
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uiie21

Download by: [Texas A&M University Libraries] Date: 22 May 2017, At: 09:44

IISE Transactions

ISSN: 2472-5854 (Print) 2472-5862 (Online) Journal homepage: http://www.tandfonline.com/loi/uiie21

Identifying multi-stage nanocrystal growth using in
situ TEM video data

Yanjun Qian, Jianhua Z. Huang & Yu Ding

To cite this article: Yanjun Qian, Jianhua Z. Huang & Yu Ding (2017) Identifying multi-stage
nanocrystal growth using in situ TEM video data, IISE Transactions, 49:5, 532-543, DOI:
10.1080/24725854.2016.1251666

To link to this article:  http://dx.doi.org/10.1080/24725854.2016.1251666

Accepted author version posted online: 26
Oct 2016.
Published online: 26 Oct 2016.

Submit your article to this journal 

Article views: 107

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=uiie21
http://www.tandfonline.com/loi/uiie21
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2016.1251666
http://dx.doi.org/10.1080/24725854.2016.1251666
http://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/24725854.2016.1251666
http://www.tandfonline.com/doi/mlt/10.1080/24725854.2016.1251666
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2016.1251666&domain=pdf&date_stamp=2016-10-26
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2016.1251666&domain=pdf&date_stamp=2016-10-26


IISE TRANSACTIONS
, VOL. , NO. , –
http://dx.doi.org/./..

Identifying multi-stage nanocrystal growth using in situ TEM video data

Yanjun Qiana, Jianhua Z. Huangb and Yu Dinga

aDepartment of Industrial & System Engineering, Texas A&M University, College Station, TX, USA; bDepartment of Statistics, Texas A&M University,
College Station, TX, USA

ARTICLE HISTORY
Received  November 
Accepted  October 

KEYWORDS
Change-point detection;
dynamic TEM data; hybrid
particle growth model;
in-situ TEM; normalized
particle size distribution;
time-varying probability
density function

ABSTRACT
The in situ transmission electron microscopy technique is receiving considerable attention in material
science research, as its in situ naturemakes possible discoveries that ex situ instruments are unable tomake
and provides the capability of directly observing nanocrystal growth processes. As incresing amounts of
dynamic transmission electron microscopy (TEM) video data become available, one of the bottlenecks
appears to be the lack of automated, quantitative, and dynamic analytic tools that can process the video
data efficiently. The current processing is largely manual in nature and thus laborious, with existing tools
focusing primarily on static TEM images. The absence of automated processing of TEM videos does not
come as a surprise, as the growth of nanocrystals is highly stochastic and goes through multiple stages.
We introduce a method in this article that is suitable for analyzing the in situ TEM videos in an automated
and effective way. The method learns and tracks the normalized particle size distribution and identifies the
phase-change points delineating the stages in nanocrystal growth. Using the outcome of the change-point
detection process, we propose a hybridmulti-stage growthmodel and test it on an in situ TEM video, made
available in 2009 by Science.

1. Introduction

In situ Transmission ElectronMicroscopy (TEM) is a promising
new technology that is available to scientists seeking to make
discoveries in the nanoscale world. In situ TEM uses a special
sample holder, allowingmotion pictures to be taken as the nano-
objects in the sample holder are initiating, crystalizing, andmor-
phing into different sizes and shapes. The unique capability of in
situ TEM is that it captures the dynamic changes at the nano
or sub-nanoresolution and provides an opportunity to study,
and the potential to understand, the mechanisms of multistage
growth of nanocrystals. Material scientists point out that under-
standing and modeling the growth trajectory of nanocrystal are
important first steps in the control of the nanocrystal synthesis
processes, and expediting discoveries on how a new nanomate-
rial works (Nehl et al., 2006; Pan et al., 2007). Two in situ TEM
video segments of a platinum nanocrystal growth were made
available by Zheng et al. (2009) as parts of the supplementary
material to their publication. The short segment is about 21.2
seconds in durationwith 30 frames per second, and the long seg-
ment is 76.6 seconds with 15 frames per second. In addition to
Zheng et al. (2009), a number of other researchers have reported
the use of in situ TEM videos in their study of the mechanism of
nanocrystal growth (Cheong et al., 2009; Simonsen et al., 2010;
Evans et al., 2011; Liu et al., 2013; Woehl et al., 2013).

The current processing technique for in situ TEM videos
is largely manual in nature, working typically as follows.
Researchers label individual particles in each time frame of the
video, measure the sizes of particles, count the number and cat-
egorize their shapes, and then plot particle size/shape-related
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histograms or report relevant statistics that may lead to some
insights into nanocrystal growth. Image processing software is
used to facilitate the isolation of overlapped nanocrystals and
themeasurement of their sizes or aspect ratios (the ratio between
long and short axes). One popular tool of this kind is the free-
ware ImageJ (ImageJ, 2015), developed by the National Insti-
tute of Health, which was used, for instance, in the work of Liu
et al. (2013). There are alsomany recent works (Park et al., 2012;
Park et al., 2013; Muneesawang et al., 2015) that have signifi-
cantly improved the accuracy of detecting nanoparticles in TEM
images. However, those processing tools can only handle static
pictures, one frame at a time, and do not have the ability to
extract dynamic information from videos.

Thus, manual processing appears to be a bottleneck pre-
venting scientists from taking full advantage of the capability
enabled by the new microscopy technique. Processing video
data, considering their sheer volumes and data sizes, is labori-
ous and time-consuming. Processing multiple clips of videos is
also repetitive and prone to human error.

More important, one crucial limitation of manual operation
is the difficulty in identifying the change points in a nanocrys-
tal growth trajectory going through multiple phases. It is nearly
impossible for a person to identify change points accurately
by simply looking at the videos; however, nanocrystal growth
involving multiple stages is common. Indeed, past experiments
have shown that nanocrystal growth can be driven by differ-
ent kinetics (Zhang et al., 2010; Wang et al., 2013) in vari-
ous stages. Researchers have developed mathematical models
for two kinds of growth mechanisms: the traditional monomer
attachment growth, also known as Ostwald ripening (Sholl and
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Skodje, 1996; Yang and Zeng, 2004), and non-classic mecha-
nisms, such as orientated attachment (Ribeiro et al., 2005; Xue
et al., 2014). To take advantage of these models and describe the
dynamics of nanocrystal growth, a data analytic tool is urgently
needed for processing the in situ TEM videos and detecting the
phase change points to be able to delineate the growth stages.

The lack of an automated tool fulfilling the aforementioned
tasks does not come as a surprise, as the nanocrystal growth
trajectory is highly stochastic. The current practice, manual in
nature, primarily uses some simple size/shape statistics, such
as the sample average, to represent the nanocrystal evolution.
However, these simple statistics are not sufficient to fully sum-
marize the information in the TEM video data. In recent years,
some researchers have made the first step to go beyond sim-
ple summary statistics. Park (2014) learned the multiple-path
growth trajectory of nano crystals from the in situ or ex situ
TEM images. Park et al. (2015) proposed a method to track
interacting nanocrystals through the growth process in an in
situ TEM video. This line of work focuses on tracking an
individual nanoparticle growing through various stages. Woehl
et al. (2013) proposed to identify the growth mechanism based
on the Normalized Particle Size Distribution (NPSD). They
estimated the NPSD by collecting nanocrystal size informa-
tion from TEM videos. Since the nanocrystal size measure-
ments from all time frames were pooled together in their
work to obtain a single static NPSD, Woehl et al. (2013) did
not describe the dynamic change underlying the nanocrystal
growth.

In this article, we propose a method to estimate the time-
varying NPSD—i.e., one NPSD at each time frame—using
images from in situ TEM videos. For each time frame, one could
fit a probability density function for the normalized nanocrystal
sizes, using a standard probability density estimation method,
such as the penalized B-spline method (Eilers and Marx, 1996).
However, direct application of standard methods does not give
good density estimation, due to small sample sizes—there are
too few nanocrystals at each time frame. To overcome the small
sample size problem, we propose to extend the penalized B-
spline density estimation approach in the following way. In the
usual penalized B-spline formulation (Eilers and Marx, 1996),
the log density function is modeled as a linear combination of
B-spline basis functions, and the penalized likelihood method
is used to estimate the coefficients of the B-spline expansion.
In our extended formulation, the log likelihoods from all time
frames are added together and, in addition to the penalty that
ensures smoothness of each estimated density function, another
penalty term is included to guarantee that the time-varying den-
sity functions change smoothly over time. This new formulation
of penalized B-splines allows us to borrow information across
time frames to obtain a more reliable density estimation.

Under some fixed growth mechanisms, material scientists
can use self-similar analytic models to describe the theoreti-
cal NPSD (Lifshitz and Slyozov, 1961; Aldous, 1999; Baldan,
2002), which assumes that the NPSD can be approximated by
an asymptotic solution at infinite time. Based on that assump-
tion, after the time-varying NPSD is estimated, we can apply a
change-point detection method to the estimated density func-
tions to identify the time points of potential phase changes.

In order to facilitate the detection, we discretize each
density function into a vector and then apply the Principal
Component Analysis (PCA; Jolliffe, 2002) to represent the time-
varying NPSD with a small number of Principal Component
(PC) scores. After that, state-of-the-art multiple change detec-
tion methods, recently developed by Killick et al. (2012) and
Fryzlewicz (2014), can be used to detect the change points. One
problem, however, is that these methods tend to detect more
change points than can be explained by our current physical
understanding. To address this problem, we propose a selec-
tion procedure to choose the significant change points from the
candidates identified by an existing methods, using the Sum
of Squared Errors (SSE) as the criterion. We stop the selection
process when the reduction rate of the SSE is smaller than a
threshold.We find that this selection procedure yields a change-
point detection result that can be explained by the underly-
ing nanocrystal growth mechanisms. In addition to NPSD, we
apply our method to the median particle size to supplement the
NPSD-based change-point detection.

With the change points detected using either theNPSDor the
median particle size, we are able to partition the particle growth
process into several stages, each of which is then described by an
existing nanocrystal growth model. We applied this strategy to
a published TEM video segment to build a hybrid model for the
whole process of nanocrystal growth. Using this new model, we
can estimate stage-specific parameters and perform quantitative
comparisons of different stages. In a comparisonwith the single-
stage model used by Woehl et al. (2013), our hybrid model is
shown to be able to describe the nanocrystal growth trajectory
more accurately.

The rest of this article is organized as follows. In Section 2, we
briefly discuss the need for image preprocessing and then intro-
duce some definitions and notations. In Section 3, we present
details on the modeling of the time-varying NPSD. In Section 4,
we present our change-point detection approach. In Section 5,
we conduct a sensitivity analysis of the tuning parameter used in
our detection process. In Section 6, we combine the two mech-
anistic models, forming a hybrid model for the whole growth
stage. Several comparisons are conducted in this section. Finally
in Section 7, we conclude our work.

2. Image preprocessing and notations

We describe our methodology using the long segment video
provided by Zheng et al. (2009) (file name: “1172104s1.mov” in
their supplementary material). We select the long segment due
to its duration being long enough to contain multiple growth
stages. Although using this specific video as an example, the
development of our stage identification and change-point detec-
tionmethod is not tailored to this particular example.Webelieve
that ourmethodology from this section can be readily applied to
other in situ TEM videos of nanocrystal growth.

2.1. Video preprocessing

Before identifying the nanocrystal growth, the first step is to
detect nanocrystals in the image of each video frame and extract
their morphology information. One particular emphasis is to
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Figure . Four frames from the long segment video provided by Zheng et al. () and the nanocrystal detection results. The contour line indicates a nanocrystal’s edge,
whereas the ‘+’ indicates a nanocrystal’s center.

address the issue of image segmentation among the aggregated
nanoparticles. To fulfill this preprocessing task, we used an
image processing method developed by our own team (Qian
et al., 2016), which is particularly potent for handling low-
contrast and noisy TEM images and outperforms othermethods
in terms of handling aggregated nanoparticles in similar types of
TEM images (Park et al., 2012; Konomi et al., 2013; Park et al.,
2013). The detection results at some selected time points are
shown in Figure 1.

In this study, as in the original paper (Zheng et al., 2009), we
are primarily concerned with the change in nanocrystal size, as
the shapes of the nanocrystals are rather uniform.Thenanocrys-
tal size is, understandably, characterized by its radius. Denote by
rst the radius of the sth particle at time t andby r̄t themean radius
and r̃t themedian radius, both at time t . As inWoehl et al. (2013)
andZheng et al. (2009), the radius rst is defined as

√
Pst/π , where

Pst is the area of the corresponding particle.

2.2. Definition of NPSD

Let Gt (r) denote the particle size distribution at time t . The
mean radius r̄t can then be expressed as

r̄t =
∫ ∞

0
rGt (r)dr. (1)

We normalize the nanocrystal size rst at time t by r̄t to obtain
φst = rst/r̄t . The normalized particle size distribution, denoted
as Ft (φ), where φ = r/r̄t , is the distribution of φst at time t . It is
easy to see that Ft (φ) is determined by Gt (r) and r̄t as

Ft (φ) = r̄tGt (r̄tφ). (2)

Note that both Gt (·) and Ft (·) are time-varying functions, as
signified by the subscript t . NPSD provides a better measure
of the nanocrystal growth mechanism than the Particle Size
Distribution (PSD). Past research (Lifshitz and Slyozov, 1961;
Sholl and Skodje, 1996; Woehl et al., 2013) has shown that when
the underlying growth mechanism remains the same (within a
single stage), the NPSD stays stable, whereas the PSD always
changes with the increasing sizes of the nanocrystals. Thus,
a change in NPSD can be a strong hint about a new growth
mechanism.

3. Penalized B-splines for estimating NPSD

We begin by introducing the estimation of a single probability
density function Ft (φ) fromφst at time t using themethod of Eil-
ers and Marx (1996). The basic idea is to model the log density

function as a linear combination of B-spline basis functions and
then estimate the spline coefficients from the histogram of the
observations by maximizing the penalized likelihood. Specifi-
cally, the log density can be modeled as

log(Ft (φ)) =
n∑
j=1

a jtB j(φ) −Ct , (3)

where Bj(φ) is the jth B-spline basis function, n is the number
of basis functions, and

Ct =
∫ ∞

0

n∑
j=1

a jtB j(φ)dφ (4)

is the normalized constant. Following Eilers and Marx (1996),
we create a histogram by dividing the φ-axis intom intervals to
estimate the spline coefficients (in a B-spline, m is the number
of knots). Denote the midpoints as φi, i = 1, . . . ,m. Then the
B-spline function in Equation (3) evaluated at φi can be written
as

ηit =
n∑
j=1

a jtB j(φi),∀i = 1, . . . ,m. (5)

The number of observations falling in the ith interval at the
time frame t , denoted by yit , can be assumed to be Poisson dis-
tributed with density exp(ηit ). The penalized Poisson likelihood
function of {a jt} is

Lt ({a jt}) =
m∑
i=1

yitηit −
m∑
i=1

exp(ηit ) − λ1

n−1∑
j=1

(�1a jt )
2

2
, (6)

where �1 is a difference operator with �1a jt = a( j+1)t − a jt . In
the above objective function, the first and second terms corre-
spond to the Poisson likelihood, measuring the goodness-of-fit
of Ft (φ) to the histogram {y1t , . . . , ymt}; the third term is the
roughness penalty, with λ1 being the penalty parameter, ensur-
ing smoothness of the estimated density. One should maximize
Lt ({a jt}) and then substitute the maximizer {â jt} to Equation
(3) to obtain the estimated probability density F̂t (φ) for a single
time frame.

When the number of nanocrystals is very small in some time
frames, estimating the density functions separately at each time
frame does not produce good results. In our revised penalized
B-spline formulation, we estimate the density functions by pool-
ing all of the time frame data together. However, unlike Woehl
et al. (2013), in which the resulting NPSD is a constant function
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over thewhole growth trajectory, we allow ourNPSD to be time-
varying, in order to capture the growth dynamics. For this rea-
son, we introduce an additional roughness penalty to ensure that
the density functions vary smoothly over time. The new objec-
tive function is

L({a jt}) =
T∑
t=1

Lt ({a jt}) − λ2

n∑
j=1

T−1∑
t=1

(�2a jt )
2

2
, (7)

where �2 is a difference operator with �2a jt = a j(t+1) − a jt .
The λ2 is the temporal roughness penalty parameter. This new
formulation enables information to be borrowed by different
time frames, and this improves estimation efficiency, especially
at those time frames with an insufficient number of nanocrys-
tals.

We maximize the penalized log likelihood given in Equation
(7) to obtain the spline coefficients associatedwith all of the den-
sity functions over the whole growth duration. Apparently, the
algorithmdeveloped by Eilers andMarx (1996) is not applicable,
as the new formulation has an extra index t and an extra penalty
term. Themain challenge is caused by the newly introduced sec-
ond penalty term, whichmakes the objective function no longer
separable with respect to t .

We propose to apply the Alternating Direction Multiplier
Method (ADMM) (Boyd et al., 2011) to decouple the the rela-
tionships along the t index. Specifically, we replace the a jt in
the second penalty term by a set of new variables z jt and solve
the optimization problem under the constraints a jt = z jt . We
perform the constrained optimization by considering the aug-
mented Lagrangian as follows:

Lρ ({a jt}, {z jt}, {cit}) =
T∑
t=1

Lt ({a jt}) − λ2

n∑
j=1

T−1∑
t=1

(�2z jt )2

2

− ρ

T∑
t=1

n∑
j=1

c jt (a jt − z jt )

− ρ

2

T∑
t=1

n∑
j=1

(a jt − z jt )2, (8)

where c jt are the Lagrangian multipliers and ρ is the penalty
parameter of the augmented Lagrangian.

Then the ADMM algorithm targets to find the saddle point
of Equation (8), defined as

({â jt}, {ẑ jt}, {ĉit}) = arg min
{cit }

max
{a jt },{z jt }

Lρ, (9)

where {â jt} is the maximizer of the penalized log likelihood
of the density functions. The saddle point is found by using
the coordinate descent method (Luenberger, 1973). The idea of
the method is as follows. In the qth iteration of updating {a jt},
{z jt}, and {c jt}, first we apply Eilers andMarx’s algorithm to find
the optimal {a jt}, given {c jt} and {z jt} at their current values;
then, fixing {a jt} and {c jt}, the Lagrangian is a quadratic form in
{z jt}, whose optimization has a closed-form solution; finally, the
Lagrangemultipliers {c jt} are updated by a “price update” step:

c(q+1)
jt = c(q)jt +

(
a(q)
jt − z(q)

jt

)
. (10)

We continue the iteration until all those variables converge. At
the convergence of the algorithm, we substitute the convergent
values of {a jt} to Equation (3) to get the estimated NPSD F̂t (φ)

for all of the time frames. The detailed steps of the ADMMalgo-
rithm are included in the Appendix. We also list the steps of the
algorithm in Algorithm 1.

To estimate the NPSD using the video taken by Zheng et al.
(2009), we set n = 10 (the number of B-spline basis), m = 50
(the number of knots), and T = 1148 (the number of frames in
the video). We choose the order of B-spline as two. The esti-
mation is robust with respect to those parameters, so we can
choose any reasonable values. The parameter ρ only affects the
convergence speed of ADMM, so that as long as the algorithm
converges, there is no need to tune it.We set it as 9.0 in this appli-
cation. The remaining tuning parameters λ1 and λ2 can be set by
using the Akaike Information Criterion (AIC), as in Eilers and
Marx (1996):

AIC(λ1, λ2) = dev(λ1, λ2) + 2dim(λ1, λ2), (11)

where dev(λ1, λ2) is the deviance of the estimated curves,
and dim(λ1, λ2) is the effective dimension of parameters. The
deviance is defined as

dev(λ1, λ2) = 2
T∑
t=1

m∑
i=1

yit ln yit − 2
T∑
t=1

n∑
j=1

â jtB+
jt . (12)

And we define the effective dimension of parameters as

dim(λ1, λ2) = tr{(B′B + λ1D′
1D1)

−1B′B}tr{(IT + λ2D2D′
2)

−1},
(13)

where tr{·} is the trace of the corresponding matrix. By mini-
mizing AIC(λ1, λ2), the two tuning parameters are chosen as
λ1 = 0.5, λ2 = 1.5.

Algorithm 1 Procedure for solving the revised penalized B-
spline density estimation

1. Set tuning parametersm, n, λ1, λ2, and ρ.
2. Construct the B-spline basis function Bj(φi) according

to the knots φi for i = 1, . . . ,m and j = 1, . . . , n. Then
we calculate B+

t = [B+
1t , · · · ,B+

nt ]′ andB
+
jt = ∑

s B j(φst ).
3. Initialize A(0), Z(0), and C(0). We recommend setting

(H (0))it = log(yit ), A(0) = Z(0) = B−1H (0), and C(0) =
0.

4. Set q = 0.
5. UpdateA(q+1). For t = 1, . . . ,T , we update each column

of A(q+1) as follows:
(a) Set ât = a(q)

t .
(b) Solve the following equation:

B+
t − B′ exp(Bât ) + B′Bât + ρ

(
z(q)
t − c(q)t

)
= [B′B + λ1D′

1D1 + ρIn]at , (14)

where ât is the estimate from the previous itera-
tion, and D1 is an n × n matrix with (D1) j j as −1,
(D1) j( j−1) as 1, for j = 2, . . . , n, and all other ele-
ments as 0. Use the solution of at to update ât .

(c) Repeat the previous step until ât converges, then let
a(q+1)
t = ât .



536 Y. QIAN ET AL.

6. Update Z(q+1) by solving the following equation:

Z(q+1) = [A(q+1) +C(q)]
(
IT + λ2

ρ
D2D′

2

)(−1)

, (15)

whereD2 is a T × T matrix with (D2)tt as−1, (D2)t(t+1)
as 1, for t = 1, . . . ,T − 1, and all other elements as 0.

7. UpdateC(q+1) via the following equation:

C(q+1) = C(q) + (A(q+1) − Z(q+1)), (16)

then let q = q + 1.
8. Repeat Step 5 to 7 until A, Z, andC all converge.

We show in Figure 2 the NPSDs estimated at t = 10, 40, and
70 seconds. The same approach can also be used to estimate
PSD, by replacing the observations φst with rst and replacing
knots φi with ri. The parameters m, n, T , λ1, λ2, and ρ are set
the same as those used in the estimation of NPSD. The PSDs
estimated at t = 10, 40, and 70 seconds are shown in Figure 3.

4. Change-point detection

The estimated NPSD F̂t (φ) is available to us as a vector at each
t ; i.e., {F̂t (φ1), . . . , F̂t (φm)}. To detect a change point in F̂t (φ)

amounts to a multivariate detection problem, and a common
strategy tomake such a detection procedure effective is to reduce
the dimension of the vector by using PCA (Jolliffe, 2002). PCA
attempts to find a small number of significant projections of the
original vector onto a lower-dimensional space, which is sup-
posed to closely represent the original vector. When applying
PCA to our NPSD, it turns out that only the first PC is signifi-
cant. In Figure 4, we plot the first 10 eigenvalues corresponding

to the respective PCs, as well as the scores of the first and second
PCs. The eigenvalue of the first PC ismuch larger than that of the
other PCs. In fact, the first PC explains 86.5% of the total vari-
ance of the original data. In addition to considering the numer-
ical percentage of the first PC, we observe that its score exhibits
a clear pattern, whereas that of the second PC appears random,
underpinning the decision to use only the first PC for our detec-
tion purpose. Thus, in the following, we work with the scores of
the first PC, which is denoted by p̂t . However, we want to note
that it is not always the case that only the first PC is significant. In
the case where there is more than one significant PC, we would
apply a multivariate change-point detection framework, such as
the methods of Zamba and Hawkins (2006), on the scores of the
significant PCs.

Without knowing the exact number of possible change points
in the process, a popular treatment, known as the Binary Seg-
mentation Process (Yao, 1988, BSP), can be used to detect the
most significant change point first and then continue apply-
ing the same detection method to the subsequences before
and after the detected change point. The dominating crite-
rion used in the existing BSP methods to decide the existence
of a change point is the Bayesian Information Criterion (BIC;
Schwarz (1978)). However, if we apply the BSP method with
BIC as the stopping criterion to our data, it finds more than
400 change points, obviously over-segmenting the nanocrys-
tal growth trajectory. We also tried some state-of-the-art mul-
tiple change-point detection methods, such as the Pruned Exact
Linear Time (PELT; Killick et al. (2012)) and the Wild Binary
Segmentation (WBS; Fryzlewicz (2014)), but they also returned
more change points than what the mechanisms can explain
(eight change points when using PELT and 49 when using
WBS).

Figure . The estimated NPSDs at , , and  seconds.

Figure . The estimated PSDs at , , and  seconds.



IISE TRANSACTIONS 537

Figure . PCA of the NPSD: (a) the eigenvalues corresponding to the first  PCs; (b) the scores of the first PC; and (c) the scores of the second PC.

Apparently, we need to reduce the number of change points
to be consistent with physical understanding. In doing so,
we found that a robust criterion to select the change points
is the reduction rate in the SSE of the piecewise constant
model before and after a change point is added. Recall that
NPSD is supposed to stay stable within each growth stage so
that the scores of the NPSD’s PCs should fluctuate around
a constant within a growth stage. If all of the change points
are correctly identified, the piecewise constant model for fit-
ting the scores of the NPSD’s PC should produce the lowest
SSE.

Given all of the candidate change points detected by one of
the popular methods (we chose PELT here, as it returned the
fewest change points among all methods we explored), we start
with a constant model and then test each of those candidates.
We pick the first potential change point to be the place where
the largest reduction of SSE can be achieved by the two piece-
wise constantmodels. If the reduction in SSE is large enough, we
believe this change point to be genuine and continue the selec-
tion process. Then, we visit all of the remaining candidates to
find the next change point that gives the largest reduction rate
in SSE. We repeat the same step until the reduction of SSE is
no longer significant, suggesting that the difference between the
two piecewise constant models is most likely due to random
noise rather than to a substantial change in the process. The
detailed steps are described as follows.

Suppose we have already found c − 1 change points, denoted
as t̂1, . . . , t̂c−1, while there are g remaining candidates, denoted
as t̃1, . . . , t̃g. The next possible change point chosen from
t̃1, . . . , t̃g is denoted as tc. They together segment the whole
data sequence into c + 1 subsequent events, denoted by Se, e =
{1, . . . , c + 1}. The overall SSE of the piecewise constant model

fitting of p̂t is computed as

V (t̂1, . . . , t̂c−1, tc) =
c+1∑
e=1

∑
t∈Se

(
p̂t − b(e)

0

)2
, (17)

where b(e)
0 is the mean of p̂t within Se. The position of the next

potential change point is determined by

t̂c = arg min
tc∈(t̃1,...,t̃g )

V (t̂1, . . . , t̂c−1, tc). (18)

Then we delete t̂c from the candidates {t̃1, . . . , t̃g} and continue
the selection process, until there is no remaining change-point
candidate.

By applying Equation (17) to the in situ TEM data of
our example, we found a series of potential change points
from the eight candidates detected by PELT, which are shown
in Figure 5(a). Figure 5(b) presents the profile of the SSE,
V (t̂1, . . . , t̂c), in which t̂(1), . . . , t̂(8) represents the order of the
selection.We deem a potential change point t̂c a genuine change
point if the reduction rate of the SSE is larger than a threshold
θ :

V (t̂1, . . . , t̂c−1) −V (t̂1, . . . , t̂c)
V (t̂1, . . . , t̂c−1)

> θ. (19)

In other words, if including t̂c reduces the SSE by more than
θ × 100%, we tend to believe that the change point is due to a
true process change rather than random noise. Then we con-
tinue the selection for the next potential change point. If the cri-
terion in Equation (19) is not satisfied, we consider that all of the
significant change points have been found and stop the process.

Wewant to note that the PC scores are autocorrelated, a result
of the temporal penalty added in our density estimation step.

Figure . Results of the proposed change-point detection using size distribution: (a) eight potential change-point candidates detected by PELT; (b) change in V (·) when
selecting a change point at a time; and (c) all change points detected when θ is varied in the range of (., .).
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Figure . Results of the proposed change-point detection using median particle size: (a)  potential change points detected by strucchange package; (b) change in
V (·)when selecting a change-point at a time; and (c) all change points detected when θ is varied in the range of (., .).

If the PC score is severe and causing too many false alarms,
the autocorrelation in the PC scores may need to be removed
before a change-point detection method is applied. We recom-
mendusing amodel-free approach such as the unweighted batch
mean (Runger et al., 1995).

The same strategy can also be applied to a simple statistic,
such as the median or mean particle size, which has often been
used to describe nanocrystal growth, due to its simplicity. As the
median radius is less sensitive to outliers, we apply our method
to the median particle size r̃t , instead of the mean particle size
r̄t . Unlike the NPSD, which remains relatively stable without
a change point, so that its PC fluctuates around a constant, r̃t
exhibits an increasing trend along the growth process.

What we needed to do was to revise the detection process
to handle the trend. We adopted the strucchange pack-
age (Kleiber et al., 2002), which detects change points after a
regression, and using it we found 15 change-point candidates.
To select the significant change points, we first applied a de-
trending operation before performing the change-point detec-
tion. Following Chen and Gupta (2001), we used a linear model
to de-trend the median particle size. Hence, we revised the SSE
by using the residuals after fitting a piecewise linear trendmodel,
as follows:

V (t̂1, . . . , t̂c−1, tc) =
c+1∑
e=1

∑
t∈Se

(r̃t − b(e)
0 − b(e)

1 t )2, (20)

where b(·)
0 and b(·)

1 are the coefficients of the respective linear
model. After the definition of SSE was revised, the rest of the
procedure for NPSDwas adapted to select the significant change
points in r̃t . Figure 6(a) and 6(b) present the intermediate detec-
tion results in our example while using the median size.

The key tuning parameter in this selection procedure is θ . In
our application, we set θ = 0.5 for both NPSD and the median
particle size. The choice of θ = 0.5 means that we deem a can-
didate a genuine change point if its selection reduces the SSE by
half or more. By this choice, we detected one change point in
NPSD and another one in median size; the two change points
are shown as “#1” in Figure 5(c) and “#3” in Figure 6(c), respec-
tively. For future applications, we would recommend the same
choice for θ .

Setting θ = 0.5, the change-point detection method pro-
duces two phase change points: at 25.8 seconds in r̃t (“#3” in
Figure 6(c)) and at 39.9 seconds in NPSD (“#1” in Figure 5(c)).

These two change points segment the whole growth trajectory
into three stages: (0, 25.8), (25.8, 39.9), and (39.9, 76.6) sec-
onds. The delineated stages make it immediately clear how the
nanocrystals grow: they go through two major growth stages
with a transition stage in between. For this particular process,
the two dominating mechanisms have been studied and under-
stood (Zheng et al., 2009; Zhang et al., 2010; Bian et al., 2013;
Wang et al., 2013): in the period of (0, 25.8) seconds, the Ori-
entated Attachment (OA) mechanism dominates, whereas in
the period of (39.9, 76.6) seconds, the Ostwald Ripening (OR)
mechanism dominates. It is understandable that themechanism
change does not happen suddenly. As one mechanism gradu-
ally takes over from the other, a short transition period naturally
exists, which is the period of (25.8, 39.9) seconds in this example.

5. Sensitivity of tuning parameter θ

Given the critical role played by θ , we conducted a sensi-
tivity analysis. Figure 7 shows the number of change points
detected in both the NPSD and median size methods, as θ

varies in the range of (0.2, 0.8). The NPSD-based detection
produces either one change point or two change points. The
first change point detected in the two-point case is the same
as the change point detected in the single-point case, shown as

Figure . The number of change points detected in NPSD and median particle size
approach for θ ∈ (0.2, 0.8).
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“#1” in Figure 5(c). The second change point is shown as “#2”
in the same figure. The median-size-based detection method
is more sensitive to the value of θ : it produces between zero
and two change points over the same θ range. The two change
points that could have been detected are marked as “#3” and
“#4”, respectively, in Figure 6(c). In addition to the sensitivity
issue, another drawback of using the median size statistic is that
one would not be able to detect “#1” unless setting θ to some
extreme value (like 0.1); given the analysis done by Zheng et al.
(2009), we know that a phase change indeed occurred around
the time of “#1,” so that missing this change point is a serious
limitation.

When looking closely at the four possible change points,
it is apparent to us that the change points “#2” and “#3” are
the outcome of the same change, as their time stamps are only
3.2 seconds apart. By merging “#2” and “#3,” the change-point
detection outcomes could possibly segment the whole growth
into four stages, three stages, or two stages, depending the spe-
cific choice of θ . However, an important message, we believe, is
that the difference in the detection outcome does not lead to a
drastically different understanding of the basic science under-
pinning the process. To see this point, consider the following
alternatives.

When a smaller θ is used, all four change points could have
been detected. Having “#4” apparently suggests the existence of
an initial nucleation stage, which is generally hard to observe, as
its duration is short, data variability is high, and the number of
nanocrystals is small.Missing this initial stage is understandable
and not seriously detrimental to the subsequent analysis.

Had we chosen a large θ (say, greater than 0.6), only one
change point (#1 in Figure 5(c)) would be detected in NPSD and
no change point in the median size approach. Hence, the transi-
tion stage could have been missed. Still, we would not miss the
big picture of two dominating growths; i.e., OA and OR.

The overall analysis shows that the NPSD-based detection
outcome is robust, as it captures the important change points
consistently in a broad range of the tuning parameter. To avoid
missing potentially important change points in future applica-
tions, one should vary θ in a reasonable range and then choose
a manageable number of the change points.

The fact that NPSD-based detection produces a rather robust
detection that separates the whole growth trajectory into two
major stages speaks to the benefit of having such a detection
approach. Had we not known the individual mechanisms under
respective stages, this detection outcome would hint strongly at

where to explore to obtain an understanding of the basic science
driving the growth process.

6. Hybridmodeling

In this application, since we do know the dominating growth
mechanisms, we can adopt the existing first-principle models
for each respective growth stage and then use an interpolation
to model the transition period. As such, we produce a unified
growth model, as a hybrid of the first principle based model
and the empirical model, for the whole nanocrystal growth
trajectory.

The models for NPSD F̂t (φ) and mean particle size r̄t during
theOA growth in the first stage (0, 25.8) seconds, taken from the
work of Aldous (1999), are, respectively:

FtOA (φ) = 2WOA

	(aOA + 1)
(WOAφ)2aOA+1e−(WOAφ)2 ,

r̄2(aOA+1)
tOA = bOA(t − tOA), (21)

whereWOA = (aOA + 1)	(aOA + 3/2)/	(aOA + 1). The three
parameters used in the two models are aOA, indicating the vari-
ance of the process, bOA, indicating the growth rate, and tOA,
indicating the initial size of nanocrystals.

The kinetics of OR growth in the third stage (39.9, 76.6)
seconds is usually described by the LSW model (Lifshitz and
Slyozov, 1961). Thus, we also chose to use the LSW model to
represent the mean particle size (r̄t ) growth in the OR stage. For
the r̄t growth, the LSW approach models the cube of r̄t with a
linear function. The model of r̄t growth in the OR stage bears
a similar appearance to the model of r̄t in the OA stage but the
key difference is the different power term on r̄t .

However, to model F̂t (φ) in the OR growth part, we found
that the LSW model cannot obtain a good fit for the estimated
F̂t (φ). In Figure 8, we compare the empirical NPSDs estimated
at 45 and 70 seconds with the NPSD derived from the LSW
model. The two empirical NPSDs are similar, and both of them
look rather symmetric. The LSW-based NPSD is more skewed
with a long lower tail and has larger variance compared with the
empirical NPSDs. The long lower tail of the LSW-based NPSD
presents a clear contrast with theNPSDs estimated directly from
the data. In our opinion, there are two reasons for themismatch.
First, the smaller particles are difficult to track under the current
resolution of the in situ TEM, yet the LSW model, with a long

Figure . (a) The empirical NPSD estimated at  seconds; (b) the empirical NPSD estimated at  seconds; and (c) the theoretical NPSD derived from the LSWmodel.
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Table . The estimated parameters associated with the two stages in the nanocrys-
tal growth.

aOA bOA tOA aOR bOR tOR

. . −429.3 . . −1342.7

left tail, is more sensitive to the missed detection of these parti-
cles. Second, the LSW model is known to be inconsistent in its
interpretation of experimental results (Voorhees, 1985). For this
reason, researchers have proposed modified models to improve
the fitting accuracy (Hardy and Voorhees, 1988; Lo and Skodje,
2000; Baldan, 2002), but when these models were tested against
theTEMvideo data at hand, they did not produce a higher fitting
quality. Thus, we decided to use the OA growthmodel structure
(derived by the Smoluchowski equation) to fit for NPSD in the
OR growth; doing so indeed produced a better fit. The added
benefit of using the samemodel structure in both stages is that it
makes their comparison easier. Specifically, theORgrowthmod-
els are

FtOR (φ) = 2WOR

	(aOR + 1)
(WORφ)2aOR+1e−(WORφ)2 ,

r̄3tOR = bOR(t − tOR). (22)

The first equation here is the same as that in Equation (21) but
with different parameters. The three parameters used in the OR
models share the same interpretations as those in theOAmodel.

Using the TEM data, we estimated the parameters associated
with the two stages, presented in Table 1. Compared with aOA,
the larger aOR suggests that a larger variance of NPSD in the
OR growth. This conclusion is consistent with the observations
made by Zheng et al. (2009), but our result provides a quantita-
tive contrast. Using the estimated values of bOA and bOR, we cal-
culated the derivative of r̄t for the two stages. For theOA growth,
the derivative was calculated as

dr̄t
dt

= 1
2(aOA + 1)

bOA[bOA(t − tOA)]
1

2(aOA+1) −1
, (23)

and for the OR growth, the derivative is calculated as

dr̄t
dt

= 1
3
bOR[bOR(t − tOR)]

1
3−1. (24)

In Fig. 9, we compare the derivatives for the OA and OR
growth. The gap between the two curves corresponds to the
transition period, for which no theoreticalmodel is yet available.
The two curves make it clear that in the nanocrystal growth, the
mean radius growth rate in the OA stage is faster than that in the
OR stage, just as the estimated bOA and bOR values suggested.
This was again stated by Zheng et al. (2009), but our analysis
provides a quantitative picture of the mean radius evolution in
the two stages.

The difference in tOA and tOR suggests that the initial
nanocrystal sizes are different, and a more negative quantity
implies a large initial size. The tOA and tOR values in Table 1make
perfect sense, as the OR growth follows the OA growth, so that
the initial nanocrystals in OR have a bigger size.

To include the transition period between (25.8, 39.9) sec-
onds, we introduced the weighting functions λN (t ) and λR(t )
for NPSD and mean particle size, respectively, to combine the
two aforementioned models. The two weighting functions have

Figure. The comparisonof thefirst derivativeof r̄t in theOAandORgrowth stages.

a value of zero when t < 25.8 seconds, one when t > 39.9 sec-
onds, and increase from zero to one quadratically in between,
with their quadratic function coefficients fitted from the corre-
sponding NPSD or mean particle size in the transition period.
The overall growth models of Ft (φ) and r̄t , respectively, in this
hybrid structure can be written as

Ft (φ) = (1 − λN (t ))FtOA (φ) + λN (t )FtOR (φ),

r̄t = (1 − λR(t ))r̄tOA + λR(t )r̄tOR . (25)

To verify the quality of our hybrid growth model, we show
in Figure 10(a) the SSE values between the Ft (φ) simulated
using Equation (25) and its empirically estimated counterpart
directly using the TEM observations. Except for the beginning
few seconds and the transition period, the simulated results
closely follow the empirical results. The relatively worse fit
during the transition period is understandable, as there is a lack
of theories to describe the transition mechanism. We also fitted
Woehl et al’s. (2013) single-stage model and show its SSE in
Figure 10(a). Our hybrid model produces smaller SSE values
for both the OA and OR growth stages and it is comparable to
Woehl et al.’s model in the transition period.

The above learning results provide a quantitative model to
describe the whole growth trajectory. Using the learned results,
we can simulate the evolution of PSD, Gt (r), using the hybrid
model of r̄t and Ft (φ), as

Gt (r) = 1
r̄t
Ft

(
r
r̄t

)
. (26)

We estimated the PSD based directly on the observations of
rst by using the proposed non-parametric density estimation
method. The SSE curve between the simulated PSD and the esti-
mated PSD is shown in Fig. 10(b). Additionally, we show the
SSE curves between the estimated PSD and the PSDs simulated
by using, respectively, Woehl et al’s. (2013) single-stage model,
the OA growth model alone, and the OR growth model alone.
The hybrid growthmodel fits the observed data consistently well
throughout the entire growth trajectory, whereas the othermod-
els all have deficiencies in certain periods.
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Figure . A comparison of the simulated results and the empirical estimation from the data: (a) the SSE curves between the simulated NPSD (by using the hybrid model
or Woehl’s model) and its estimated counterpart; and (b) the SSE curves between the simulated PSDs (by using the hybrid model, Whoehl’s model, OA model alone, and
OR model alone, respectively) and their estimated counterpart.

7. Concluding remarks

In this article, we proposed a method aimed at identifying
and delineating different stages in nanocrystal growth using
in situ TEM videos, assuming that a self-similar analytic solu-
tion existed for a fixed growth mechanism. We make two
major contributions: the first is to estimate a time-varying
NPSD by pooling data from all time frames and develop a
modified penalized B-spline method accordingly; the second
is to perform a robust change-point detection of the highly
stochastic nanocrystal growth process, providing a detection
outcome consistent with physical understanding. We applied
our change-point analysis to a published in situ TEM video clip.

Our work shows the importance of using probability distri-
bution functions, not the simple statistics, for phase identifica-
tion and model-building purposes. It also reveals the existence
of a transition period between the two main growth stages. The
existence of the transition period is expected, and our method
finds its precise timing. However, the underlying mechanism
of the transition period is still poorly understood. Our hybrid
model, which assumes a linear combination of the two main
growth mechanisms in the transition period, provides an initial
attempt to solve the problem and fits the observations reason-
ably well. Moreover, the estimated time-varying NPSD gives
additional evidence that the LSWmodel does not fit experiment
results well at the latter stage. We hope that our method can
help material scientists find an accurate theoretical model for
predicting the long-time distribution of OR. Overall, we believe
that our detection and modeling efforts lay a foundation for
future quality control of nanocrystal synthesis processes. With
the density estimation and the predictive model, engineers can
monitor the process and detect the out-of-control situations by
comparing the observed and theoretical distributions.
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Appendix: Optimization of density estimation

We proposed to maximize the penalized log likelihood of the
density functions by ADMM (Boyd et al., 2011). We write the
corresponding augmented Lagrangian as

Lρ ({a jt}, {z jt}, {cit}) =
T∑
t=1

Lt ({a jt}) − (λ2/2)
n∑
j=1

T−1∑
t=1

(�2z jt )2

− ρ

T∑
t=1

n∑
j=1

c jt (a jt − z jt )

− (ρ/2)
T∑
t=1

n∑
j=1

(a jt − z jt )2, (A1)

where

Lt ({a jt}) =
m∑
i=1

yitηit −
m∑
i=1

exp(ηit ) − λ1

n−1∑
j=1

(�1a jt )
2

2
.

(A2)
The ADMM algorithm targets to find the saddle point of

Equation [8], defined as

({â jt}, {ẑ jt}, {ĉit}) = arg min
{cit }

max
{a jt },{z jt }

Lρ, (A3)

where {â jt} is the maximizer of the penalized log likelihood of
the density functions.

The saddle point is found by using the coordinate descent
method Luenberger (1973). First we change the min–max prob-
lem to a max–min one by adding a negative sign in Equation (8)
and rewriting it in a matrix form:

L′
ρ (A,Z,C)=−

T∑
t=1

Lt (A) + (λ2/2)
n∑
j=1

T−1∑
t=1

(�2z jt )2

+ ρCT (A − Z)+(ρ/2)
T∑
t=1

||A − Z||22, (A4)

where (A) jt = a jt , (Z) jt = z jt , and (C) jt = c jt . Then we update
A, Z, C iteratively to obtain the saddle point. When updating
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one of the three variables, we fix the other two. The values of
variables in the qth iteration are signified via the (q) superscript.

To update A, we solve

argmin
A

−
T∑
t=1

Lt (A) + (ρ/2)||A − Z(q) +C(q)||22. (A5)

The problem can be decomposed into T independent subprob-
lems for each time t . Denote the tth column ofA, Z, andC by at ,
zt , and ct , respectively. The difference operator�1 can be rewrit-
ten as a matrix multiplication:

n−1∑
j=1

(�1a jt )
2 = a′

tD
′
1D1at , (A6)

where D1 is an n × nmatrix with (D1) j j as −1, (D1) j( j−1) as 1,
for j = 2, . . . , n, and all other elements being zero.

We can update at by

a(q+1)
t = argmin

at

{
−

m∑
i=1

yitηit +
m∑
i=1

exp(ηit )

+ (λ1/2)a′
tD

′
1D1at + (ρ/2)

[
a′
t at − 2

(
z(q)
t − c(q)t

)′
at

]}
.

(A7)

The solution procedure of the above minimization problem
can follow Eilers and Marx (1996), as they solved a simi-
lar problem. However, we need to make some modification
to the approach of Eilers and Marx (1996), as we included a
new term (the fourth term in the large bracket) in the above
objective function. According to Eilers and Marx (1996), the
solution of at consists in the first derivative of the above
objective function to zero. That leads us to the following
equation:

B+
t − B′ exp(Bat ) = λ1D′

1D1at + ρ
[
at −

(
z(q)
t − c(q)t

)]
,

(A8)
where B+

t = [B+
1t , . . . ,B

+
nt ]′ and B+

jt = ∑
s B j(φst ). Unfortu-

nately, the above equation does not have a closed-form solution
for at , so we have to solve it through an iterative procedure
by using the following equation (which is a first-order Taylor

expansion of the exponential term, so that at can be solved
through a weighted linear regression):

B+
t − B′ exp(Bât ) + B′Bât + ρ

(
z(q)
t − c(q)t

)

= [B′B + λ1D′
1D1 + ρIn]at , (A9)

where In is the n × n identity matrix and ât is the estimate from
the previous iteration, whose initial value is set to be a(q)

t (from
the qth step). Once the numerical iterative procedure converges,
the resulting at is treated as a(q+1)

t .
To update Z, we solve

Z(q+1) = argmin
Z

⎧⎨
⎩λ2

n∑
j=1

T−1∑
t=1

(�2z jt )2

+ (ρ/2)||A(q+1) − Z +C(q)||22

⎫⎬
⎭ . (A10)

The terms in the large bracket can be rewritten as

||A(q+1) − Z +C(q)||22 + λ2

ρ

n∑
j=1

T−1∑
t=1

(�2z jt )2. (A11)

The second term can be transformed into a matrix form:
n∑
j=1

T−1∑
t=1

(�2zit )2 = ||ZD2||22, (A12)

where D2 is a T × T matrix with (D2)tt as −1, (D2)t(t+1) as 1,
for t = 1, . . . ,T − 1, and all other elements being zero. In fact,
the above minimization problem has a closed-form solution for
Z(q+1), which is

Z(q+1) = [A(q+1) +C(q)]
(
IT + λ2

ρ
D2D′

2

)(−1)

. (A13)

Finally, we update the Lagrangian multipliersC by

C(q+1) = C(q) + (A(q+1) − Z(q+1)). (A14)

We continue the iteration until all of these variables converge.
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