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ABSTRACT
Ripley’s K function is commonly used to characterize the homogeneity of spatial point distribution. Not
surprisingly, it becomes a favored tool in quantifying the nanoparticlesmixing state in compositematerials,
a parameter that material scientists believe is of close relevance to certain properties of the nanoparticle-
embedding material. Ripley’s K function assumes that the spatial points are dimensionless. In reality, the
nanoparticles, oncemixed in a hostmaterial, form clusters or agglomerates of various sizes and shapes. Our
analysis shows that using the original K function falls short of ranking or distinguishing the homogeneity of
nanoparticlemixing.We therefore propose to revise the K function to account for both particle location and
size effects. We apply the revised function to electron microscopy images of material samples and conduct
analysis and comparison of nanoparticle mixing. The analysis shows that the revised function is a better
index to quantify the mixing states.

1. Introduction

Material scientists have discovered that certain properties of
a composite, for instance, the strength, conductivity or trans-
parency, can be remarkably enhanced by blending nanoparticles
into the polymer host material (Chang et al. 2006). The result-
ing improvement inmaterial properties is believed to depend on
how uniformly the nanoparticles are mixed into the host mate-
rial (Zhang et al. 2006; Zeng, Yu, and Lu 2008). The importance
of material mixing applies not only to nanoparticle-embedded
materials but also to almost all othermaterial mixing involving a
host and additive or reinforcing agents (Manas-Zloczower 1997;
Hui et al. 2008). Material scientists tend to describe the qual-
ity of a mixing state using two phrases: “dispersion” and “distri-
bution.” As illustrated in Figure 1 of Manas-Zloczower (1997),
dispersion refers to the ability to break down agglomerates into
small pieces, while distribution refers to the ability to make the
additive agents (nanoparticles in this application), large or small,
to locate uniformly throughout the host material. We also refer
to the two effects as size (dispersion) and location (distribution)
effects in this article.

Manas-Zloczower (1997) and Hui et al. (2008) stated that the
ideal mixing state is good dispersion and good distribution. To
accomplish that goal, material scientists employ different equip-
ment or mechanisms (Ray and Okamoto 2003; Zou, Wu, and
Shen 2008) to break down large-sized nanoparticle agglomerates
into small pieces and try to make the small nanoparticle pieces
(ideally, individual particles) distribute uniformly throughout
the host material. Quantification of nanoparticle mixing pro-
vides an objective assessment and can sometimes serve as a sur-
rogate for material properties. Doing so becomes a prerequisite

CONTACT Yu Ding yuding@tamu.edu
Color versions of one or more of the figures in this article are available online atwww.tandfonline.com/r/TECH.

to ensuring good quality of nanocomposites in its manufactur-
ing process.

The quantification process starts with taking image mea-
surements of a nanocomposite sample by using an electron
microscope. The two most popular electron microscopes are
the transmission electronmicroscope (TEM) and scanning elec-
tron microscope (SEM). In this research, all images are taken by
TEMs, but we believe the resulting method and the associated
discussion apply to SEM images as well.

Figure 1 shows a TEM image of the nanocomposite sam-
ple studied by our nanoscience team. The dark areas indicate
the presence of nanoparticles or nanoparticle agglomerates. The
TEM images are then processed by an image processing tool, for
instance, ImageJ (Ferreira and Rasband 2011) ormore sophis-
ticatedmethods recently developed (Park et al. 2012, 2013). The
image processing tool produces the contours of the nanoparti-
cles and nanoparticle agglomerates, which can be used to calcu-
late a particle’s or an agglomerate’s size and its centroid location.
The size and location information is the common input to the
subsequent quantification analysis of the mixing state.

Ripley’s K function (Ripley 1976) is widely used in spatial
statistics to characterize the homogeneity of spatial point dis-
tribution. The K function is a function of a specified distance r
and is decided in part by the number of point pairs whose dis-
tance is shorter than r; the definition of the K function will be
presented in Section 2. When the K function is used to quantify
nanoparticle mixing state, it takes as inputs the centroid loca-
tions of the particles or particle agglomerates. Then its function
value is computed assuming that each centroid is a dimension-
less point. As a result, the K function in effect neglects distinc-

©  American Statistical Association and the American Society for Quality

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
5:

45
 0

7 
A

ug
us

t 2
01

7 

http://dx.doi.org/10.1080/00401706.2016.1186563
mailto:yuding@tamu.edu
http://www.tandfonline.com/r/tech


392 L. DONG ET AL.

Figure . TEM image of a nanocomposite sample. From left to right: original TEM image; extracted agglomerate boundaries and centroids (indicated by the signs).

tion in the size of nanoparticle agglomerates and thus does not
adequately account for the dispersion effect. TheK functionmay
work effectively, if the nanoparticles, despite not dimensionless,
are of a uniform size and shape on a given material sample as
well as across different samples, as under this circumstance, the
size (or dispersion) effect is controlled for. It is indeed so in the
study by Li et al. (2014), who show that when the particle size is
homogenous and the shape of particles are spherical, Ripley’s K
function can be a reasonable metric to quantify the nanoparticle
mixing state in a nanocomposite sample.

Despite the desire to break down nanoparticle agglomerates
into small pieces of similar sizes, the agglomerates are difficult
to avoid in reality, as evident in the TEM image in Figure 1. The
resulting material inevitably contains particle agglomerates of
various sizes and of irregular shapes. Obviously some physical
processes disperse the particles better than other processes do,
and it is indeed of great interest to the material scientists to find
out which process, or process setting, does the job the best. But
when the K function is applied to particle agglomerates of var-
ious sizes and shapes, it falls short of ranking or distinguishing
nanoparticle mixing states; we will provide examples substanti-
ating this claim later in Section 4.

We acknowledge that in addition to the K function, there
exists other spatial homogeneity characterizing functions (Bad-
deley 2008). We believe that they make a similar dimension-
less point assumption. Another school of thought in quanti-
fying spatial homogeneity is to use the count-based approach,
for instance, Zhou et al. (2014). But using the count-based
approaches does not take the particle’s size effect into account,
either.

There are indeed revisions to the K function. One stream
of work is to extend the K function to work for an under-
lying process of which the null hypothesis is not a homoge-
nous spatial point process (Lotwick and Silverman 1982; Dig-
gle and Chetwynd 1991; Diggle, Tawn, and Moyeed 1998; Bad-
deley, Møller, and Waagepetersen 2000), and for this reason,
an adjustment must be made to the null hypothesis model. In

our study, this extension is not relevant, as our null hypothe-
sis still assumes a homogenous process. One study relevant to
our undertaking is found in the application of forestry science
(Penttinen, Stoyan, and Henttonen 1992; Stoyan and Penttinen
2000). The authors of the study noticed the mismatch between
the dimensionless point assumption and some affiliating effect
of tree stands (including size, economic value). They, hence, pro-
posed to add a weight coefficient, related to the affiliating effect,
in the calculation of the K function. We tried this approach in
our study by including a particle size-based weight coefficient.
It turns out that such a treatment does not address the problem;
more evidence will be provided in Section 4.

In our research, to account for the size (dispersion) effect
of particle agglomerates, we propose two actions to be con-
ducted while using the K function. The first is to discretize
the particle agglomerates into small enough, fine-scale parti-
cles and extract the centroid locations of the small particles for
use in the K function. It turns out that this discretization action
alone is still insufficient to solve the problem. An adjustment is
needed on the normalizing parameter in the K function. The
revised K function is referred to as the K̃ function. To use the
K̃ function on samples, a nonparametric testing procedure, pro-
posed by Diggle, Lange, and Beneš (1991); Diggle, Mateu, and
Clough (2000) for the original K function, can still be used
but we need to replace K with K̃. We apply the K̃ function to
real TEM images of nanocomposite samples and show that the
K̃ function is a better index to quantify nanoparticle mixing
states.

The remainder of this article is organized as follows.
Section 2 introduces Ripley’s K function and its weighted vari-
ant. Section 3 presents the K̃ function, including both discretiza-
tion and an adjustment to its normalizing parameter, and a non-
parametric procedure for statistical testing. Section 4 shows the
results of applying the K̃ function to actual TEM images and
presents the comparison analysis of nanoparticle mixing states
over different samples. Section 5 concludes the article with addi-
tional discussions.
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2. Ripley’s K Function and Its Extension

Ripley’s K function is defined as

K(r) = E(number of extra points within distance r of a randomly chosen point)
λ

, (1)

where E is the expectation operator and λ is the intensity of
the point process, that is, the number of points per unit area.
K(r) has a close form expression undermany spatial pointmod-
els. The most commonly used ideal model is the complete spa-
tial randomness (CSR) or homogeneous spatial Poisson process;
under this ideal model, K(r) = πr2.

Given an image containing a spatial point process, K(r) can
be estimated as follows. First, the number of points or particles
in the image is counted and denoted byN. The area of the image
is denoted byA. The intensity λ can then be estimated by λ̂ = N

A .
We want to stress here that this λ̂ is a local normalizing param-
eter as the microscopic images capturing nanoscale characteris-
tics are always localized in a bulk material.

Denote by ds1s2 the Euclidean distance between point s1 and
s2, s1, s2 ∈ {1, . . . ,N}. For the TEM images, ds1s2 is computed
using the centroid coordinates of particles or particle agglom-
erates s1 and s2, which are available to us after the image pro-
cessing step. Moveover, denoted by I(x) the indicator function,
namely I(x) = 1when x is deemed “true” or I(x) = 0 otherwise.
Then, the expected point number can be estimated by the aver-
age number of points within a given radius r of an arbitrarily
chosen point. As such, the estimate of Ripley’s K function is

K̂(r) = 1
Nλ̂

N∑
s1=1

∑
s2 �=s1

I(ds1s2 < r). (2)

A larger K̂, as comparedwith theK value under theCSR assump-
tion, implies clustering. The larger the K̂ value, the severer the
clustering.

The above expressionmay run into problems when the refer-
ence point is very close to the boundary of an image, and conse-
quently, part of the circle of radius r with the reference point as
the center may be outside the image area. One commonly used
correction is Ripley’s isotropic correction (Ripley 1991), which
is to assign a value between 0 and 1 to the circles that have part
of their circumference outside the image area. So the corrected
Ripley K function reads

K̂(r) = 1
Nλ̂

N∑
s1=1

∑
s2 �=s1

ws1s2 I(ds1s2 < r), (3)

where ws1s2 is the circumference proportion within the image
area of a circle of radius ds1s2 and with point s1 as the center.

As we mentioned in Section 1, Penttinen, Stoyan, and Hent-
tonen (1992) introduced aKmm function after noticing that some
properties associatedwith a pointmay change the quantification
of homogeneity. TheKmm function is an extension of theK func-
tion by adding a weight to each point s1 or s2. Let us first rewrite
the K function in the following way:

K(r) =
E

(∑N
s1=1

∑
s2 �=s1 I(ds1s2 < r)

)
Nλ

. (4)

The Kmm function is a weighed version of Equation (4), that
is,

Kmm(r) =
E

(∑N
s1=1

∑
s2 �=s1 μs1μs2 I(ds1s2 < r)

)
Nλμ2 , (5)

where μs1 and μs2 are the weights associated with the s1th and

s2th points, respectively, and μ is the mean of all weights. An
estimator of Kmm(r) with a proper edge correction is

K̂mm(r) =
∑N

s1=1
∑

s2 �=s2 μs1μs2ws1s2 I(ds1s2 < r)

Nλ̂μ̂2
, (6)

where μ̂ is the average of the weights. Obviously, when the

weights of each point are the same, that is, μs1 = μs2 = μ, the
Kmm is the same as Ripley’s K function. The value of Kmm under
null hypothesis is obtained when both weights and locations are
completely randomly assigned.

Figure 2 presents a number of simulated images with dif-
ferent agglomerate types. Comparing this figure and Figure 1
in Manas-Zloczower (1997), Figure 2(a) resembles the “good
dispersion, good distribution” graph (bottom-right of Figure 1
in Manas-Zloczower (1997); same below), Figure 2(b) resem-
bles the “bad dispersion, good distribution” graph (top-right),
while Figure 2(c) resembles the “bad dispersion, bad distribu-
tion” graph (top-left). When applying the original K function
to the three images, it returns exactly the same value as the cen-
troids of the agglomerates are the same. As expected, theK func-
tion ignores the dispersion (size) aspect altogether.When apply-
ing the Kmm function for which we use the agglomerate size as
the weights, it does distinguish Figure 2(a) from Figure 2(c),
or Figure 2(b) from Figure 2(c), but it still cannot distinguish
Figure 2(a) from Figure 2(b). In Section 4, we present a real data
example, in which Kmm shows very little differentiating ability.

3. The Revised ˜K Function

3.1 Discretization

In revising Ripley’s K function to account for the size effect of
nanoparticle agglomerates, the first line of thought is to dis-
cretize the agglomerates intomuch smaller disjoint blocks. Then
each block is treated as a new particle with its own centroid.
By this action, the existence of large agglomerates is translated
into a large number of small blocks that are closely clustered
together. Presumably, Ripley’s K function, once applied to the
small-sized blocks, can reflect the closeness among them created
by agglomerates, and consequently, distinguish the particlemix-
ing states with and without aggregation. When the block sizes
are small enough, then the remaining size effect, albeit not per-
fectly dimensionless, would hopefully no longer be significant.
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394 L. DONG ET AL.

Figure . Three simulated images. Window size is normalized to be [0, 1] × [0, 1]. The centers of the agglomerates in all images are {(., .), (., .), (., .),
(., .)}. (a) The radius of each agglomerate is .; (b) the radius of each agglomerate is .; (c) the radii of the agglomerates, from top-left to bottom-right, are ., .,
., and ., respectively.

We want to show that if using smaller enough quadrats,
the discretization under a discretized version of CSR provides
good enough approximation of the K function under the CSR
assumption.

Suppose that a TEM image is made up of S × S pixels. We
discretize the image by quadrats of size k × k pixels, producing
M = (S/k)2 number of quadrats in the image. For simplicity, we
let S be a multiple of k to avoid using quadrats of a different size
near the boundary. Image processing steps already identify the
particle agglomerate from the background, so that we can assign
a value of 1 for the particle pixels and a value of 0 for all back-
ground pixels. We label a quadrat of size k × k according to the
values of majority pixels; if at least � k×k

2 � + 1 pixels are of value
1, then the quadrat is labeled as a particle quadrat; otherwise, a
background quadrat.

Let q denote the fraction of quadrats that are particles. Under
the discretized version of CSR, different quadrats are indepen-
dent fromone another, each quadrat has a probability q for being
a particle and a probability 1 − q for being the background.
After the discretization, the centroid coordinates of the particle
quadrats are fed into the calculation of the K function.

Let Kdiscrete be the theoretical value of Ripley’s K function in
the discretized image. Following the definition of theK function,
we have

Kdiscrete(r) =
(
Q

( Sr
k

) − 1
)
q

Mq
= Q

( Sr
k

) − 1
M

, (7)

where Q(h) is the number of quadrats inside the boundary of a
circle of radius h.

To show the connection between Kdiscrete(r) and the origi-
nal K(r), the key is to understand the function Q(·), which is
known as the Gauss circle problem (Hardy 1999), and its solu-
tion is given as

Q(h) = πh2 + ε(h), (8)

where ‖ε(h)‖ ≤ a · h and a is a constant.
Recall that under the standard CSR, K(r) = πr2. We can

show that, under CSR,

‖Kdiscrete(r) − K(r)‖

=
∥∥∥∥∥π

( S
k · r)2 + ε

( S
k · r) − 1( S

k

)2 − πr2
∥∥∥∥∥

=
∥∥∥∥∥ε

( S
k · r) − 1( S

k

)2
∥∥∥∥∥ ≤

∥∥∥∥∥ε
( S
k · r)( S
k

)2
∥∥∥∥∥ +

(
k
S

)2

≤ a · S
k · r( S
k

)2 +
(
k
S

)2

= a · k
S

r +
(
k
S

)2

.

For relatively small k’s, Kdiscrete(r) is very close to K(r) under
CSR. Figure 3 presents a numerical example in which the image
size is normalized to [0, 1] × [0, 1] and the image is made up of
1024 × 1024 pixels (i.e., S = 1024). We set k to be 512, 128, and
16, respectively, to examine the difference betweenK(r) and cor-
responding Kdiscrete(r). Evidently, Kdiscrete(r) and K(r) become
indistinguishable when k is 16 or smaller.

In practice, 1024 × 1024 pixels are a typical size ofmanynano
and other material images. For such an image size, the numer-
ical analysis shows that k = 16 is sufficiently small. In our later
analysis, we choose the value of k based on the physical size of
a stand-alone nanoparticle (about 5 × 5 pixels in size), which
is even smaller than a 16 × 16 quadrat in a 1024 × 1024-pixel
image. For other applications, once given an image size, one can
use the above-presented approximation formula to find out how
small a k needs to be for discretization and then choose its value
accordingly.

Figure . K function under CSR and Kdiscrete with different k’s.
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3.2 Adjustment of the Normalizing Parameter

The discretization addresses only part of the problems arising
from the particle’s aggregation. The other part comes from the
fact that imaging instruments only measure local areas of a bulk
material. When particle aggregates, the intensity of particles
observed per local area differs. In the material mixing problem,
the nanoparticles blended into the host material are of a known
quantity (measured in terms of weight or volume). Under
the null hypothesis that the nanoparticles are dispersed and

distributed homogenously throughout the host material, the
expected number of particles appearing under a given view field
of TEM, namely, in a TEM image of the same size, should be the
same.When the number of particles in an image is substantially
different from that of others, this appearance itself is an indica-
tion of inhomogeneity.

When using theK function, including the discretizedK func-
tion, the normalizing parameter, λ, is the intensity of points
per image. If one observes an image containing particles with
bad dispersion (large agglomerates) but reasonable distribution
(agglomerates spacing evenly), the fact that this local image has
more particles (than some other images) does not alert the K
function about its implication of inhomogeneity, because the
higher local particle intensity will be normalized. On the con-
trary, the use of a local λ tends to cause the discretized K func-
tion to deem an image containing large agglomerates distributed
more uniformly, which is quite counter-intuitive.

This can be better understood by looking at the images in
Figure 2(a) and (b).When using the originalK function, the two
images were deemed the same in terms of spatial point distribu-
tion, as the size difference of the point agglomerates is simply
ignored and their centroid positions are the same. When using
the discretized K function, they produce different assessment
outcomes, but Figure 2(b), which contains large agglomerates,
is considered more uniformly distributed. This is because with
the presence of large agglomerates, the denominator of the dis-
cretized K function increases, by the amount of extra number of
points that the large agglomerates have over the small agglomer-
ates, resulting in aK value closer to CSR. Our numerical analysis
confirms this intuition.

So the question becomes what we should use as the normal-
izing parameter when local images are observed but the global
homogeneity is assessed. We believe that a global λ needs to be
used. Then, the question is how the global λ can be estimated.
We think the estimation is going to be application dependent.
In the following, we will discuss how to do this for the material
mixing applications, which may be applicable even broadly to
other applications. In the cases that the global λ cannot be esti-
mated using the content addition parameters as in the mixing
process, we recommend using the average of the local intensi-
ties associated with all available view fields (i.e., all local images
in an application).

In the material mixing applications, denote by c the volu-
metric portion of nanoparticles (or other additive agents) that
are mixed into a host material. Assume that a nanoparticle
occupies a quadrat of size k × k. When nanoparticles are indeed

uniformly mixed, the quadrats in the image have probability c
to be a particle or probability 1 − c to be the background. The
closeness measure in the numerator of the K function becomes

E
(
number of extra points within distance r of a
randomly chosen point

) = (Q(r) − 1)c. (9)

Obviously we need to normalize the above expected value by c,
leading to a revised K function, referred to as the K̃ hereinafter,
such that:

K̃ = E(number of extra points within distance r of a randomly chosen point)
c

. (10)

Similar to how the K function is estimated, K̃ can be esti-
mated as follows:

̂̃K =
1
N

∑N
s1=1

∑
s2 �=s1 ws1s2I(ds1s2 < r)

c
. (11)

As such, the global normalizing constant in thematerial mix-
ing applications is simply the volumetric portion of the addi-
tive agents, which can be readily calculated when we know how
much host material and additive material are used in the mixing
as well as their physical densities.

3.3 Relation Between Discretized K and ˜K

In this subsection, we use a set of simulated images to under-
stand how K̃ behaves. The image simulation tool that we employ
is the Ising model (Winkler 2003), which is developed for char-
acterizing the dependency among spatial binary data based on
the theory of Markov random field. Specifically, we use the
PottsUtils package in R, developed by Feng and Tierney
(2014), to generate spatial data samples based on the Isingmodel
and then turn that into a black andwhite image. One key param-
eter used in the PottsUtils package is called β , which char-
acterizes the aggregating or clustering level of the spatial points.
When β = 0, it means that a given point is independent from
its neighboring vertices. The larger the β is, the more clustered
the points are. Figure 4 presents a number of image examples
simulated using the Ising model with different β ’s.

We conduct the following analysis using the Ising model-
based simulated images:

1. Generate a B × B-pixel image using the Ising model,
starting with β = 0.

2. Estimate c, the global point intensity, using the B × B-
pixel whole image, which is to be used in K̃.

3. Random sample a b× b-pixel subimage from the whole
image.

4. Compute the discretized K function for the subimage.
5. Compute the K̃ function for the subimage using the c

estimated in Step 2.
6. Plot the discretized K and K̃ curves on the same plot.
7. Repeat Steps 3–6 50 times so that discretized K and K̃

form two clusters of curves.
8. Plot the CSR curve on the same plot.
9. Change β to the next value and repeat Steps 1–8.
In the analysis, we choose B = 500 and b = 50. The result is

presented in Figure 5. Other value combinations were tried but
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396 L. DONG ET AL.

Figure . Simulated images using the Ising model with different β values.

the insights are the same, so we omit the plots using other value
combinations.

Observing the curves in Figure 5, we notice that when β = 0,
bothK curves and K̃ curves are tightly clustered around the CSR
curve, as they should be. When β starts to increase, meaning
that the points begin to aggregate, the difference between the
two sets of curves becomes more and more pronounced. The K̃
curves appear sensitive responding to even small nonzero values
of β . For the same β , the K̃ deviates more from the CSR curve
and has a greater variability.We anticipate this greater variability
in K̃ curves as K̃ responds to both dispersion and distribution
effects, whereas the discretized K is shrunk by the presence of
large point agglomerates.

The third observation is that some (nearly half) of the K̃
curves lies above the CSR curve, while the others below the CSR
curve. By contrast, all discretized K curves are above the CSR
curve. It turns out thatwhen the local point density of the subim-
age is smaller than the global point density c, the resulting K̃
curve is below the CSR curve, whereas when the local density is
larger, the resulting K̃ is above the CSR curve. This phenomenon
of K̃ is expected, too. In characterizing the mixing homogeneity,
one should compare the K̃ curve to the reference CSR curve: the
further it is above the CSR curve or the further it is below the
CSR curve both indicate inhomogeneity.

3.4 Nonparametric Test Procedure

When the images of material samples show a difference,
practitioners would like to know whether the difference is

significant beyond the level of background randomness. The
following statistical testing procedure is devised to address this
question.

Because we conduct pairwise comparisons in the later anal-
ysis, it implies that two groups of images are involved. Let i be
the group index and j be the image index within a group. Denote
the number of images in the ith group bymi, so that i = 1, 2 and
j = 1, . . . ,mi. For each image, a spatial homogeneity charac-
terizing function, including both the original K and the revised
K̃, can be applied. Let Ni j denote the number of particles in the
jth image of the ith group. Further denote byNi = ∑mi

j=1 Ni j the
number of particles in the ith group and by Nt = ∑2

i=1 Ni the
total number of particles in the entire comparison.

Diggle, Lange, and Beneš (1991) and Diggle, Mateu, and
Clough (2000) proposed two test statistics, D1 and D2, to be
used, respectively, with Ripley’sK function for testing the spatial
homogeneity difference between multiple groups of images. We
use the same test statistics with K replaced by K̃. The following
expressions follow Diggle, Lange, and Beneš (1991) and Diggle,
Mateu, and Clough’s (2000) original definition, except that K is
replaced by K̃:

D1 =
2∑

i=1

∫ r0

0

(√
K̄i(r) −

√
K̄(r)

)2
dr, (12)

D2 =
2∑

i=1

Ni

∫ r0

0

1
r2

(K̄i(r) − K̄(r))2dr, (13)
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TECHNOMETRICS 397

Figure . Discretized K versus K̃ under local image observations and different degrees of point aggregation.

where r0 is the longest distance with which the K̃ (or K) is
evaluated, and

K̄i(r) = 1
Ni

mi∑
j=1

Ni j
̂̃Ki j(r), for i = 1, 2,

and

K̄(r) = 1
Nt

2∑
i=1

NiK̄i(r) (14)

are the average ̂̃K within a group and the grand average of the
two groups, respectively. The r0 is often chosen according to
Ripley’s rule of thumb (Venables and Ripley 2002), where r0 is
one quarter, in size, of the shorter side of the image window.
In computation, the above integrals are approximated by the
summation of the integrand over one thousand equally spaced r
values.

To compute the p-value of the test statistics, Diggle, Lange,
and Beneš (1991) initially suggested a bootstrap procedure. But
in more recent work (Diggle, Mateu, and Clough 2000), they
argued that a permutation procedure works better. In this work,
we employ a permutation procedure to compute the statistical
significance level of bothD1 andD2. The permutation test entails
the following steps:

1. Apply K̃ function to each image in the two groups and
compute ̂̃Ki j, for i = 1, 2 and j = 1, . . . ,mi.

2. ComputeD1 andD2 statistics using the values from Step
1. Refer to either of the statistics as Tobserved.

3. Permute the images across the two groups. To do so, we
can label the images in the two groups sequentially as
{1, 2, . . . ,m1,m1 + 1, . . . ,m1 + m2}. Randomly shuffle
the sequence of the numbers. Take the images whose
labels correspond to the firstm1 numbers in a shuffled set
and form the new group 1, while the remaining images
form the new group 2.

4. Repeat Steps 1 and 2 on the two new groups. Refer to the
resulting statistics as T.

5. Repeat Steps 3 and 4 L times and obtain L values of either
statistics, namely T�, for � = 1, . . . , L.

6. Compare Tobserved with {T�}L�=1. If Tobserved ranks the
eth largest among {T�}L�=1, then the resulting p-value is
approximated by e

L .
In practice, because of the need to reduce measurement cost

and time, there may be sometimes only a single image of the
material taken under a given condition. This means that two
single images are to be compared with one another to differen-
tiate the spatial homogeneity under their respective conditions.
We can in fact still use the steps outlined above to conduct the
statistical test by following the image partitioning idea in Hahn
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398 L. DONG ET AL.

(2012). The action undertaken is to partition each image into
3 × 3 subimages of equal sizes, so that two groups of images are
formed with m1 = m2 = 9. Then, the statistics and steps pre-
sented above can be applied.

A final note is that the nonparametric test statistics for both K̃
andK are in the form of a sum of squares. In lieu of the observa-
tions made in Section 3.3 that K̃ has a greater variability around
the CSR curve as β starts deviating from zero, this implies that K̃
is more sensitive to signaling point inhomogeneity when inho-
mogeneity is present.

4. Application to TEM Images

In this section, we conduct a quantification study of the mix-
ing states using TEM images of materials samples. To make the
material, butyl acetate, three-functional trimethylolpropane tri-
acrylate and silica nanoparticles are mechanically mixed into
silica nanoparticle suspension. Then the suspension is poured
to a bead mill machine to further break up nanoparticles; for
more details about a typical bead mill process, please refer to
Wang and Forssberg (2006). The milling time varies from 5min
to 90 min. After milling, the nanocomposite is diluted by butyl
acetate. The reason for dilution is that the nanoparticles in the
original material cannot be properly imaged by TEM. Engineers
believe that the nanoparticles’mixing state or the clustering level
after the dilution is still a good representation of what is in the
original material. A drop of the diluted nanoparticle suspension
was casted onto a carbon-coated copper grid and dried at room
temperature. The mixing and morphology of the nanoparticles
were observed using a FEI Tecnai F20 TEM. The nanoparticle
content as deposited onto the carbon-coated copper-grid sam-
ple holder is 0.00124 in terms of volumetric ratio. The diameter
of a stand-alone nanoparticle is around 13 nm.

From the images presented later, it is apparently not true that
the longer people run the bead-milling process, the better dis-
persed and distributed the nanoparticleswill be.One question of
interest to practitioners is to findout the optimal time length that
this bead-milling process needs to run to get the most homoge-
neous dispersion of nanoparticles. Experiments are conducted
with the bead-milling process running formultiple time lengths.
TEM images of material samples are taken at each time point.

Two sets of experiments are conducted. In the first one, a sin-
gle TEM image is taken at six time points of 5, 10, 15, 35, 60, and
90min, respectively. TheTEM image is taken at a randomly cho-
sen location of the material sample. In the second experiment,
the same process is executed. This time, engineers want to take
images of the material sample at 0 min (i.e., before the bead-
milling process runs). Another difference in the second experi-
ment is that multiple images, ranging from 12 to 18 in count, are
taken at randomly chosen locations on the sample. To save mea-
surement efforts and costs in the second experiment, two inter-
mediate time points, 15min and 60min, are removed. There are
no substantial reasons why these two time points are chosen for
removal; instead it is done based on the engineer’s intuition. We
analyze the two circumstances separately.

4.1 A Single Image Taken at a Given Time Point

Figure 6 presents the six single TEM images taken from the
material sample at each time point specified above. The images
are of 1024 × 1024 pixels. We use ImageJ to extract the cen-
troid locations and area information of each particle or agglom-
erate. The images are discretized by using k = 5; the value of
k is chosen so that each quadrat is close to the actual size of
a stand-alone nanoparticle (about 13 nanometers in diameter).

Figure . A single TEM image taken of the material sample at each time point.
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TECHNOMETRICS 399

Figure . Comparison of Ripley’s K function, Kmm function, discretized K function, and K̃ function.

Because 1024 is not divisible by 5, we just discretize a 1020 ×
1020 subimage and set those pixels on the boundary to be the
background. The normalizing parameter in K̃, c, is set to be the
actual nanoparticle volumetric ratio, that is, c = 0.00124.

For each image, we compute Ripley’s K curve, the weighted
Kmm curve, the discretized K curve, and the K̃ curve. R pack-
age dbmss (Marcon et al. 2014) is used to implement the Kmm
function, while R package spatstat is used to compute K.
Then, based onK values, we can estimate K̃ values. For these real
images, we use r in the unit of number of image pixels. We set
r0 = 1024/4 = 256. Figure 7 presents the seven curves (curves
for the six TEM images and the curve under CSR) for each
function.

The rank order of spatial homogeneity can be concluded
from observing how far a specific curve is away from the curve
of the ideal model. When using the original Ripley’s K and Kmm,
most of the curves are clustered on the CSR curve, making it
difficult to differentiate the mixing states in the corresponding
images. In both Ripley’s K and Kmm plots, the 90-min curve is a
flat line because there is a giant particle agglomerate in the mid-
dle with a couple of small particle blocks scattered in the periph-
ery. Because neither Ripley’s K nor Kmm makes use of the parti-
cle agglomerate size information, the agglomerates are simply
reduced into dimensionless points at their centroids whose dis-
tances in between are greater than r0. Consequently, their values
are always zero for the range of r shown in the plot. Kmm curve
does differentiate the 60-min state from the rest of the states, as

well as from the 90-min state, whereas Ripley’s K fails to differ-
entiate anything but the 90-min state.

When the discretization is applied, the discretizedK function
improves upon both Ripley’s K and Kmm, as the differences in
the curves corresponding to different states are more noticeable.
Using the distance away from the CSR curve as the criterion, the
discretized K suggests that the order of the mixing state, from
most homogenous to least, is 5 min, 10 min, 15 min, 60 min, 35
min, and then, 90 min.

When both discretization and the new normalizing parame-
ter are applied, the K̃ curves are plotted. The separation of the K̃
curves ismore pronounced,making it easier to tell the difference
between two mixing states. The mixing state order suggested by
K̃ appears different from that suggested by discretized K. Using
K̃, one would conclude that the 10 min running of the bead-
milling process produces the most homogenous mixing of the
particles, followed by 5 min, 15 min, 35 min, 60 min, and then,
90 min.

When presenting these images to a group of material scien-
tists, the 10 min image is unanimously deemed most preferable,
while the preference between 5 min and 15 min is evenly split.
The preference order over 35 min, 60 min, and 90 min is clearly
lower than the other three cases; on this aspect, both K̃ and dis-
cretized K reach the same conclusion. But the difference is that
K̃ favors 35 min over 60 min, whereas discretized K does the
opposite. Again, the engineers all agree with the rank order that
K̃ produces.
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400 L. DONG ET AL.

Table . Pairwise comparison using the six TEM images: p-values based on test
statistic D1 .

p  min  min  min  min  min  min

 min – . . . <. <.
 min – – . . <. <.
 min – – – . <. <.
 min – – – – . <.
 min – – – – – .
 min – – – – – –

The p-values based on K̃ for the pairwise comparisons among
the six TEM images are presented in Tables 1 and 2. Table 1
includes the results based on D1, whereas Table 2 is based on
D2. Using either test statistics lead to the same conclusion. The
difference between 10 min and 5 min is marginally signifi-
cant, while the difference between 5 min and 15 min is clearly
insignificant. Not surprisingly, the difference between 10 min
and 15 min is more significant than that between 10 min and 5
min. The relatively large p-value between 5min and 15min pro-
vides clues of why engineers could not agree among themselves
which case to favor. Other pairs of comparison have reasonably
small p-values, indicating significant differences. This suggests
that the order between 35 min and 60 min does not happen by
chance. In summary, we believe that K̃ provides the most sensi-
ble outcome that is also easy to interpret.

4.2 Multiple Images Taken at a Given Time Point

In the second study, we take several TEM images at randomly
chosen locations on a material sample at each given time point.
We have 14 images at 0 min, 13 images at 5 min, 12 images at
10 min, 12 images at 35 min, and 18 images at 90 min. Figures 8
shows five images in each row, which are a subset of the images
taken at each time point.

We conducted the pairwise comparison analysis, similar to
what we have done in the previous subsection. All settings are
the same, except that for this study, the test procedure follows
that for two groups of images. In the second study, we only use
K̃, as the first study has demonstrated the advantage of K̃ well
over Ripley’s K and Kmm, and over the discretized K as well.

Figure 9 presents the K̃ curves resulting from individual
images. The K̃ curves from the two groups are differentiated by
using two different line types. To save space, we omit the pre-
sentation of pairwise K̃ curves involving the images at 0 min,
as it is obvious that before the bead-milling process is applied,
the nanoparticles tend to cluster together heavily. The plots of
these pairwise K̃ curves shed lights in terms of how significantly
two groups of images are different from each other. Based on the

Table . Pairwise comparison using the six TEM images: p-values based on test
statistic D2 .

p  min  min  min  min  min  min

 min – . . . <. <.
 min – – . . <. <.
 min – – – . <. <.
 min – – – – . <.
 min – – – – – .
 min – – – – – –

Table . Pairwise comparison using the five groups of TEM images: p-value based
on D1 .

p  min  min  min  min  min

 min – . . . .
 min – – . . .
 min – – – . .
 min – – – – .
 min – – – – –

plots, it is apparent that the images of 5 min is noticeably differ-
ent from the other three groups. The other groups are generally
not that much different, while some of them may be marginally
different (e.g., 10 min versus 90 min).

Tables 3 and 4 present the p-values when pairwise compari-
son is made between two groups of images. In these two tables,
the images at 0 min are included in the comparison. Images at
0 min are shown to be indeed different from those at 5 min and
10 min but not so much different from those at 35 min and 90
min. For the images taken at 5 min, 10 min, 35 min, and 90min,
the implications resulting from D1 and D2 are consistent with
each other and they are also consistent with the plots in Figure 9.
Generally speaking, images taken at 5 min show a better mixing
state of nanoparticles than any other images (including those at
0 min). Images taken at 10 min, 35 min, and 90 min are not that
different, while images of 10 min could be marginally different
from that of 90 min.

Altogether, this analysis suggests that the bead-milling pro-
cess does make a difference to the mixing state of nanoparticles.
Consistent with the general trend shown in the first experiment,
the second experiment also shows that the nanoparticles start to
disperse, once the bead-milling operation runs, but will reclus-
ter if the operation runs beyond certain time.

The difference, though, is that the best mixing state in the
second experiment is chosen at 5 min of the bead-milling oper-
ation, while that in the first experiment is chosen at 10 min.
A closer look at the images taken in the two experiments sug-
gests that the conclusion in the second experiment, based on a
group of images, is likely to be more robust. The particle mixing
states have a great variability over the material sample. Conclu-
sion based on a single image could be misleading. To see this,
consider comparing the right most image in Figure 8, row (b),
with the right most image in Figure 8, row (c). Then, consider
comparing the right most image in Figure 8, row (b), with the
middle image in Figure 8, row (c). These two comparisonswould
yield opposite conclusions.Withmore than 12 images per group
in the second experiment, such bias, albeit unlikely disappear-
ing altogether, should have been alleviated as compared to the
circumstance of a single image per time point used in the first
experiment.

Table . Pairwise comparison using the five groups of TEM images: p-value based
on D2 .

p  min  min  min  min  min

 min – . . . .
 min – – . <. <.
 min – – – . .
 min – – – – .
 min – – – – –
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TECHNOMETRICS 401

Figure . (a) through (e) are subsets of images taken at  min,  min,  min,  min, and  min, respectively.

As mentioned just above, the bead-milling process does
break down the agglomerates into smaller pieces of nanoparti-
cle aggregates and disperse them over the material sample. One
unexpected phenomenon is that when the bead-milling opera-
tion lasts too long, it could create new agglomerates of a large
size. Based on the two experiments, it seems unlikely that one
needs to run the bead-milling operation for longer than 35 min,
as the optimal mixing states take place at an early stage. The
optimum is difficult to be pinpointed yet but it most probably
happens between 5 and 10min of the operation. Because of this,
the removal of image-taking at 15min in the second experiment
may not matter a lot. Still, in retrospective, it would have been
a safer approach, had the engineer removed the image-taking at
35 min but kept that at 15 min.

5. Summary

We propose a revised spatial homogeneity characterizing func-
tion for quantification purpose in material mixing applications.
This revised function is based on Ripley’s K function but incor-
porates two major revisions: (1) the function is applied to a
material sample image after discretization and (2) the normaliz-
ing parameter in the characterizing function is the global point
intensity estimated for the bulk material. When applying the
revised function to two case studies using real TEM images
taken from material samples, the revised function differentiates

the mixing states consistently with engineering intuition and
engineers’ preference, while the original K function fails to do
so. The use of the revised characterizing function helps iden-
tify a proper time range for an important nanomanufacturing
operation to produce desirable outcome in terms of nanoparti-
cles mixing quality.

One point we made earlier is about the robustness of conclu-
sions when having multiple images versus having a single image
at a given time point. It comes as no surprise that using multiple
images is more desirable. On the other hand, people recognize
the extra time and cost associated with the measurement pro-
cedure when multiple images are taken and used. Naturally it
raises a number of sample-taking related questions, such as how
many images are needed to safeguard the quality of the conclu-
sion and what the best sequence may be to take multiple images
at a given time point. For instance, is the random sampling the
best approach to use? Solution to these questions appears not
straightforward and is outside the scope of this article. We plan
to treat them in our ongoing pursuit.

A final note is concerning the limitation of the conclusions
made based on 2D images. One potential problem may come
from the sample preparation process. When a drying process
is used while preparing material samples for TEM images, that
process could possibly change the amount of clusters or produce
additional agglomerates.When a 3D solid sample is used, the 2D
projection of the possibly multiple layers of nanoparticles in the
3D sample may produce artifacts of particle agglomerates, too.
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Figure . Pairwise K̃ curves using images taken at  min,  min,  min, and  min. Horizontal and vertical axes represent r values and the correscponding K̃(r) values,
respectively.

There is also a general need to make a 2D-to-3D inference, for
which we note that some initial efforts have been made by Zhou
et al. (2014) and Li et al. (2014).
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