance (SM) is the

typical maintenance practice for wind turbines. The fre-

quency of maintenance largely depends on the manufactur-

er’s recommendation. In general, preventive maintenance

(PM) is carried out twice a year on each wind turbine. In

addition to regular PM, wind farm operators still have to

respond to unanticipated breakdowns, which require cor-

rective maintenance (CM). Considering today’s trend

toward large-scale wind farms and the long distances from

the operation and monitoring centers, wind farm operators

can save visits to the remote sites by monitoring, detecting

and fixing problems before failures occur. Manufacturers

have recognized the benefits of condition-based
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monitoring and most modern wind turbines are equipped

with many sensors to help in detecting catastrophic com-

ponent failures. Because sensors may not provide accurate

information on the actual condition of each wind turbine

component, deciding when and what type of maintenance

action to undertake is still a challenging problem in wind

farm O&M.

To schedule PM and CM for wind turbine component

failures it is important to know what components are about

to fail, have failed and the type of failures. This enables

the acquisition of the right type and number of replace-

ment parts/components, as well as mobilizing limited

maintenance crews. Acquiring parts/components often

takes several days or weeks (lead time). Since it is better

to plan for maintenance before failures happen (PM), it

becomes necessary to know the failure behavior of each

turbine component. This is useful in devising scheduling

algorithms for both PM and CM for unforeseen failures,

which is very challenging. In fact, limited progress has

been made in the literature to date on multi-component

turbine O&M scheduling. The few available scheduling

strategies are devised under simplifying assumptions.

These assumptions include modeling the wind turbine as

having a single component instead of multiple compo-

nents; ignoring important factors such as lead times for

repairing turbines and weather conditions; assuming the

availability of unlimited maintenance crews; and assuming

perfect sensor information for condition-based monitoring.

Also, most work in the literature lack models that enable

real-time wind farm O&M decision-making. This work

considers a discrete event modeling and simulation

(M&S)3 approach for wind farm O&M planning and

relaxes such assumptions.

Discrete event M&S is a powerful technique for study-

ing complex systems because it allows for capturing reality

at different granularities of time and space, and enables the

user to observe the eventual effects of alternative actions

on the system. A detailed representation of wind farm

O&M is simply too complex to be adequately captured in

closed form, thus ruling out analytical solutions. Our work

in Byon et al.4 and Pérez et al.5 introduced a discrete event

system specification (DEVS)3 model for a wind turbine.

This work focused on studying the deterioration and fail-

ures of a single component, the gearbox, while ignoring

the degradation of other components. Consequently, the

impact of having a limited number of maintenance crews

on maintenance decisions, for example, was not fully stud-

ied. In this paper, we build on the work in Byon et al.4 and

Pérez et al.5 by explicitly modeling multiple components

of a wind turbine and studying the impact of the failure of

the components on maintenance actions over time. In addi-

tion to the gearbox, we model the power generator, blades

and control system. Modeling multiple turbine components

requires capturing their deterioration behavior simultane-

ously, as well as their impact on the overall performance

of the wind turbine. This leads to building a new simula-

tion model to enable exploring maintenance strategies that

take into account each turbine component.

Specifically, this work makes two major extensions

from previous work: (1) builds a new multi-component

wind turbine simulation model using DEVS; and (2)

derives new algorithms for maintenance scheduling that

consider the deterioration and failure of multiple compo-

nents of a wind turbine. The new DEVS simulation model

involves a logical design that interconnects multiple com-

ponents in a wind turbine to mimic the actual operation of

a wind turbine in a more realistic manner. It characterizes

the turbine’s dynamic responses, deterioration, mainte-

nance scheduling and local wind prediction using DEVS.

The DEVS formalism is a viable approach for modeling

complex systems, such as a wind farm with several wind

turbines. It enables building a wind farm simulation plat-

form by developing models at different levels of the wind

power system: wind turbine components, wind turbine,

wind farm, power grid and network. In terms of algorithms

for maintenance scheduling, the key issue is when to

schedule maintenance given that each wind turbine has

multiple components that degrade and fail at different

rates. Furthermore, there are limitations in terms of the

availability of maintenance crews and wind turbine com-

ponents, which impose lead times on maintenance sche-

dules. This requires new maintenance strategies that

would, for example, enable scheduling a single mainte-

nance trip to attend to multiple components before they

fail so that the wind farm can maintain the desired amount

of power generation.

The contributions of this work include the following:

(a) a discrete event-based simulation for commercial size

wind farms; (b) new maintenance strategies for commer-

cial size wind farms; (c) computational results to assess the

performance of a wind farm under different scheduling

maintenance strategies; and (d) insights into the implica-

tions of maintenance capacity limitations and component

replacement lead times on wind farm performance. The

rest of the paper unfolds as follows. Section 2 reviews

related work on wind farm O&M simulation. Section 3

provides details of our simulation model emphasizing wind

turbine model abstraction and overall operation of the wind

farm simulation. Maintenance scheduling strategies and

practices are presented in Section 4. Section 5 presents a

computational study with results and discussion. Finally,

the paper ends with concluding remarks and future direc-

tions for research in Section 6.

2. Literature review

There are several research papers that use M&S to study

wind farm O&M scheduling. For instance, Rademakers et

al.6 use Monte Carlo simulation for O&M of offshore
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wind farms. The authors consider a 100 MW wind farm

and model the O&M aspects by considering several chal-

lenging factors, such as the weather, for repairing wind

turbines. In their paper, turbine component failures are sto-

chastic and are generated using reliability distributions and

mean-time-to-failure (MTTF). Their model does not con-

sider PM, so maintenance actions are only performed after

a component failure. Results show that revenue losses

account for 55% of the total maintenance cost due to long

lead times for component replacements and waiting times

for favorable weather conditions. Other similar studies

include Ribrant,7 Vittal and Teboul,8 Van Bussel9 and

Hendriks et al.10

These works do not consider the status and degradation

pattern of wind turbine components. In contrast, McMillan

and Ault11 employ Markov models to represent the degra-

dation of wind turbine components (electronic related,

blades, gearbox and generator). The authors use simulation

to quantify the cost-effectiveness of condition monitoring

equipment and compare the performance of two mainte-

nance policies: SM and condition-based maintenance

(CBM). Their models assume that condition monitoring

equipment reveals the degradation status of each compo-

nent perfectly. Maintenance activities are subject to

weather conditions and component replacement lead

times. The results show the economic benefit of CBM ver-

sus SM under different wind profiles, downtime durations,

replacement lead times and costs.

Andrawus et al.12 develop an optimal wind turbine

component replacement policy for a wind farm with 26

turbines. The authors use the Weibull distribution to model

the failure pattern of different wind turbine components

(main shaft, main bearing, gearbox and generator) and test

their replacement strategy using Monte Carlo simulation.

The results show that to minimize maintenance costs, the

gearbox and the generator has to be replaced every six and

three years, respectively. Likewise, Hall and Strutt13 use

probabilistic failure models to predict wind turbine com-

ponent failures and use Monte Carlo simulation to assess

replacement strategies.

Byon et al.4 develop a DEVS3model for a wind turbine.

Their wind turbine model considers the deterioration and

failure of a single component, the gearbox. They imple-

ment both SM and CBM algorithms and report on results

involving a wind farm with 100 turbines located in West

Texas. The results demonstrate the advantages of using

CBM over SM in terms of cost savings and power genera-

tion. Pérez et al.5 extends the simulation model using sto-

chastic DEVS14 to model the gearbox degradation process

based on a Markov model. The results show that CBM pro-

vides about 10% extra power generation on average com-

pared to SM over a 20-year period.

In recent years, a group of analytical models15–19 have

been proposed to study O&M of wind farm systems. Most

of these studies focus on taking advantage of CBM-type

maintenance for wind farms. Although these studies do

not use simulation, they still reveal good insights on how

condition monitoring information from wind turbines can

aid in improving current maintenance practices. The CBM

strategy considers economic dependencies among wind

turbine components (blades, main bearing, gearbox and

generator) and determines optimal maintenance actions

based on failure probability thresholds.

Despite the benefits of discrete event M&S, O&M stud-

ies using this technique are limited in the wind farm litera-

ture. The limitations of current simulation models can be

summarized as follows. (a) Current wind turbine model

abstraction is oversimplified. Several studies are based on

a single wind turbine or a single wind farm, but with the

assumption of identical turbines. In addition weather

uncertainty, wind turbine types and operational strategies

are generally not considered. (b) PM actions are considered

to be replacement, which returns components to the as-

good-as-new state.20 According to Spinato et al.,21 repair

actions must include new parts, adjustments and preventive

actions, such as lubrication and cleaning. Table 1 gives a

summary of the most closely related work to this paper

and highlights the differences in terms of the key factors

considered in each study.

3. Wind turbine simulation model

Wind farm M&S development using DEVS3 involves the

following tasks: (a) developing wind farm basic models;

(b) coupling the basic models to create more complex

models; (c) building an experimental frame to allow for a

suite of simulation experimental choices; (d) implementing

the models on a computer; and (d) testing and validating

the simulation model. We design the simulation model to

handle multiple random events, including wind turbine

component failures, weather disruptions, parts replacement

lead times and maintenance duration. The outputs from the

simulation include the amount of power generated, avail-

ability factor and number of component failures under dif-

ferent maintenance strategies and maintenance capacities.

DEVS is a M&S approach that enables building dyna-

mical models in a hierarchical manner, starting with sim-

ple models and coupling them to create more complex

models. DEVS basic models are called atomic models, and

these can be linked to create coupled models. An atomic

model is the lowest level model and contains structural

dynamics. A coupled model comprises one or more atomic

and/or coupled models, and is constructed in a hierarchical

manner and allows for model modularity. Each DEVS

component (atomic or coupled model) can be viewed as a

system with inputs, states and outputs. It has an internal

structure that dictates how inputs and states are trans-

formed to outputs. The components are coupled together

to create systems, which themselves can be components in
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larger systems. Thus, components are coupled together to

create a DEVS simulation model that captures the dynami-

cal behavior of a system of interest. An atomic model has

input and output ports through which the couplings with

other atomic or coupled models are done. These couplings

enable interaction via message passing between the linked

models. The model receives external input through the

inputs ports, processes the input and generates output

through the output ports. The dynamic behavior of an

atomic model is captured using mathematical functions

that define how the model transitions between its states.

Atomic and coupled models allow for processing multiple

inputs simultaneously. We omit the mathematical defini-

tions of DEVS atomic and coupled models and refer the

interested reader to Zeigler et al.3

3.1 Multi-component wind turbine model

We abstract wind turbine components as dynamical subsys-

tems that together represent a wind turbine and use DEVS

atomic and coupled models to characterize their structure

and behavior. Our simulation model of a wind turbine com-

ponent (CMP) is depicted in Figure 1 using a block dia-

gram. Due to space limitation, the DEVS mathematical

expressions of these atomic and coupled models are given

in the Appendix. The CMP coupled model comprises four

atomic models: component degradation (CMPDEG), main-

tenance monitor (MMTR), unit (UNIT) and sensor

(SENSR). CMPDEG and SENSR were introduced by Byon

et al.4 in the context of having only one component, the

gearbox. CMPDEG captures the degradation behavior of

the turbine component CMP. SENSR provides current sta-

tus information of the turbine component. Fault diagnosis

based on sensor measurements is non-trivial due to the

wind turbine’s non-steady operating conditions. Therefore,

it is often very difficult to obtain the actual state of a com-

ponent based only on sensor measurements. In this work, a

hidden Markov model (HMM) is adopted to model the

uncertainty in the sensor measurements. UNIT captures the

status of the turbine component and is specified as gearbox,

power generator, blades or control system. Each UNIT

atomic model has the following four states: ‘‘normal’’, the

as-good-as-new operation state; ‘‘alert’’, a deteriorated but

still safe to operate state; ‘‘alarm’’, a deteriorated state that

could fail soon; and ‘‘fail’’, the state in which the turbine

component is no longer functioning. UNIT is always initia-

lized in the ‘‘normal’’ state, and its stochastic deterioration

is characterized by a probability transition matrix P. Each

type of component will have its own probability transition

matrix, which is typically developed based on historical

reliability data of the component.

An example of a transition matrix P for a turbine blade

is given as follows:

P=

0:990 0:009 0:001 0:000
0:000 0:985 0:010 0:005
0:000 0:000 0:985 0:015
0:000 0:000 0:000 1:000

0
BB@

1
CCA:

Table 1. Comparison of wind farm simulation studies.

Key Factor Andrawus
et al.12

McMillan
and Ault11

Tian et al.19 Byon et al.4 This work

Number of turbines considered in analysis 26 1 5 100 100
Power generation considers turbine type × × × ×
Power generation considers weather × ×
Power generation considers turbine location × ×
Power generation considers turbine height × ×
Wind turbine components 4 4 4 1 4
Component degradation Weibull

distribution
Markov
model

Weibull
distribution

Markov
model

Markov
model

Corrective maintenance time duration (days) × × ×
Preventive maintenance duration (days) × × ×
Maintenance capacity limitations ×
Component replacement lead time × ×
Maintenance re-scheduling due to harsh weather conditions ×

Figure 1. Wind turbine component coupled model.
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The columns of the matrix correspond to the component

states, ‘‘normal’’, ‘‘alert’’, ‘‘alarm’’ and ‘‘fail’’, in that

order. If no maintenance is performed after some stochastic

time duration, the transition matrix indicates that the wind

turbine blade will stay in ‘‘normal’’ state with probability

0.99, or transitions from ‘‘normal’’ to ‘‘alert’’ with prob-

ability 0.009, or to ‘‘alarm’’ with probability 0.001. When

the blade is in ‘‘alert’’ state, the model remains in this state

with probability 0.985, or transitions to ‘‘alarm’’ or ‘‘fail’’,

with probability 0.01 and 0.005, respectively. The model

remains in ‘‘alarm’’ state with probability 0.985 and transi-

tions from ‘‘alarm’’ to ‘‘fail’’ with probability 0.015. Once

the model reaches the ‘‘fail’’ state it stays in this state with

probability one. Only after CM or component replacement

will the model be re-initialized to ‘‘normal’’ state.

Finally, the MMTR atomic model is responsible for

rescheduling maintenance actions suspended or canceled

due to bad weather conditions. MMTR keeps track of

maintenance actions already scheduled for the compo-

nent and based on current weather conditions decides if

maintenance actions need to be rescheduled. The UNIT

model keeps track of the component state based on the

degradation information provided by the CMPDEG and

the maintenance information supplied by the MMTR.

The multi-component wind turbine (WTURBINE)

coupled model is shown in Figure 2 and contains m

CMP models (m number of components) and a power

production (PWRPROD) atomic model. The PWRPROD

model has two main states: ‘‘active’’ and ‘‘passive’’.

When in ‘‘passive’’ state the wind turbine generates no

power and this occurs when the wind turbine is under

maintenance or when weather conditions force the tur-

bine to shut down. In contrast, when ‘‘active’’, the

PWRPROD model uses the current wind speed at the

turbine to compute the amount of power generated for a

specific period of time. The amount of power generated

by the wind turbine is calculated using a power curve

model, as described by Byon et al.4

3.2 Wind farm simulation

The DEVS wind farm simulation model is depicted in

Figure 3. The model has three main coupled models: wind

farm (WF), experimental frame (EF) and operations and

maintenance (OPMNT). The wind farm (WF) coupled

model represents the wind farm. This coupled model can

represent any type of wind farm, since it can be configured

according to user specifications. For example, the amount,

type, height and location of the wind turbines are para-

meters provided by the user. The wind farm coupled

model contains several WTURBINE models, which repre-

sent the turbines at the location under study. EF and

OPMNT were introduced by Byon et al.4 EF is a coupled

model and is linked to both WF and OPMNT and is used

for specifying and running experiments of interest by the

user. For example, EF allows for specifying parameters

and computing performance measures. It collects informa-

tion from the components while the simulation is running

and computes performance measures at the end of each

simulation run. The performance measurements for this

study are discussed later in Section 5.2. EF has two atomic

models, namely, wind generator (WGENR) and transducer

(TRANSD). WGENR generates wind speed using a

spatio-temporal model in a hierarchical manner to generate

sequences of wind speed at turbine locations and heights,

as explained by Byon et al.4 Finally, the TRANSD atomic

model collects information of interest from WF and com-

putes performance measures specified by the user.

Wind farm maintenance and operation activities are

managed by the OPMNT coupled model in the simulation.

This model comprises two atomic models: the mainte-

nance scheduler (MSCHEDR) and maintenance generator

(MGENR). MSCHEDR implements different management

strategies or algorithms for scheduling wind turbine main-

tenance. In this work, we consider several strategies for

maintenance scheduling involving multiple components:

the gearbox, power generator, blades and control system,

and these are discussed in Section 4. The MSCHEDR

atomic model communicates with the MGENR atomic

model when a maintenance procedure is scheduled.

MGENR generates the maintenance activity at the time

scheduled by the MSCHEDR.

4. Wind turbine maintenance strategies

Since each wind turbine model comprises multiple compo-

nents, scheduling maintenance becomes more complicated

than for the case where only a single component is consid-

ered. In the single component setting in Byon et al.,4 wind

farm operations were simulated under two maintenance

strategies, SM and CBM. SM reflects the common mainte-

nance practice and in the implementation in Byon et al.4

PM actions were performed twice a year in low windy

conditions regardless of the deterioration status of the

Figure 2. Multi-component wind turbine coupled model.
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gearbox. Under CBM, PM actions were carried out only

when sensors produced ‘‘alarm’’ signals. Furthermore, for

both SM and CBM, CM was performed when there was an

unplanned failure with a lead time of six weeks before

repairing the turbine. In this work we extend SM and CBM

to the multi-component setting and introduce a new sche-

duling algorithm, termed concurrent condition-based

maintenance (CCBM). CBM and CCBM maintenance stra-

tegies use sensor information from the wind turbine to

decide when and what type of maintenance to perform

based on the status of all turbine components. The goal of

both maintenance strategies is to monitor, detect and ser-

vice or replace wind turbine components before a failure

occurs. Both CBM and CCBM algorithms use information

from turbine sensors to decide when to schedule PM and

CM. However, they differ in the way maintenance is

scheduled. CCBM plans maintenance of multiple compo-

nents within the same turbine on a single maintenance trip,

whereas CBM plans maintenance of a single component

per maintenance trip.

To mathematically describe the new SM, CBM and

CCBM maintenance scheduling algorithms, we begin with

some notation in Table 2. For convenience, we use the fol-

lowing symbols:  denotes assignment and == denotes

(equality) comparison. We define the set of day and tur-

bine pairs (d, j) for maintenance crew r as

Ur = d, jð Þj14 d 4 h0, 14 j4 Jj jf g, where h0 is the last

day of the scheduling horizon and jJ j is the total number

of turbines in the wind farm. The set Ur includes all the

days that are already occupied in the schedule for mainte-

nance crew r. For ease of exposition, we first describe two

basic functions implemented by all the scheduling algo-

rithms, named CheckSchedule() and ScheduleOnline().

Figure 4 describes the CheckSchedule() function, which

checks the availability of a maintenance crew r during a

given time interval [d, d +ami]. The function returns a

Boolean indicating whether (true) or not (false) the time

interval is available. The function simply checks whether

or not any of the days from day d to d +ami are already

booked in the schedule for maintenance crew r. The main-

tenance schedule set G is initialized in line 1. A counter

named day is used to keep track of the current day in the

schedule. Line 2 uses a for-loop to define the number of

days in a row needed to schedule the maintenance

requested. If one of the days in the time period is already

occupied, maintenance cannot be scheduled (lines 3–5). If

the current day is available, it is added to G and the day

counter is incremented by one day. When the number of

consecutive days required for maintenance is found, main-

tenance is scheduled.

The ScheduleOnline() function, detailed in Figure 5,

finds the first maintenance crew r available for performing

Figure 3. Discrete event system specification wind farm simulation model.
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maintenance. Line 1 assigns the set of maintenance crews

to set R�. Line 2 keeps track of the maintenance crew

under search. Each maintenance crew is searched until the

one with the earliest availability for scheduling the mainte-

nance requested is found. Line 3 invokes the

CheckSchedule() function (Figure 4). The algorithm termi-

nates if maintenance can be scheduled (line 7), unless the

algorithm reaches the end of the scheduling horizon. If the

maintenance cannot be scheduled within the fixed schedul-

ing horizon, the algorithm terminates. If maintenance can-

not be scheduled, the algorithm removes the current

maintenance crew from the set R� and returns to line 2

(line 5). If no maintenance crew is available on the time

period defined in line 2, the algorithm increases the day

counter by one unit and repeats the scheduling process

until the maintenance is scheduled (line 10). A rolling

scheduling horizon can also be considered to make sure

that that a feasible schedule can be found.

4.1. Scheduled maintenance

The objective of SM is to prevent wind turbine component

failures by performing PM during the year. The time

between two consecutive PM actions is based on the manu-

facturer’s recommended maintenance schedule. Under SM,

PM actions are performed on each turbine at least twice a

year during low wind speed seasons. We assume that PM

under SM is performed at the beginning of the spring and

fall seasons, since we study wind farms located in Texas,

USA. In addition, CM actions are performed to respond to

Table 2. Maintenance scheduling algorithm sets and parameters.

Sets

J : Set of turbines, indexed j.
I : Set of components in a wind turbine, indexed i (i = 1 gearbox, i = 2 power generator, i = 3 blades, and i = 4 control system).
D: Set of days in the scheduling horizon, indexed d.
S: Set of states, indexed s (s = 1 for ‘‘normal’’; s = 2 for ‘‘alert’’; s = 3 for ‘‘alarm’’; and s = 4 for ‘‘fail’’).
Sij: Set of states of component i of turbine j.
R: Set of maintenance crews, indexed r.
T: Set of turbines assignments under SM.
Tr : Set of turbines assigned to maintenance crew r under SM.
M: Set of maintenance types, indexed m (m = 1 for corrective and m = 2 for preventive maintenance).
Ur : Set of day and turbines pairs (d, j) for maintenance crew r.
G: Set of day and turbines pairs (d, j) used to check the availability of a maintenance crew.

Parameters

dj: Day of failure for turbine j.
�d: First day of spring season.
d: First day of fall season.
k: Number of maintenance crews, k= Rj j.
h : Number of days planned for system operation.
‘mi: Lead time (days) required for performing maintenance type m on component i.
αmi: Time (days) required to perform maintenance type m on component i.
βij : Current state of component i of turbine j.
m : Number of wind turbines assigned to each maintenance crew under SM, m = Jj j=k.

CheckSchedule ( , ).
1- ∅

2- for to do
3-      if then
4- ∅
5- return false
6- else
7-  ∪

8-
9- end
10-  end 
11- ∪

12-  return true

Figure 4. Pseudocode for CheckSchedule().

ScheduleOnline( , )
1- ∗

2- while ∗ do
3- ← CheckSchedule ( )
4- if then
5- ∗ ← 

∗\  and go to step 2
6-      else
7- End
8- end
9- end
10-  and go to step 1 
11- end

Figure 5. Pseudocode for ScheduleOnline().
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unanticipated breakdowns. The steps of the SM algorithm

are listed next. We use a Boolean variable u to store the

output returned by the CheckSchedule() function. Recall

that the variable u takes the value true if maintenance crew

r is available and false otherwise. For ease of exposition,

we first describe two additional functions implemented by

the SM algorithm, named TurbineTeamAssignment() and

SchedulePM(). Both of these functions are used in the initi-

alization of the SM algorithm.

The TurbineTeamAssignment() function is described in

Figure 6 and assigns a group of turbines to each mainte-

nance team. Line 1 initializes the parameters required for

the function. Line 2 begins the assignment process turbine

by turbine. A group of turbines is assigned to the same

maintenance team until the limit m� is reached (line 4).

When the limit is reached the algorithm moves to the next

team (line 8) and restarts the process until all turbines are

assigned.

The SchedulePM() function is described in Figure 7.

This function uses the turbine-teams assignments to sched-

ule PM. Line 1 initializes the day and the maintenance

type. This function uses the assignment sets Tr to schedule

PM to each turbine using the corresponding maintenance

team (lines 3–10). After PM is scheduled to all turbines

assigned to team r, the process is repeated for the rest of

the teams (line 12). The SM algorithm steps can be given

as follows.

SM algorithm:

Step 0 Initialization: Set bij = 1, 8i 2 I , 8j 2 J , h h0,

d  d0, m m0, j  1, and Ur  f;g
T  TurbineTeamAssignment (j,m)

for year = 0 to h=365 do

SchedulePM(�d + year � 365, T )

SchedulePM(d + year � 365, T )

end

Step 1 Online Requests:

for d = 1 to h do

if bij ¼¼ 4 then m = 1, day = d + ‘mi

ScheduleOnline (Ur, day,ami, j)
end

end

Step 2 Termination:

if day ¼¼ h then

End

end

The algorithm has three major steps: initialization,

online requests and termination. The initialization process

assigns initial parameter values and schedules PM twice a

year for all the turbines. In Step 1 the algorithm tracks the

condition of the wind turbines. An online oracle will pro-

vide the status information from the turbines as time pro-

gresses. Turbine status reports arrive one at a time in an

online fashion. If turbine one (j = 1) reports the failure of

the gearbox (i = 1), then b11 = 4 and CM will be sched-

uled for the turbine using the ScheduleOnline() function.

Then the algorithm begins the search to schedule mainte-

nance on day = dj + ‘mi. The algorithm takes into account

the day the report is received and the lead time required to

assemble the team and acquire the parts and equipment

needed to perform the maintenance. Performing CM after

a component failure involves replacing the component,

which may not be readily available and will have to be

ordered. Lastly, in Step 2 the algorithm terminates if the

current day equals the scheduling horizon.

4.2. Condition-based maintenance

As in SM, the objective of CBM is to prevent wind turbine

component failures by performing PM as needed based on

the condition of the components. CBM uses information

from wind turbine sensors to decide when to schedule PM.

Therefore, the CBM algorithm uses information about the

current state of the wind turbine components to decide

when to schedule PM. The four degradation states (nor-

mal, alert, alarm and fail) for a wind turbine component,

explained in Section 3.2, are used as input to the CBM

SchedulePM( ∗ ).  
1- Let ∗,
2- while do
3-
4- while do
5- ← CheckSchedule ( )
6- if then
7- \
8-           else
9-  and go to step 4
10- end
11- end
12- ∗

13- end
14- end

Figure 7. Pseudocode for SchedulePM().

TurbineTeamAssignment ( ∗ )
1- ∗

 ∅ ,
2- for ∗ to | |

3-      if ∗ then 
4- ∪
5-      else
6- ∗ ∗

 

7-  ∪

8-
9- ∪

10-      end 
11- end
12- return

Figure 6. Pseudocode for TurbineTeamAssignment().
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algorithm. The CBM algorithm is a simplified version of

the maintenance strategy proposed by Byon et al.15 The

steps of the CBM algorithm are listed next.

CBM algorithm:

Step 0 Initialization Set bij = 1; 8i 2 I ; 8j 2 J , h h0,

d  d0, m m0, and Ur  f;g
Step 1 Online Requests:

for d = 1 to h do

if bij ¼¼ 3 then m = 2, day = d + ‘mi

ScheduleOnline (Ur, day,ami, j)
else bij ¼¼ 4 then m = 1, day = d + ‘mi

ScheduleOnline (Ur, day,ami, j)
end

end

Step 2 Termination:

if d ¼¼ h then

End

end

The CBM algorithm has three major steps: initializa-

tion, online requests and termination. In Step 0 the algo-

rithm parameters are initialized. Step 1 is named online

requests. In this step, PM is scheduled every time a turbine

component reports an alarm state. For instance, if turbine

one (j = 1) reports that the gearbox (i = 1) is in alarm state,

then b11 = 3, and PM maintenance is scheduled using the

ScheduleOnline() function. In addition, every time a tur-

bine component fails CM is scheduled for the turbine using

the ScheduleOnline() function. As in the SM algorithm, it

is assumed that the online oracle provides the status infor-

mation from the turbines as time progresses. Lastly, in

Step 2 the algorithm terminates if the scheduling horizon

comes to an end.

4.3. Concurrent condition-based maintenance

As in CBM, the CCBM algorithm uses information from

turbine sensors to decide when to schedule preventive and

CM. However, CCBM plans maintenance of multiple com-

ponents within the same turbine on a single maintenance

trip. Cost savings can be achieved by decreasing the num-

ber of visits to the same wind turbine. Instead of perform-

ing maintenance to one component per maintenance visit,

CCBM performs maintenance to multiple components (as

needed) every time maintenance is requested from a tur-

bine. The four degradation states (normal, alert, alarm and

fail) for a wind turbine component, explained in Section

3.2, are used as input in the CCBM algorithm. The steps of

the CCBM algorithm are listed next.

CCBM algorithm:

Step 0 Initialization Set bij = 1; 8i 2 I ; 8j 2 J , h h0,

d  d0, m m0, and Ur  f;g
Step 1 Online Requests:

for d = 1 to h do

if bij ¼¼ 3 then

Let i0 = i and define set G as the set of components

with i 2 In i0f g
Let P be the set of components with bij ¼¼ 2

where i 2 G

m = 2

day = d + max
i2P[ i0f g

‘mi

a=
P

i2P[ i0f g
ami

ScheduleOnline (Ur, day,a, j)
else if bij ¼¼ 4 then m = 1, day = dj + ‘mi,

Let i0 = i and define set G as the set of components

with i 2 In i0f g
Let P be the set of components with bij ¼¼ 2

where i 2 G

Let Q be the set of components in G with current

state bij ¼¼ 3

day = dj + ‘1i(CM lead time is always larger)

a=
P

i2P[Q

a2i +a1i
0

ScheduleOnline (Ur, day,a, j)
end

end

Step 2 Termination:

if d ¼¼ h then

End

end

The CCBM algorithm also has three major steps: initia-

lization, online requests and termination. In Step 0 initial

values are assigned to the algorithm parameters. Step 1

processes online requests. If PM is needed by one turbine

component (bij = 3), the algorithm checks the status of

the other components within the same turbine. If one or

more components are found to be in alert (bij = 2), PM is

scheduled for those components, meaning that they will be

maintained on the same visit. The first day that the algo-

rithm uses to begin the search for maintenance is

dj + maxi2P[ i0f g ‘mi. The algorithm considers mainte-

nance lead time of each turbine component requiring ser-

vice and uses the maximum lead time to determine the first

day to begin the search for maintenance. If CM is required

for one of the turbine components (bij = 4), the algorithm

considers the lead times required by the other components

requiring PM at the time of the failure and selects the max-

imum lead time to determine the first day to begin the

search for maintenance. Lastly, in Step 2 the algorithm is

terminated if the scheduling horizon comes to an end.

5. Application

We implemented our DEVS simulation model in Java

using DEVSJAVA.22 The model represents a 100-unit

wind farm located in West Texas. This wind farm operates
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365 days a year, 24 hours a day. The simulation model

uses wind speed measurements reported by the West Texas

Mesonet.23 Each wind turbine model is represented by four

components, the gearbox, power generator, blades and

control system. A probability transition matrix P was used

to model the degradation and failure rate of each wind tur-

bine component, as explained in Section 3.2. We assumed

a variable number of maintenance teams and that each

maintenance team performed the same tasks and was capa-

ble of performing maintenance on any wind turbine. Lead

times were required for assembling a maintenance team,

request part/component replacements and to rent equip-

ment (e.g. a crane) to access the wind turbines.

5.1 Experimental setup

We set up experiments based on the 100-turbine wind

farm operating for a period of 20 years, which is the aver-

age lifetime of a wind turbine.24 The number of replica-

tions was arbitrarily set to 20. Computational experiments

were conducted using a DELL X5355 with 2 Intel Xeon X

processors at 2.66 GHz each with 12.0 GB of RAM. As

stated in Section 1, this computational study had three

major goals: (1) demonstrate that theoretical maintenance

strategies based on simplified assumptions are not always

optimal for commercial size wind farms; (2) improve the

performance of current scheduling maintenance strategies

used in practice; and (3) study the implications of mainte-

nance capacity limitations and component replacement

lead times.

The experiments considered three key factors, namely

maintenance strategy, maintenance capacity and compo-

nent replacement lead times. Four performance measures

(responses) were considered: power generated (PG), sys-

tems availability (SA), number of failures (NF) and

maintenance cost (MC). To test the first factor, the wind

farm simulation model was run using the three mainte-

nance strategies discussed in Section 4: SM, CBM and

CCBM. Recall that CBM is based on the maintenance

strategy developed by Byon et al.4 and we use it as a point

of comparison or benchmark in our simulations. The sec-

ond factor examines the effect of maintenance capacity

limitations. Previous research on wind farm O&M

assumes the availability of an unlimited number of mainte-

nance teams. We relaxed this assumption by running the

wind farm simulation model with varying numbers of

maintenance teams: 5, 10, 20 and 50. The third factor

looks at the effect of lead time duration on O&M. In case

of maintenance, one should consider the lead time for

organizing maintenance teams and parts/components. For

example, it can take several weeks for a component such

as a gearbox to be delivered. Previous research on wind

farm O&M using simulation11,12,19 has seldom considered

this factor. We considered lead times of one, three, six and

eight weeks for each wind turbine component. Tables 3–5

show the cost figures reported by McMillan and Ault11

and Andrawus et al.,25 which we used to estimate the

maintenance cost of O&M strategies. The performance

measures PG, SA, NF and MC were then determined from

the simulation runs.

Table 3. Corrective maintenance cost.25

Component Material ($) Labor ($) Production loss ($) Total maintenance cost ($)

Gearbox 102,401.25 5976.00 3155.33 111,532.58
Power generator 38,912.06 3984.00 2760.91 45,656.97
Blade 59,004.70 3984.00 2760.91 65,749.61
Control system 6629.50 3984.00 2760.91 13,374.40

Table 4. Preventive maintenance cost.11,25

Component Material ($) Labor ($) Production loss ($) Total maintenance cost ($)

Gearbox 10,240.13 597.60 315.53 11,153.26
Power generator 3891.21 398.40 276.09 4565.70
Blade 5900.47 398.40 276.09 6574.96
Control system 3314.75 398.40 276.09 3989.24

Table 5. Cost of access.25

Component Access cost ($)

Gearbox 18,724.80
Power generator 14,043.60
Blade 14,043.60
Control system 14,043.60
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5.2 Computational results

The simulation results for the three maintenance schedul-

ing algorithms, SM, CBM and CCBM, are reported in

Tables 6–8, respectively. Each table reports the algorithm

performance (response) at different levels of maintenance

capacity and component replacement lead times. The

observed variability in the performance measures is rela-

tively small and, thus, only the average values are reported.

The maximum 95% confidence interval limits for the per-

formance measures are 62% for power generated,

61:8%for system availability and 61% for number of fail-

ures. In terms of lead time levels, only the results for the

gearbox component are reported. This is because the

results obtained for the other components are similar and

are thus omitted.

SM is the traditional industry practice for O&M of wind

farms. The best performance in terms of power generation

for the SM algorithm (Table 6) is observed when the num-

ber of maintenance teams is at the maximum and the lead

time for the gearbox is at the minimum. This indicates that

maintenance capacity has a significant impact on the per-

formance of SM. The results show a percentage increase

of about 10% in system availability and power generated

when the number of maintenance teams is increased from

five to 50. A rise in the average number of failures is also

observed when the number of maintenance teams is

increased using SM. Since SM schedules PM in advance

twice a year for each turbine, this results in busy schedules

for maintenance teams during certain periods of the year.

When the maintenance capacity is low, system availability

decreases because the number of maintenance teams to fix

failed turbines is inadequate. In this case, failed turbines

are not operational for a longer period of time under SM.

Also, a higher average number of failures is observed

when maintenance capacity is high. Since the system is

now operating for a longer period of time, the turbines are

expected to fail more. Remember that under SM the state

of the components is not taken into account at the time of

scheduling PM. Thus, the chance of component failures is

not necessarily reduced. Lead time appears to have rela-

tively less significant impact when compared to mainte-

nance capacity. However, a 2.8% average percentage

decrease in the power generation is observed when, for

example, the lead time for the gearbox goes from one

week to eight weeks. The pattern is repeated for all levels

of maintenance capacities.

Table 7 shows the results for the condition-based moni-

toring (CBM) algorithm. CBM schedules maintenance

actions based on the condition of the wind turbine compo-

nents. The best performance of CBM is observed when the

lead time of the gearbox is at the two lower levels (one

and three weeks) and the number of maintenance teams is

greater or equal to 10. The results show a percentage

increase in system availability and power generated of

about 3% when the number of maintenance teams is

increased from five to 10. Also, a decrease in the average

number of failures is observed when the number of main-

tenance teams is increased. Since a higher number of

maintenance crews are available, the waiting time for PM

decreases and wind turbines can be served sooner. When

compared to SM, CBM provides an average 9% percentage

increase in power generation and a percentage decrease in

the number of failures of about 52%. In terms of cost,

Table 6. Computational results for scheduled maintenance (SM).

Maintenance
capacity (# teams)

Replacement lead times (days) Performance measures

Gearbox Power
generator

Blades Control
system

Avg. power
generated
(MW)

Avg. system
availability (%)

Avg. number
of failures

Avg. number
of preventive
actions

5 1 4 2 1 11,286,321.71 0.813 885.60 3215.00
5 3 4 2 1 11,258,940.10 0.811 879.60 3210.20
5 4 4 2 1 11,245,998.32 0.810 880.00 3194.80
5 8 4 2 1 11,014,127.66 0.794 825.40 3193.20
10 1 4 2 1 11,725,669.59 0.845 990.20 3359.00
10 3 4 2 1 11,711,169.10 0.844 985.40 3355.80
10 4 4 2 1 11,704,376.95 0.844 985.40 3348.80
10 8 4 2 1 11,432,692.71 0.824 915.80 3278.80
20 1 4 2 1 12,165,017.47 0.877 1094.80 3503.00
20 3 4 2 1 12,163,398.11 0.877 1091.20 3501.40
20 4 4 2 1 12,162,755.59 0.877 1090.80 3502.80
20 8 4 2 1 11,851,257.76 0.854 1006.20 3364.40
50 1 4 2 1 12,346,006.79 0.890 1153.20 3638.60
50 3 4 2 1 12,345,835.59 0.890 1149.00 3638.20
50 4 4 2 1 12,345,816.90 0.890 1150.20 3640.60
50 8 4 2 1 12,003,894.96 0.865 1044.80 3487.80
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CBM provides savings of about 60% when compared to

SM.

Table 8 provides the results for the CCBM algorithm.

CCBM schedules maintenance actions based on the condi-

tion of the wind turbine components and allows for main-

tenance to multiple components on the same maintenance

trip. The best performance of CCBM is observed when the

number of maintenance teams is greater than or equal to

10. Lead time appears to have a relatively limited effect

on the performance of CCBM. The performance remains

steady when lead time is greater than or equal to three

weeks and the number of maintenance teams available is

greater than or equal to 10. However, a percentage

decrease of about 37% in the average number of failures is

observed when lead time is increased from one week to

three weeks. A shorter lead time allows for wind turbines

to be repaired and be available sooner. However, with

shorter lead times turbines will be working for longer peri-

ods of time and are expected to fail more. Consequently,

under CCBM, the average number of failures is larger

under short lead times as compared to longer lead times.

The results show a percentage increase in system avail-

ability and power generated of about 3% when the number

of maintenance teams is increased from five to 10. When

compared to SM, CCBM provides an average of about

9.3% increase in power generation and a reduction in the

number of failures of about 88%. In terms of cost, CCBM

provides a decrease of about 65% when compared to SM.

When compared to CBM, CCBM provides about 1%

increase on average in power generation and a decrease of

about 78% in the average number of failures. The results

show that even though the number of failures is reduced,

the power generation stays about the same compared to

CBM. This result can be explained by the fact that both

algorithms, CBM and CCBM, provide about the same level

of system availability. CCBM reduces the number of fail-

ures by increasing the number of PMs by about 40% com-

pared to CBM. The amount of time required to perform

PM actions under CCBM balances the amount of time

required to perform CM actions under CBM. In addition,

CCBM provide savings of about 20% compared to CBM.

Since PM actions are less expensive than CM actions,

CCBM provides some cost savings.

Figures 8 and 9 compare the performance of the main-

tenance scheduling algorithms. Figure 8 compares the

average wind farm power generated (columns) and aver-

age maintenance cost per turbine (line) when the gearbox

replacement lead times are one, three, six and eight weeks,

respectively. Figure 9 compares the average number of

failures (columns) and average wind farm availability

(line) for the same gearbox replacement lead times.

Figure 8 shows a similar pattern for the three schedul-

ing maintenance strategies when one week, three weeks

and six weeks are considered as replacement lead times

for the gearbox component. CBM and CCBM perform

similarly in terms of power generation and a rise in power

generation is noticed when the maintenance capacity is

increased from five teams to 10 teams. CBM and CCBM

produce about 10% more power than SM across all experi-

ments. However, it is important to notice that the perfor-

mance of SM improves as the maintenance capacity

increases. CCBM performs better than both SM and CBM

Table 7. Computational results condition-based monitoring (CBM).

Maintenance
capacity (# teams)

Replacement lead times (days) Performance measures

Gearbox Power
generator

Blades Control
system

Avg. power
generated
(MW)

Avg. system
availability (%)

Avg. number
of failures

Avg. number
of preventive
actions

5 1 4 2 1 12,663,429.51 0.913 520.80 962.80
5 3 4 2 1 12,642,855.10 0.911 505.80 1007.60
5 4 4 2 1 12,636,514.63 0.911 504.00 1018.00
5 8 4 2 1 12,473,949.97 0.899 501.60 1015.20
10 1 4 2 1 12,994,759.62 0.937 470.80 1076.20
10 3 4 2 1 12,992,814.32 0.937 463.00 1149.80
10 4 4 2 1 12,988,165.28 0.936 464.80 1136.20
10 8 4 2 1 12,765,720.99 0.920 460.60 1141.00
20 1 4 2 1 12,995,478.47 0.937 469.60 1077.00
20 3 4 2 1 12,993,616.16 0.937 464.00 1150.80
20 4 4 2 1 12,989,100.31 0.936 463.40 1136.20
20 8 4 2 1 12,766,754.85 0.920 460.40 1141.60
50 1 4 2 1 12,995,478.47 0.937 469.80 1077.00
50 3 4 2 1 12,993,616.16 0.937 464.00 1150.20
50 4 4 2 1 12,989,237.15 0.936 463.40 1136.20
50 8 4 2 1 12,766,754.85 0.920 461.40 1141.60
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in terms of maintenance cost. CCBM provides a 230% and

65% percentage decrease in cost compared to SM and

CBM, respectively. These savings were computed using

the average maintenance cost per turbine per year under

each maintenance strategy. The cost reduction can be

explained by the fact that CCBM decreases the number of

CM actions or component replacements required by per-

forming preventive actions sooner. In addition, for the

case in which a maintenance lead time of eight weeks is

considered, CCBM performs better across all the experi-

ments. In this particular case, there is a longer wait period

for an important component and turbines requiring such a

component will remain inactive for a longer period of

time. Since CCBM decreases the number of failures when

compared to SM and CBM, it is expected to show a higher

power throughput because the system remains active for a

relatively longer period of time.

Figure 9 also shows a similar pattern in terms of num-

ber of failures and availability for the three scheduling

maintenance strategies when one, three and six weeks are

considered for the replacement lead time for the gearbox

component. CBM and CCBM perform similarly in terms

of availability. However, CCBM shows an 88% and 78%

reduction in terms of the number of failures when com-

pared to SM and CBM, respectively. Although CCBM is

able to decrease the average number of failures for the sys-

tem, it is important to notice that system availability is

about the same compared to CBM. This result can be

explained by understanding that CCBM performs more

PM actions than CBM, which balances the amount of time

required to perform CM actions under CBM. For the case

in which the replacement lead time is eight weeks, CCBM

performs the best across all the experiments. Again, tur-

bines will have to wait for a longer period for component

replacement, and turbines requiring such components will

remain inactive for a longer period of time. Since CCBM

reduces the number of failures compared to SM and CBM,

it is expected to yield a higher power throughput because

the system remains active for a longer period of time.

6. Discussion and conclusions

One of the main factors for enhancing wind energy mar-

ketability is reducing O&M costs. Most of the O&M costs

can be attributed to dispatching maintenance crews with

heavy-duty equipment to remote wind farm sites. In this

paper we derive new algorithms to improve scheduling

strategies for O&M of wind farms. The algorithms are

SM, CBM, and CCBM. The CBM and CCBM algorithms

consider the degradation process of multiple components

of a wind turbine to decide when and what type of mainte-

nance to perform. We devise a DEVS simulation model of

a wind farm with multi-component wind turbines to test

and study the benefits of the proposed algorithms. The

DEVS simulation model mimics the actual operation and

degradation of multiple components of a wind turbine and

allows for modeling maintenance scheduling as well as

rescheduling if the weather is adverse. Our implementa-

tion of the wind farm simulation allows the user to select

the factors, responses, and the scheduling algorithm to use

in each simulation run.

The computational study demonstrates the importance

of avoiding over-simplistic assumptions when making

Table 8. Computational results for concurrent condition-based monitoring (CCBM).

Maintenance
capacity (# teams)

Replacement lead times (days) Performance measures

Gearbox Power
generator

Blades Control
system

Avg. power
generated
(MW)

Avg. system
availability (%)

Avg. number
of failures

Avg. number
of preventive
actions

5 1 4 2 1 12,675,769.32 0.914 249.20 1763.60
5 3 4 2 1 12,654,316.88 0.912 240.80 1785.40
5 4 4 2 1 12,643,320.87 0.911 238.00 1799.80
5 8 4 2 1 12,587,059.60 0.907 228.80 1821.40
10 1 4 2 1 12,962,324.32 0.934 96.40 2199.00
10 3 4 2 1 12,961,324.67 0.934 59.80 2305.20
10 4 4 2 1 12,957,865.80 0.934 59.00 2293.00
10 8 4 2 1 12,950,755.32 0.933 56.00 2300.20
20 1 4 2 1 12,962,324.32 0.934 93.40 2203.00
20 3 4 2 1 12,961,324.67 0.934 59.00 2310.40
20 4 4 2 1 12,957,865.80 0.934 58.20 2295.20
20 8 4 2 1 12,950,755.32 0.933 54.80 2302.40
50 1 4 2 1 12,961,651.55 0.934 93.60 2203.00
50 3 4 2 1 12,960,773.53 0.934 58.60 2310.60
50 4 4 2 1 12,957,949.26 0.934 58.60 2302.40
50 8 4 2 1 12,949,933.84 0.933 55.40 2295.20
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O&M decisions for wind farms. For instance, in the exist-

ing literature lead times are usually modeled as fixed,

while maintenance capacities are considered unlimited.

The simulation results show that different levels of mainte-

nance capacity and component replacement lead time have

an impact on scheduling wind turbine maintenance, which

in turn affects wind farm operations performance in terms

of the number of turbine failures, availability capacity and

power generation. For example, the best performance in

terms of wind turbine availability and power generation

for SM is observed when the maintenance capacity is at

the maximum level (50 teams). SM performs poorly when

maintenance capacity is limited. This is because with inad-

equate maintenance capacity many failed turbines do not

receive maintenance for long periods of time.

The results also show that using condition monitoring

maintenance strategies such as CBM and CCBM results in

a reduction in O&M costs compared to SM. CCBM pro-

vides the lowest cost and minimum number of turbine fail-

ures. This can be explained by the fact the CCBM reduces

the number of corrective actions (component replace-

ments) by performing PM earlier than both SM and CBM.

Recall that CCBM allows for maintenance to be performed

on multiple components on the same maintenance visit to

each turbine. However, the results show that CBM pro-

vides slightly higher availability and average power gener-

ation for most of the experiments compared to CCBM.

This result is counterintuitive but can be explained by first

understanding that PM takes less time than CM. Secondly,

CCBM almost doubles the number of PM actions com-

pared to CBM and, thus, more time is spent on performing

maintenance.

As future work, we would like to consider the integra-

tion of optimization models in the maintenance decision

process. We envision the development of an online frame-

work that will allow for maintenance scheduling using

optimization algorithms that take into account possible

future turbine component failures and weather conditions.

In addition, it would be interesting to incorporate the wake

effect into the simulation model to study its impact on the

scheduling algorithms. Finally, this study can be extended

to a broad array of potential applications related to wind

farm systems. For example, the algorithms can be extended

to study offshore wind farms, which consider additional

factors such as transportation of replacement components

and maintenance crews using helicopters. Finally, this

work can be extended and used in the evaluation of future

wind farm construction sites and their integration into

existing power systems.
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Appendix. Mathematical expressions of the discrete event system specification models

In this section we provide mathematical expressions of the atomic and coupled models that comprise the WTURBINE model

using parallel DEVS.3,22 We use set theory in the mathematical expressions that follow. The symbol ^ will denote logic

AND, 3 will denote the Cartesian product and Rþ0;‘ will denote the extended non-negative real line that includes infinity.

Atomic models

We define the following atomic models: UNIT, CMPDEG, MMNTOR, SENSOR and PWRPROD. In the UNIT atomic

model a ‘‘windOK’’ Boolean variable is used to notify whether the wind speed is within a specified threshold (true) or

not (false). A set of Boolean variables is used to describe the state of the wind turbine: ‘‘normalstate’’, ‘‘alertstate’’,

‘‘alarmstate’’ and ‘‘failstate’’, where a true value indicates the status of the turbine according the state name. A second

set of Boolean variables describes the state transitions of the wind turbine: ‘‘degType1’’, ‘‘degType2’’, and ‘‘degType3’’.

In this case a true value for ‘‘degType1’’ indicates that the component will transition to ‘‘alertstate’’; a true value for

‘‘degType2’’ indicates that the component transition to the ‘‘alarmstate’’; and a true for ‘‘degType3’’ indicates that the

component will transition to ‘‘failstate’’. Finally, two Boolean variables, ‘‘mainType1’’ and ‘‘mainType2’’, are used to

respectively indicate the type of maintenance performed to the turbine, preventive (PM) or corrective (CM).

The UNIT atomic model has a set of input ports IPorts= wind in,maint in, deg inf g, where Xwind in =
V1,Xmaint in =V2, and Xdeg in =V3 are arbitrary sets. The set of output ports are OPorts=
unit on off, deg on offf g, where Yunit on off and Ydeg on off are arbitrary sets. The UNIT atomic model can be defined

using parallel DEVS as follows:

DEVSUNIT = XM , YM , S, dext, dint, dcon, l, tað Þ,
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where

XM = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

YM = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values; and

S = off, normal, alert, alarm, fail, endOff, PM,CM, endPM, endCMf g3 R+
0,‘ 3 V1 3 V2 3 V3 is the set of sequential

states.

External transition function:

dext (phase,sð Þ, e, (p, v))

= (off,‘), if

phase= ‘‘off’’ ^ p= ‘‘wind in’’
phase= ‘‘normal’’ ^ p= ‘‘wind in’’ ^ ‘‘windOK’’= false

phase= ‘‘alert’’ ^ p= ‘‘wind in’’ ^ ‘‘windOK’’= false

phase= ‘‘alarm’’ ^ p= ‘‘wind in’’ ^ ‘‘windOK’’= false

phase= ‘‘PM’’ ^ p= ‘‘wind in’’ ^ ‘‘windOK’’= false

phase= ‘‘CM’’ ^ p= ‘‘wind in’’ ^ ‘‘windOK’’= false

8>>>>>><
>>>>>>:

=(normal,‘), if phase= ‘‘off’’ ^ p= ‘‘wind in’’ ^ normalstate= true ^ windOK = true

=(alert,‘), if
phase ¼ ‘‘off’’ ^ p ¼ ‘‘wind in’’ ^ alertstate ¼ true ^ windOK ¼ true

phase ¼ ‘‘normal’’ ^ p ¼ ‘‘deg in’’ ^ degType1 ¼ true

8>><
>>:

=(alarm,‘), if
phase ¼ ‘‘off’’ ^ p ¼ ‘‘wind in’’ ^ alertstate ¼ true ^ windOK ¼ true

phase ¼ ‘‘normal’’ ^ p ¼ ‘‘deg in’’ ^ degType2 ¼ true

phase ¼ ‘‘alert’’ ^ p ¼ ‘‘deg in’’ ^ degType2 ¼ true

8<
:

=(fail,‘), if

phase ¼ ‘‘off’’ ^ p ¼ ‘‘wind in’’ ^ failstate ¼ true ^ windOK ¼ true

phase ¼ ‘‘normal’’ ^ p ¼ ‘‘deg in’’ ^ degType3 ¼ true

phase ¼ ‘‘alert’’ ^ p ¼ ‘‘deg in’’ ^ degType3 ¼ true

phase ¼ ‘‘alarm’’ ^ p ¼ ‘‘deg in’’ ^ degType3 ¼ true

8>><
>>:

=(PM,‘), if

phase ¼ ‘‘off’’ ^ p ¼ ‘‘maint in’’ ^ maintType1 ¼ true

phase ¼ ‘‘normal’’ ^ p ¼ ‘‘maint in’’ ^ maintType1 ¼ true

phase ¼ ‘‘alert’’ ^ p ¼ ‘‘maint in’’ ^ maintType1 ¼ true

phase ¼ ‘‘alarm’’ ^ p ¼ ‘‘maint in’’ ^ maintType1 ¼ true

8>><
>>:

=(CM,‘), if

phase ¼ ‘‘off’’ ^ p ¼ ‘‘maint in’’ ^ maintType2 ¼ true

phase ¼ ‘‘normal’’ ^ p ¼ ‘‘maint in’’ ^ maintType2 ¼ true

phase ¼ ‘‘alert’’ ^ p ¼ ‘‘maint in’’ ^ maintType2 ¼ true

phase ¼ ‘‘alarm’’ ^ p ¼ ‘‘maint in’’ ^ maintType2 ¼ true

phase ¼ ‘‘fail’’ ^ p ¼ ‘‘maint in’’ ^ maintType2 ¼ true

8>>>><
>>>>:

=(endPM,‘), if phase ¼ ‘‘PM’’ ^ p ¼ ‘‘maint in’’ ^ maintType0 ¼ true

=(endCM,‘), if phase ¼ ‘‘CM’’ ^ p ¼ ‘‘maint in’’ ^ maintType0 ¼ true.

Internal transition function:

dint phase,sð Þ
=(normal,‘), if

phase= ‘‘endPM’’ ^ maintType1= true ^ windOK = true

phase= ‘‘endCM’’ ^ maintType2= true ^ windOK = true

�

=(alert,‘), if phase= ‘‘endPM’’ ^ maintType1= true ^ windOK = true

=(off,‘), if
phase= ‘‘endPM’’ ^ maintType1= true ^ windOK = false

phase= ‘‘endCM’’ ^ maintType2= true ^ windOK = false

�
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Confluence function:

dcon s, ta(s), xð Þ= dext dint sð Þ, 0, xð Þ.

Output function:

l phase,sð Þ
= unit on off, onoffPWRGENð Þif phase= ‘‘endCM’’

phase= ‘‘endPM’’

�

= deg on off, onoffCMPDEGð Þif phase= ‘‘endCM’’

phase= ‘‘endPM’’:

�

Time advance function:

ta phase,sð Þ=s.

In the CMPDEG atomic model the Boolean variables are used to describe the actions that will affect the degradation

of a wind turbine component and are ‘‘operation1’’, ‘‘operation2’’, ‘‘operation3’’ and ‘‘operation4’’. A value of true for

each of the variables indicates the following: PM is completed, PM is completed but wind speed is out of the threshold,

CM is completed, CM is completed but wind speed is out of the threshold, respectively. A parameter STI (short time

interval) is used in the internal transition function. The level of degradation is output as a message from the model and

describes the current state of the wind turbine component. The CMPDEG atomic models has the input set

IPorts= cmpdeg on offf g, where Xcmpdeg on off =V1 is an arbitrary set. The output set OPorts= deg outf g, where
Ydeg out is an arbitrary set. This atomic model can be expressed in parallel DEVS as follows:

DEVSCMPDEG = XM , YM , S, dext, dint, dcon, l, tað Þ,

where

XM = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

YM = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values; and

S = passive, activef g3 R+
0,‘ 3 V1 is the set of sequential states.

External transition function:

dext (phase,sð Þ, e, (p, v))

= (active,‘), if
phase=‘‘passive’’ ^ p=‘‘cmpdeg on off’’ ^ operation1= true

phase= ‘‘active’’ ^ p= ‘‘cmpdeg on off’’ ^ operation1= true

�

=(passive,‘), if
phase= ‘‘passive’’ ^ p= ‘‘cmpdeg on off’’ ^ operation2= true

phase= ‘‘active’’ ^ p=‘‘cmpdeg on off’’ ^ operation2= true

�

=(restart active,‘), if
phase= ‘‘passive’’ ^ p=‘‘cmpdeg on off’’ ^ operation3= true

phase= ‘‘active’’ ^ p= ‘‘cmpdeg on off’’ ^ operation3= true

�

=(restart passive,‘), if
phase= ‘‘passive’’ ^ p= ‘‘cmpdeg on off’’ ^ operation4= true

phase= ‘‘active’’ ^ p= ‘‘cmpdeg on off’’ ^ operation4= true:

�

Internal transition function:

dint phase,sð Þ
= active, STIð Þ, if phase= ‘‘active’’

phase=‘‘restart active’’

�

=(passive,‘), if
phase= ‘‘passive’’
phase=‘‘restart active’’

�

Confluence function:

dcon s, ta(s), xð Þ= dext dint sð Þ, 0, xð Þ.

Output function:

l phase,sð Þ
= deg out, degradationð Þif phase=‘‘active’’
= deg out, degradationð Þif phase=‘‘restart active’’:
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Time advance function:

ta phase,sð Þ=s.

The MMNTR atomic model has a Boolean variable ‘‘windOK’’, which is used to indicate whether the wind speed is

within a specified threshold (true) or not (false). Two types of output messages are created by this model: timeleft and

maintType. In case maintenance needs to be rescheduled, the message timeleft contains the amount of time needed to

complete the maintenance. The message maintType contains the type of maintenance to be performed in the turbine, PM

or CM. MMNTR has the input set IPorts= wind in, turb mntf g, where Xwind in =V1 and Xturb mnt =V2 are arbitrary

sets. The output set OPorts= reSched, maintf g, where YreSched and Ymaint are arbitrary sets. This atomic model can be

expressed in parallel DEVS as follows:

DEVSMMNTR = XM , YM , S, dext, dint, dcon, l, tað Þ,

where

XM = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

YM = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values; and

S = mtOff,mtOn,mtOverf g3 R+
0,‘ 3 V1 3 V2 is the set of sequential states.

External transition function:

dext (phase,sð Þ, e, (p, v))
= (mtOn,‘), if phase= ‘‘mtOff’’ ^ p= ‘‘wind in’’ ^ windOK = true

=(mtOff,‘), if phase= ‘‘mtOn’’ ^ p= ‘‘wind in’’ ^ windOK = false

=(mtOver,‘), if phase= ‘‘mtOver’’ ^ p= ‘‘turb mnt’’:

Internal transition function:

dint phase,sð Þ:
=(mtOver,‘), if phase= ‘‘mtOff’’
=(mtOn,‘), if phase= ‘‘mtOver’’
=(mtOver,‘), if phase= ‘‘mtOn’’:

Confluence function:

dcon s, ta(s), xð Þ= dext dint sð Þ, 0, xð Þ.

Output function:

l phase,sð Þ
= reSched, timeleftð Þif phase= ‘‘mtOn’’
= maint,mainTypeð Þif phase= ‘‘mtOver’’:

Time advance function:

ta phase,sð Þ=s:

The SENSOR atomic model generates a message of type cmpstate, which indicates the current state of the compo-

nent. The input set for this model IPorts= status inf g, where Xstatus in =V1 are arbitrary sets. The output set

OPorts= status outf g, where Ystatus out is an arbitrary set. The SENSOR atomic model can be defined as follows:

DEVSSENSOR = XM , YM , S, dext, dint, dcon, l, tað Þ,

where

XM = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

YM = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values; and

S = passive, activef g3 R+
0,‘ 3 V1 is the set of sequential states.

External transition function:

dext (phase,sð Þ, e, (p, v))
= (passive,‘), if phase= ‘‘active’’ ^ p= ‘‘status in’’:

Internal transition function:

dint phase,sð Þ:
=(active,‘), if phase= ‘‘passive’’:

Pérez et al. 379

 at Texas A&M University - Medical Sciences Library on March 9, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Confluence function:

dcon s, ta(s), xð Þ= dext dint sð Þ, 0, xð Þ.

Output function:

l phase,sð Þ
= status out, cmpstateð Þif phase= ‘‘active’’:

Time advance function:

ta phase,sð Þ=s.

The PWRPROD model uses two Boolean variables: ‘‘windOK’’ indicates whether the wind speed is within a speci-

fied threshold (true) or not (false) and ‘‘unitOK’’ indicates the current status of the UNIT atomic model, whether it is

operating (true) or not (false). Three types of output messages are created by this model: statuson, statusoff and power.

The first two messages report the status of the turbine and the third reports the power generated by the wind turbine in a

given time period. The PWRPROD atomic model has input set IPorts= cmp on off, wind in, turb on offf g,
where Xcmp on off =V1,Xwind in =V2 and Xturb on off =V3 are arbitrary sets. The output set OPorts= pwr status,f
pwr geng, where Ypwr status and Ypwr gen are arbitrary sets. This atomic model can be defined as followed:

DEVSPWRPROD = XM , YM , S, dext, dint, dcon, l, tað Þ,

where

XM = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

YM = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values; and

S = active, cmpfail, passivef g3 R+
0,‘ 3 V1 3 V2 3 V3 is the set of sequential states.

External transition function:

dext (phase,sð Þ, e, (p, v))
= (cmpfail,‘), if phase= ‘‘active’’ ^ p= ‘‘cmp on off’’ ^ unitOK = false

=(active,‘), if phase= ‘‘active’’ ^ p= ‘‘wind in’’ ^ windOK = true

=(passive,‘), if phase= ‘‘active’’ ^ p= ‘‘turb on off’’ windOK = true:

Internal transition function:

dint phase,sð Þ
=(off,‘), if phase= ‘‘cmpfail’’
=(active,‘), if phase= ‘‘passive’’

Confluence function:

dcon s, ta(s), xð Þ= dext dint sð Þ, 0, xð Þ.

Output function:

l phase,sð Þ
= ‘‘pwr status’’, statusoffð Þ, if phase= ‘‘cmpfail’’
= ‘‘pwr status’’, statusonð Þ, if phase= ‘‘passive’’
= ‘‘pwr gen’’, powerð Þ, if phase= ‘‘cmpfail’’:

Time advance function:

ta phase,sð Þ=s:

The DEVS mathematical expressions of rest of the atomic models WGENR, TRANSD, MSCHEDR and MGENR can

be given in a similar manner but are omitted due to space restrictions. Next we provide mathematical expressions for the

coupled models that make up WTURBINE.

Coupled models

Given the above specifications of the atomic DEVS models (components), we are now in a position to mathematically

define the DEVS coupled models CMP and WTURBINE. This will involve, for each coupled model, specifying the set

of components D where for each d 2D,

Md = Xd, Yd , S, dext, dint, dcon, l, tað Þ
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is a DEVS atomic model. The coupling requirements for a coupled model N are as follows.

� External input couplings connect external inputs to components inputs:

EIC � f( N , ipNð Þ, d, ipdð Þ)jipN 2 IPorts, d 2 D, ipd 2 IPortsdg.
� External output couplings connect components outputs to external outputs:

EOC � f( d, opdð Þ, N , opNð Þ)jopN 2 OPorts, d 2 D, opd 2 OPortsdg.
� Internal coupling couplings connect outputs to components inputs:

IC � f( a, opað Þ, b, ipbð Þ)ja, b 2 D, opa 2 OPortsa, ipb 2 IPortsbg.

Finally, the coupled DEVS model specification is as follows:

N = X , Y ,D, Md jd 2 Df g,EIC,EOC, ICð Þ,

where X is the set of input ports and values, and Y is the set of output ports and values for the coupled model.

The coupled model CMP represents a wind turbine component and comprises four atomic models: CMPDEG,

SENSR, MMTR and UNIT. Its couplings are shown in Figure 1. This coupled model can be defined expressed in DEVS

as follows:

CMP= X , Y ,D, Md jd 2 Df g,EIC,EOC, ICð Þ,

where

X = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

Y = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values;

IPorts= turb mnt,wind inf g, where Xturb mnt and Xwind in are arbitrary sets;

OPorts= status out, deg on off, unit on off, reSchedf g, where Ystatus out, Ydeg on off ,
Yunit on off , YreSched are arbitrary sets; and

D = {d1, d2, d3, d4}, where for each d 2 D the atomic DEVS models Md1,Md2,Md3 and Md4 are CMPDEG, SENSR,

MMTR and UNIT, respectively.

The couplings for CMP are defined as follows:

EIC = f CMP, turb mntÞ, MMTR, turb mntÞð Þ, CMP,wind inÞ, MMTR,wind inÞð Þ,ðððð

( CMP,wind inð Þ, UNIT,wind inð Þ)g:

EOC = f SENSR, status outÞ, CMP, status outÞð Þ, UNIT, deg on offÞ, CMP, deg on offÞð Þ,ðððð

UNIT, unit on offÞ, CMP, unit on offÞð Þ, ( MMTR, reSchedð Þ, CMP, reSchedð Þ)g:ðð

IC = f CMPDEG, deg outð Þ, SENSR, status inð Þð Þ, CMPDEG, deg outÞ, UNIT, deg inð Þð Þ,ð

( MMTR,maintð Þ, UNIT,maintð Þ), ( UNIT, deg on offð Þ, CMPDEG, deg on offð Þ)g:

The wind turbine model WTURBINE comprises m CMP coupled DEVS models and one PWRPROD atomic model,

as shown in Figure 2. This coupled model can expressed mathematically as follows:

WTURBINE= X , Y ,D, Md jd 2 Df g,EIC,EOC, ICð Þ,

where

X = p, vð Þjp 2 IPorts, v 2 Xp

� �
is the set of input ports and values;

Y = p, vð Þjp 2 OPorts, v 2 Yp

� �
is the set of output ports and values;

IPorts= turb mnt, . . . , wind inf g, where Xturb mnt and Xwind in are arbitrary sets (the same as in CMP);

OPorts= status out 1, . . . , status out m, reSched, pwr status, pwr genf g,
whereYstatus out 1, . . . , Ystatus out m, YreSched, Ypwr status, Ypwr gen are arbitrary sets; and

D = {d1, ., dm, dm+ 1}, where for each d 2 D the DEVS models Md1, . . . ,Mdm are the CMP coupled models labeled

CMP(1), ., CMP(m) and Mdm+ 1is the PWRPROD atomic model.
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The couplings for WTURBINE are defined as follows:

EIC = f WTURBINE, turb mntð Þ, CMP(1), turb mntð Þð Þ,
. . . ,

WTURBINE, turb mntð Þ, CMP(m), turb mntð Þð Þ,
WTURBINE,wind inð Þ, CMP 1ð Þ, wind inÞð Þ,ð

. . . ,

WTURBINE,wind inÞ, CMP mð Þ, wind inÞð Þ,ðð
WTURBINE,wind inÞ, PWRPROD,wind inÞð Þg:ðð

EOC = f CMP(1), status outÞ, WTURBINE, status out 1Þð Þ,ðð
. . .;

CMP(m), status outÞ, WTURBINE, status out mÞð Þ,ðð
CMP(1), reSchedÞ, WTURBINE, reSchedÞð Þ;ðð

. . . ,

CMP(m), reSchedÞ, WTURBINE, reSchedÞð Þ,ðð
PWRPROD, pwr statusÞ, WTURBINE, pwr statusÞð Þ,ðð
PWRPROD, pwr genÞ, WTURBINE, pwr genð Þð Þg:ð

IC = f CMP(1), deg on offÞ, PWRPROD, deg on offÞð Þ,ðð
. . . ;

CMP(m), deg on offÞ, PWRPROD, deg on offÞð Þ,ðð
. . . , ;

CMP(1), turb on offð Þ, PWRPROD, unit on offð Þð Þ
. . . ,

CMP(m), turb on offð Þ, PWRPROD, unit on offð Þð Þg:

The DEVS mathematical expressions of rest of the coupled models WF, OPMNT and EF are omitted due to limited

space.
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