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ABSTRACT
Understanding and quantifying the wake effect plays an important role in improving wind turbine designs
and operations, as well as wind farm layout planning. The majority of the current wake effect models
are physics based, but these models have a number of shortcomings. Sophisticated models based on
computational fluid dynamics suffer from computational limitations and are impractical for modeling
commercial-sized wind farms, whereas simplified physics-based models are generally inaccurate for wake
effect quantification. Nowadays, data-driven wake effect models are gaining popularity as the data from
commercially operatingwind turbines become available, but this development is still in its early stages. This
study contributes to the general category of data-driven wake effect modeling that makes use of actual
wind turbine operational data. We propose a wake effect model based on splines with physical constraints
incorporated, which sets out to estimate wake effect characteristics such as wake width and wake depth
under single-wake situations. Our model is one of the first data-driven models that provides a detailed
account of the wake effect. Prediction accuracy of the proposed spline model, when compared with other
alternatives, also confirms the benefit of incorporating the physical constraints in the statistical estimation.

1. Introduction

Wind energy is a promising renewable energy source. In 2015,
wind energy supplied 4.7% of the total electricity generated in
the United States (American Wind Energy Association, 2016).
More impressive, the electricity generation from wind energy
has increased tenfold in the past decade, from 18 terawatt-
hours (TWh) in 2005 to 190 TWh in 2015 (Energy Information
Administration, 2016). The Department of Energy (DOE, 2015)
envisions that wind energy could supply 10%of the nation’s elec-
tricity by 2020, 20% by 2030, and 35% by 2050. Crucial to sus-
taining such a rapid growth is a deeper understanding of the
power generation performance of wind turbines, which trans-
lates to better designs and/or effective operations. In this study,
we focus on an important aerodynamic feature affecting wind
turbine performance, the so-called wake effect.

While a wind turbine is operating, the rotating blades disturb
the natural flow of wind and create turbulence for downstream
turbines. During this process, the turbine absorbs kinetic energy
from the wind and converts it into electricity. As a result, the
wind loses some of its original kinetic energy after the turbine
rotor, exhibiting a reduction in its speed. Such a phenomenon
differentiating the after-rotor wind flow from the free-stream
one (before the rotor) is referred to as the wake effect. As the
amount of power output depends on ambient wind speed, the
reduction in wind speed may substantially deteriorate power
production at downstream wind turbines. Figure 1 illustrates
power output of a wind turbinewhen it is wake-free versus when
it is in the wake of another turbine.

CONTACT Yu Ding yuding@tamu.edu
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uiie.

There have been significant efforts devoted to better under-
standing of the wake effect and alleviation of its impact on
power generation. Except for a few recent studies that are data
driven (which we will review in the next section), the majority
of the current wake effect models are physics based. A simpli-
fied parametric model, yet widely used in practice, is Jensen’s
model (Jensen, 1983). A primary shortcoming of Jensen’s model
lies in its unsatisfactory accuracy in predicting turbine power
loss under commercial operating conditions. The limitation of
this simplified model motivated researchers to resort to sophis-
ticated Computational Fluid Dynamics (CFD) models that can
achieve a higher accuracy (Laan et al., 2015). However, using
CFD models entails significant computational challenges. For
example, running a large eddy simulation, one of the popu-
lar CFD methods requires days or even weeks of computation
on supercomputers to analyze a single-wake situation (Sanderse
et al., 2011).

In this article, we propose a data-driven alternative to the
physics-based wake effect models. We consider single wakes
arising between two turbines, for which modeling assumptions
are easier to justify. Single-wake situations are of great interest
in the literature on wake studies (Duckworth and Barthelmie,
2008; Prospathopoulos et al., 2011), and the single-wake behav-
iors provide valuable insights into various decisions on how to
improve wind farm performance (more details in Section 2).
To facilitate a successful transition from physics-based models
to data-driven modeling, we incorporate certain physical
understandings and considerations as constraints in the data
model fitting procedure. Due to this, our resulting model
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2 H. HWANGBO ET AL.

Figure . Power output in the wake versus that under a free-stream condition.
Free-stream wind speed refers to wind speed measurements not affected by
another turbine. Due to confidentiality concerns, power output is denoted
throughout this article by a percentage value normalized to its maximum.

is more than, and in fact outperforms, a purely data-driven
model.

We highlight an additional difference between the physics-
based models and the data-driven models in general, as illus-
trated in Figure 2. None of the physics-based models directly
estimate the power loss. Instead, they primarily focus on esti-
mating the reduced wind speed due to the wake. To quantify
wake power loss, thesemodels then require an additional layer of
calculations that convert the wind speed estimates into a corre-
sponding power output; such a conversion can be done by using
a simple power curve model, as recommended by the Interna-
tional Electrotechnical Commission (IEC, 2005) or more com-
plicated power curve models such as in Lee et al. (2015a). Creat-
ing a competitive physics-based model thus requires both steps
to be effective; however, improving the first step encounters the

problem of computational complexity, which is a hard prob-
lem to address in practice. In contrast, the data-driven mod-
els, including the one proposed in this article, connect the wind
data directly to the power output in a single step. In our numer-
ical study, we compare the data-driven model with a two-step
approach equipped with a simple physics-based model (as in
Jensen’s model).

The remainder of this article is organized as follows: in
Section 2, we describe wake characteristics and their practical
implications on improving the power generation performance of
wind energy systems.We also introduce the existing data-driven
models and discuss their ability to derive the wake characteris-
tics. In Section 3, we present the proposed wake model based
on a spline model structure incorporating physical constraints
and describe the model estimation procedure. We compare the
prediction performance of our wake model with that of other
alternatives in Section 4 and apply it to the analysis of the wake
effect under commercial operating conditions in Section 5. In
Section 6, we conclude the article.

2. Characteristics of the wake effect and data-driven
modeling approaches

Thewake of a turbine propagates within a certain range of angles
(Gebraad et al., 2016) and its impact remains for a certain dis-
tance (Ammara et al., 2002). Figure 3(a) illustrates a snapshot
of a single-wake situation, where we assume two operating tur-
bines under a given wind direction. In the figure, θ denotes an
acute angle between the wind direction and the line connecting
the two turbines, and it varies with wind direction. For the wind
direction given in Figure 3(a), the wind passes through Turbine
1 along the center line and the wake caused by Turbine 1 affects
the downstream region within a range of angles (the shaded
area). The wind speed loss due to the wake is greater for loca-
tions closer to the upstream turbine (Turbine 1) and closer to

Figure . Wake power loss estimation procedures.

Figure . Characteristics of wind turbine wake and its effect: (a) wake region and θ and (b) wake depth and wake width. Wake power loss is expected to be a function of θ .
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IISE TRANSACTIONS 3

Figure . Estimation of wake effects between a pair of turbines. The between-
turbine distance is four times the rotor diameter d. The distance from this pair to
other turbines is more than d.

the center line. Then, Turbine 2, given its fixed location, is sub-
ject to the greatest power loss when θ = 0, and the amount of
power loss decreases as θ deviates from zero. After θ exceeds a
certain value, Turbine 2 is no longer in the wake of Turbine 1.
The maximum power loss when θ = 0 is referred to as the wake
depth, whereas the range of θ for which a turbine is in the wake
of another turbine (with positive power loss) is referred to as the
wake width (see Fig. 3(b)). Wake depth and width are expected
to remain constant when the relative positions between two tur-
bines are fixed, and their values will change when the turbines’
relative positions are different.

Knowledge of wake characteristics is crucial in order to
improve power generation performance onwind farms. Aswake
width and depth strongly depend on the relative positions of tur-
bines, characterizing the turbine-specific wake effect facilitates
layout planning (Emami and Noghreh, 2010; Kusiak and Song,
2010), particularly when using the same turbinemodel in future
wind projects. Understanding the wake characteristics also sup-
ports effective operational control of wind turbines through
pitch and yaw controls (McKay et al., 2013; Gebraad et al.,
2016). Pitch control can regulate the magnitude of wind speed
loss in a downstream region by adjusting the energy absorption
level of an upstream turbine, and yaw control can also change
the extent of wind speed loss by tilting the downstream wake
region; for instance, by controlling the yaw of Turbine 1, Tur-
bine 2 can be as nearly wake free as possible for a given wind
direction.

A common data-driven practice in industry to understand
the wake effect is as follows. First, gather the power output
data from two turbines. Second, choose a specific range of
wind speed where the maximum power loss is expected—e.g.,
8.0±0.5 m/s (Barthelmie et al., 2010)—or extend the coverage
of wind speed to a wider range; e.g., 5.0–11.0 m/s (McKay
et al., 2013). Then, plot the power difference between the two
turbines under the above-specified wind speeds against the
wind direction (0° means the north). Figure 4 shows a scatter
plot of the power difference against wind direction. To smooth
out the noise effect, people apply the action of binning, namely,
partition the wind direction by a unit, say 5◦, and then average

all of the power difference data in a specific bin and use the
average as the representative of the original data. Applying
data-binning to the raw data in Figure 4 produces the solid line
passing through the data cloud.

The solid line is treated as the estimated curve representing
the wake effect. The wake depth can be read from the plot by
observing the two peaks around 120◦ and 300◦, respectively. As
wemovewith the wind direction from 0° to 360°, the roles of the
two turbines, namely, which one is wake free and which one is
in the wake, are reversed. That is why we observe that one of the
peaks is downward. The wake width is not immediately obvious;
thus, researchers usually impose a large enough angle cover-
age, say, θ ∈ (−25◦, 25◦), and then verify with the estimated
curve whether the angle range is broad enough to represent
the wake width (McKay et al., 2013). Sometimes, one finds a
wind direction value on each side of the center line at which
the power loss estimate is within a certain level—for example,
±5% of the free-stream power—and calculate the angle cover-
age formed by these wind direction values (Barthelmie et al.,
2010). When using this data-binning approach, a purely data-
driven method, the estimate of the power difference from the
wake-free turbine to the in-wake turbine (that estimates wake
power loss) is not guaranteed to be positive. As a matter of fact,
previous studies (Prospathopoulos et al., 2011; Troldborg et al.,
2011) show that some of the bin-wise estimate of this power
difference is negative, even after θ moves beyond the obvious
wake width region; this phenomenon is in fact evident in
Figure 4.

Other than the data-binning approach, there are few data-
driven wake models. One exception is a sophisticated statistical
model recently developed by You et al. (2017), which is a Gaus-
sian Markov Random Field (GMRF) model with a Bayesian
hierarchical structure that accounts for spatial correlation of
a turbine’s power output at different locations. To be clear,
this GMRF model was not specifically developed to study the
single-wake situation. You et al. (2017) make use of the spatial
correlations among turbines located close to one another and
simultaneously estimate the heterogeneous power outputs from
multiple turbines by modeling the wake interactions using
GMRF. Their model is useful for analyzing wake effects in mid-
to large-sized wind farms, but it can lose estimation accuracy for
two-turbine settings.Moreover, theirmodel does not impose the
constraint that the wake power loss is positive. Nevertheless, due
to its consideration of turbines in their relative spatial locations,
the GMRF model could estimate the wake power loss indirectly
by taking the difference of the maximum fitted value among all
turbines and the power output fitted to a specific turbine.

You et al. (2017) review a number of other possible data-
driven alternatives, such as global model (GLB), individual
model (IND), and random effect model (RND), but conclude
that those other alternatives are not competitive with the GMRF
model. GLB and RND are in fact special cases of GMRF, all
of which utilize the data from multiple turbines. We decided
not to consider them further. On the other hand, IND predicts
individual turbine’s power output separately without using data
from its neighbors, so that IND may have particular benefits
in single-wake setting. In fact, You et al. (2017) report that
IND is the second-best model, just behind GMRF. As such,
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4 H. HWANGBO ET AL.

we use the data-binning approach, GMRF, and IND as our
benchmarks.

3. Spline-based wake effect model and its estimation

3.1. Baseline power productionmodel

In this study, we borrow a model structure from the field of
production economics for representing wind power production
(Hwangbo et al., 2015), which reads as

yt (x) = f (x)− ηt (x)− ωt (x)+ εt , t = 1, . . . ,T, (1)

where y is the power output, x is a vector of predictors that
include wind-related (and possibly other environmental) vari-
ables, and t denotes each of T turbines. f (·) represents the
best achievable power output characterizing the full power
production potential of a specific type of wind turbine, given
wind resources (also known as the production frontier in the
production economics literature; Aigner et al. (1977)). ηt (·) and
ωt (·) are the inefficiency terms, namely, the power losses relative
to the best achievable production, and εt is the independent and
identically distributed (i.i.d.) random noise. In Hwangbo et al.
(2015), ηt (·) and ωt (·) are lumped into a single inefficiency
term. Here, we split them into two so that ηt (·) represents a
turbine’s inherent inefficiency independent of wake, whereas
ωt (·) represents the turbine’s power loss due to wake. In this
model, we need both power loss terms to be non-negative—i.e.,
ηt (·) ≥ 0 and ωt (·) ≥ 0 for ∀t = 1, . . . ,T—to be consistent
with the physical understanding of the phenomenon.

The existence of f (·) may sound strange to some readers,
but including f (·) does not require any restrictive model
assumptions. For a pair of turbines, one can pool the two tur-
bines’ power production data together and estimate a common
production frontier; the full details of this estimation process
are described in Hwangbo et al. (2015). For our study of the
single-wake situations, however, this f (·) does not even need to
be explicitly estimated. As one will see shortly, we will establish
a power difference model in the subsequent section, which
takes the power difference between a pair of turbines. By doing
so, the common frontier cancels in the resulting model.

3.2. Power differencemodel for two-turbine cases

Recall that our focus is a single-wake situationwith two turbines.
We introduce two angle variables, θ1 and θ2, to be associated
with the two turbines. Specifically, θ1 is related to the wind
direction causing power loss on Turbine 1 and θ2 is the wind
direction under which Turbine 2 endures power loss. As illus-
trated in Figure 5, the wind directions associated with θ1 and θ2
can take any value in the setsD1 andD2, respectively, given the
definition of these sets stated below. For the purpose of analyz-
ing the wake effect, θ1 and θ2 only need to vary in the 180◦ outer
hemisphere surrounding their respective turbine. Note that θ1
is actually on the side of Turbine 2, whereas θ2 is on the side of
Turbine 1. If we position the 0° of θ1 and θ2 at the line connect-
ing the two turbines, then θ1, θ2 ∈ (−90◦, 90◦). We denote by
D1 the set of wind directions corresponding to the support of θ1
and, likewise, byD2 the set of directions in which θ2 is defined.

Figure . Two subsets of wind direction,D1 andD2 . The union of the two subsets
covers the entire 360◦ wind direction.

With this notation and by following the baseline power
production model in Equation (1), we can write the individual
power production functions for the two turbines, respectively:

y1(x) = f (x)− η1(x)− ω1(x)× 1D1 (x)+ ε1,

y2(x) = f (x)− η2(x)− ω2(x)× 1D2 (x)+ ε2, (2)

where 1Dt (x) is an indicator function taking a value of one if
the wind direction belongs to Dt or zero otherwise. Again, the
production frontier f (x) is assumed to be common for the same
type of turbines, so there is no differentiating subscript used
on it. Let us take the difference between the two equations in
Equation (2). Then, we have

ỹ1−2(x) = η̃2−1(x)− ω1(x)× 1D1 (x)+ ω2(x)× 1D2 (x)+ ε̃,

(3)
where the tilde indicates a turbine difference term and the sub-
scripts 1-2 and 2-1 signify the specific order of the difference.
The above model is interpreted as follows: the power difference
of Turbine 1 over Turbine 2 is due to the inherent production
difference between the two turbines, η̃2−1(·), and the power
loss caused by the wake effect, characterized by either ω1(·)
or ω2(·), both depending on specific wind conditions. As the
sets D1 and D2 are mutually exclusive, ω1(·) and ω2(·) will not
appear at the same time.

To specify the above model, we further clarify what should
be included in the input vector x. In general, it is well known
that the dominating input factors for wind power production
are wind speed, V , and wind direction, D. However, Lee et al.
(2015a) have shown that environmental factors other than wind
speed and direction, such as air density and humidity, may also
have an impact on wind power output. One advantage of using
the power difference model (3) is that we no longer need to
consider other environmental factors, as once we take the
power difference between the two turbines, the impact of the
environmental factors other than that of the wind is neutralized.
Still, to be consistent with the IEC standard procedure and to
further neutralize the effect of air density, ρ, we decide to use
the normalized wind speed, following the industry standard
(IEC, 2005):

V = V ′
(

ρ

ρ0

)1/3

,

where V ′ is the raw measurement of wind speed and
ρ0 = 1.225 kg/m2 is the air density of the international
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IISE TRANSACTIONS 5

standard atmosphere at sea level and at 15◦C. We hereinafter
refer to this normalized wind speedV simply as the wind speed,
unless otherwise stated.

For the turbine difference term and the indicator function
terms in Equation (3), either wind speed or wind direction,
but not both, is needed as an input. The input to the indicator
function 1D1 (·) or 1D2 (·) is wind direction. The turbine differ-
ence term, η̃2−1(·), represents the between-turbine production
difference independent of wake, and we assume that it is only
a function of wind speed, not of wind direction; the portion
of the power difference, ỹ1−2 or ỹ2−1, related to wind direction
should be included in the wake-related term ω.

As such, the power difference model can be expressed as

ỹ1−2(V,D) = η̃2−1(V )− ω1(V,D)× 1D1 (D)+ ω2(V,D)

×1D2 (D)+ ε̃. (4)

Here, ε̃ is still an i.i.d. noise. We further assume that it follows
a normal distribution.

3.3. Splinemodel with non-negativity and
model estimation

In order to empirically estimate the power difference model
(4), we need to assume an underlying model structure for the
three functional terms, η̃, ω1, and ω2. For η̃ that has a single
input, we choose to use a cubic-smoothing spline, whereas
for the two wake power loss terms, ω1 and ω2, that have two
inputs, we choose to use thin-plate splines (Duchon, 1977), the
multidimensional generalization of the smoothing splines. As
such, the power difference model (4) becomes a spline model
with the non-negativity constraint imposed on ω1 and ω2. We
refer to the resulting model as the Thin-Plate Regression Spline
model with Non-negativity (TPRS-N). Note that, although the
inefficiency term η(·) in the baseline power production model
needs to be non-negative, η̃(·), which is the difference between
two individual η(·)s, can take any value.

There are alternative models to the spline models for fit-
ting the power difference model (4), such as Gaussian process
regression (Rasmussen andWilliams, 2006) or kernel regression
(Nadaraya, 1964; Watson, 1964). Without the non-negativity
constraints, all of thesemodels produce outcomes comparable to
one another; thus, the particular modeling option chosen mat-
ters less.With the non-negativity constraints, however, we find it
easier to work with the spline models. The traditional response
surfacemodels, represented by second-order regressionmodels,
are not considered competitive options here, due to their para-
metric nature aswell as the difficulty of imposing the constraints.

To estimate the spline-based power difference model, we
follow the Generalized Additive Model (GAM) scheme (Hastie
and Tibshirani, 1990). GAMs represent a univariate response as
an additive sum of multiple smooth functions, each having its
own predictor variables. Estimation of GAMs can be performed
by implementing the backfitting algorithm for which each
smoothing function is fitted for the residuals of all of the others,
iteratively one at a time until the fitted functions converge.

Consider n data pairs for which a residual r is paired with
covariates x; i.e., (xi, ri) for i = 1, . . . , n. Then, we estimate a

smoothing function by finding h that minimizes

n∑
i=1
{ri − h(xi)}2 + λJ[h], (5)

where λ is a penalty parameter controlling the trade-off between
data-fitting and smoothness of h. Both smoothing splines and
thin-plate splines solve the penalized least squares problem
stated in Equation (5), but the measure of the smoothness,
denoted by J[h], would be different as they consider different
dimensional functional spaces. For smoothing splines with a
univariate predictor x:

J[h] =
∫
�
h′′(x)2dx,

whereas for thin-plate splines with two predictors, x1 and x2:

J[h] =
∫ ∫

�2

[(
∂2h(x)

∂x21

)2

+ 2
(

∂2h(x)
∂x1∂x2

)2

+
(

∂2h(x)
∂x22

)2
]
dx1 dx2.

The minimizer of Equation (5) for a cubic-smoothing
spline corresponds to a natural cubic spline with n− 2 inte-
rior knots. If we use the B-spline basis to represent it—i.e.,
h(x) =∑n+2

j=1 γ jB j(x)—Equation (5) can be rewritten in a
matrix format as

(r − Bγ )T (r − Bγ )+ λγT�γ, (6)

where r = (r1, . . . , rn)T , Bi j = Bj(xi) and � jl =
∫
B′′j (x)B′′l

(x)dx, and γ is the coefficient vector of the n+ 2 basis func-
tions, to be estimated. After taking the derivative of Equation (6)
with respect to γ and setting the derivative equal to zero, we have
(BTB+ λ�)γ̂ = BT r. Let M = (BTB+ λ�) and calculate its
Cholesky decomposition M = LLT . Then, solving LLT γ̂ =
BT r by back-substitution provides γ̂ and thereby ĥ(x) =∑n+2

j=1 γ̂ jB j(x) inO(n) operations (Hastie and Tibshirani, 1990).
When using thin-plate splines, the solution of Equation (5)

is equivalent to that of

min ||r − Xβ −�δ||2 + λδT�δ, subject to XTδ = 0, (7)

where the n× 3 matrix X = [1n; x1; x2] includes the
unit vector of size n as its first column and the n obser-
vations for the two covariates as its second and third
columns. The radial basis matrix � is defined by � ji =
φ(||x j − xi||) = ||x j − xi||2 log||x j − xi|| for i, j = 1, . . . , n.
The three-dimensional vector β and the n-dimensional vector
δ = (δ1, . . . , δn)

T are, respectively, the coefficients associated
with X and those associated with the radial basis functions, and
both sets of coefficients need to be estimated.

Using as many basis functions as the number of data points
could be computationally challenging when the data size n is
considerably large. Different from the univariate spline problem
that can be solved by O(n) operations (as discussed above), the
computations for the thin-plate splines requireO(n3) operations
(Hastie and Tibshirani, 1990). To overcome the computational
problem, Wood (2003) proposes the Thin-Plate Regression
Splines (TPRS). Although the name includes the term “regres-
sion splines,” unlike other regression splines, TPRS does not
require the selection of the knots. To improve the computational
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6 H. HWANGBO ET AL.

efficiency, TPRS uses only k eigenbasis functions (k� n) corre-
sponding to the largest k eigenvalues of the basis matrix � and
consequently reduces the rank of the basis matrix significantly.

TPRS can be fitted as follows. First, by applying the eigen
decomposition of�, we have� = UDUT whereD is a diagonal
matrix whose diagonal elements are the eigenvalues of � and
arranged in a non-increasing order; i.e., Di,i ≥ Di+1,i+1 for
i = 1, . . . , n− 1.U is an orthogonal matrix whose columns are
the eigenvectors ordered accordingly. Then, TPRS considers
the first k columns of the matrix U, denoted by Uk, resulting
in a rank k eigenbasis matrix �k = UkDkUT

k where Dk is a
k× k diagonal matrix taking the first k rows and columns
of D. Subsequently, the constraint in (7) can be dropped by
using QR decomposition on UT

k X; i.e., U
T
k X = QR where Q

is a k× k orthogonal matrix and R is a k× 3 upper triangular
matrix. Let Zk take the last k− 3 columns of Q. By restricting
δ = UkZkδk with (k− 3)-dimensional coefficient vector δk, the
rank k approximation then can be used to fit TPRS by solving

min ||r − Xβ − UkDkZkδk||2 + λδTk Z
T
k DkZkδk (8)

for the unknown β and δk. Then, prediction for any given x can
be achieved by calculating δ̂ = UkZkδ̂k and plugging δ̂ and β̂

into

ĥ(x) = Xβ̂ +
n∑

i=1
δ̂iφ(||x− xi||). (9)

Recall that we assume that the wake power loss term ωt
is non-negative, so that our model can be consistent with the
physical understanding of the wake effect; however, the mod-
eling procedure of TPRS does not guarantee non-negativity.
In order to make sure that the wake power loss is indeed non-
negative, we apply an exponential transformation on top of the
conventional TPRS estimation in Equation (9), so we have

ω̂(x) = exp

{
Xβ̂ +

n∑
i=1

δ̂iφ(||x− xi||)
}

. (10)

Because of this change, instead of Equation (8), we solve

min ||r − exp{Xβ + UkDkZkδk}||2 + λδTk Z
T
k DkZkδk (11)

with respect to β and δk.
One may argue that, after the exponential transformation,

the penalty term in Equation (11) needs to be re-derived by
following the formulation of Equation (5) and calculating the
second derivatives of the new exponential term in Equation
(10). Doing so wouldmake the regularized learning formulation
in Equation (11) messier, but the benefit is marginal (explained
below). Recall that the role of the penalty term is to impose a
certain degree of smoothness on the final estimate for better
prediction. By using the same penalty term as in Equation (8),
we understand that the balance between the goodness-of-fit
and the smoothness may not be optimal. Regardless of that,
however, the optimality would not be attained anyway since
we use the basis truncation to speed up the computation (i.e.,
the use of k eigenbasis functions). We may not be worse off
with all of these approximations, as we choose the smoothing
parameter that provides the best prediction via cross-validation,
and the continuous transformation through the exponentiation

only makes the final fit smoother. Due to these considerations,
the treatment we apply here was in fact advocated previously in
smoothing spline research (Ramsay and Silverman, 2005) as an
effective way to handle non-negativity.

In general, when estimating a GAM, a constant term pre-
cedes the functional terms, and it is estimated by the global
mean. Specifically, the global mean is calculated and subtracted
from the response in advance, before implementing the back-
fitting algorithm that will estimate the rest of the functional
terms. In the power difference model (4), this constant term
should be part of the turbine-difference term, η̃(·), meaning
that a portion of the turbine difference is constant regardless
of the wind conditions, whereas the other portion may change
with the wind speed. For implementation of the backfitting
algorithm, we can re-write Equation (4) as

ỹ = α + [η̃(V )− α]− ω1(V,D)× 1D1 (D)+ ω2(V,D)

×1D2 (D)+ ε̃ (12)

and estimate α using the global mean and [η̃(V )− α] using
a cubic smoothing spline (and the wake loss terms using
TPRS-N). Once all of the functional terms are estimated, η̃(V ) is
restored by α̂ + η̂(V )where η̂(V ) is the estimate of [η̃(V )− α].

Before implementing the backfitting algorithm, some tuning
parameters need to be set, including the smoothing parameter
λ and the value of the reduced rank k used to improve the
computational efficiency of TPRS-N. There are, in fact, three
smoothing parameters λ, one for each smooth function esti-
mation, associated with η̃(·) and the two ω(·)s, respectively.
They are chosen based on a 10-fold cross-validation while
applying grid search. For the reduced rank k, Wood (2003)
states that the choice of k is not highly critical as long as it is
larger than the degrees of freedom required for the estimation.
In the subsequent analysis sections, we set k = 30, which, we
believe, is large enough for the wake effect analysis application
based on our graphical inspection of the estimation results (see
Appendix A for further discussion). Finally, we set a threshold
τ that determines the convergence of the model fitting to 0.1,
which is a sufficiently small number considering the magnitude
of the functional estimates changing exponentially due to the
imposition of non-negativity.

The backfitting algorithm for the power difference model is
summarized in Algorithm 1.

4. Performance comparison of different wakemodels

In this section, we compare the proposed spline-based wake
model with other wake models in terms of the prediction
error of the power difference. As directly measuring the actual
wake power loss is extremely difficult, if not impossible, the
prediction or estimation of the power difference becomes an
important proxy that alludes to the model capability of account-
ing for wake effects in wind power production. The same proxy
was used by You et al. (2017) to evaluate their wake model.
Furthermore, power difference prediction is in and of itself
useful in a number of wind energy applications; for instance,
to quantify the effect of a wind turbine upgrade action through
the comparison of a pair of turbines that is preferably isolated
from other turbines (Lee et al., 2015b).
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IISE TRANSACTIONS 7

Algorithm 1 Backfitting algorithm for wake power loss estimation.
1: Initialize:

m← 0; α̂←∑n
i=1 yi/n; η̂

m← 0; ω̂m
1 ← 0; ω̂m

2 ← 0 .
2: repeat
3: Setm← m+ 1.
4: Estimation of η̂

5: Calculate partial residuals: rη ← y− α̂ + ω̂
m−1
1 − ω̂

m−1
2 .

6: Set η̂m by fitting smoothing spline to rη with respect toV .
7: Estimation of ω̂1

8: Calculate partial residuals: rω1 ←−(y− α̂ − η̂
m − ω̂

m−1
2 ).

9: Set ω̂
m
1 by fitting thin plate regression spline with non-negativity to rω1 with respect toV and D for the data whose

D ∈ D1.
10: Estimation of ω̂2

11: Calculate partial residuals: rω2 ← y− α̂ − η̂
m + ω̂

m
1 .

12: Set ω̂
m
2 by fitting thin plate regression spline with non-negativity to rω2 with respect toV and D for the data whose

D ∈ D2.
13: Computation of convergence criterion

14: �← ||η̂
m − η̂

m−1|| + ||ω̂m
1 − ω̂

m−1
1 || + ||ω̂m

2 − ω̂
m−1
2 ||

||η̂m−1|| + ||ω̂m−1
1 || + ||ω̂m−1

2 || .

15: until � ≤ τ where τ is a pre-specified threshold.

For this model comparison, we use actual operational data
collected from an onshore wind farm in the United States. The
wind farm houses more than 200 wind turbines and four mete-
orological mast towers spread over a relatively large area. From
this wind farm, we take six pairs of wind turbines (in total, 12
wind turbines) into consideration. The turbine pairs are chosen
such that no other turbines except the pair are located within
10 times the rotor diameter d. Such an arrangement is to find a
pair of turbines that are free of other turbine’s wake, so that the
wake analysis result can be reasonably attributed to the wake of
its pair turbine. Ammara et al. (2002) state that theoretical and
experimental studies have generally suggested that wake velocity
deficit is minimal beyond 10d downstream of a wind turbine. As
such, we expect that the wake power loss due to other turbines
becomes virtually negligible by the 10d restriction. Meanwhile,
Meyers and Meneveau (2012) state that a turbine spacing of
7d is conventionally used in wind farm implementations. This
suggests that a 10d separation can be applied to other wind
farms in some cases and that the isolation of a turbine pair can
be applied more frequently with a shorter distance restriction;
for example, 7d (see discussions in Section 5).

Figure 6 shows the relative locations of the six pairs of tur-
bines on the wind farm. The circle around each turbine indicates
the 10d radius from the turbine. All turbine pairs happen to
have a northwestern-to-southeastern orientation. Thus, we des-
ignate the turbine on the northwestern side as Turbine 1 and the
one on the southeastern side as Turbine 2 for all turbine pairs.
Table 1 provides the between-turbine distances, in terms of a
multiple of the rotor diameter, and the relative positional angles
between a pair of turbines. Based on the specific relative posi-
tions between a pair of turbines and the notations illustrated in
Figure 5, we can divide wind direction into two distinct sectors
ofD1 andD2 for each turbine pair. For a wind directionD ∈ D2,
Turbine 1 is wake free and Turbine 2 is in the wake, whereas for
D ∈ D1, Turbine 2 is wake free and Turbine 1 is in the wake.

Figure . Locations of the six pairs of wind turbines and the four meteorological
masts. The distances along both axes are expressed as a multiple of the rotor
diameter of the turbines. All turbines have the same rotor diameter.

We have the operational data for the six pairs of turbines,
taken during roughly a year-long period between 2010 and
2011. The datasets include wind power output, wind speed,
wind direction, air pressure, and temperature; air pressure and
temperature data are used to calculate air density. The data
provided to us are reported every 10 minutes, and they are
the averages of the raw measurements calculated over distinct
10-minute time intervals, following the IEC standard (IEC,
2005). Overall, it gives us approximately between 33 500 and
38 500 data records per turbine pair for a year after accounting

Table . Between-turbinedistances and relativepositionsof the sixpairs of turbines.
Bearing  to  indicates a relative direction of Turbine  to the location of Turbine ,
and Bearing  to  is similarly defined.

Pair  Pair  Pair  Pair  Pair  Pair 

Between-turbine distance .d .d .d .d .d .d
Bearing  to  (◦) . . . . . .
Bearing  to  (◦) . . . . . .
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8 H. HWANGBO ET AL.

for the missing values and eliminating data records outside the
normal operating range (i.e., with a negative power output).

The wind power outputs are measured on the turbine. The
wind-related and other environmental variables are measured
at a nearby mast tower. Wind speed is also measured on the tur-
bines; all other variables are solely measured at the mast tower.
Considering that there are only four mast towers on this wind
farm and that some of the turbine pairs are relatively far away
from any of the mast towers, we decide to use the wind speed
measurements obtained at the turbines. For wind direction, air
pressure, and temperature, the mast measurements are used, as
there is no other option. Of course, we take the data from the
mast closest to a turbine pair. Specifically, we use the data from
Mast 1 for Pair 1 and 2, Mast 2 for Pair 3 and 4, and Mast 3 for
Pair 5 and 6.

Note that the wind speed measurements on a turbine are
obtained after the rotor, which is in its own wake. IEC 61400-
12-2 (IEC, 2013) recommends dealing with this issue through a
Nacelle Transfer Function (NTF), which describes the relation
between the free inflow wind speed and that measured at the
turbine’s anemometer in the wake. The wind farm operator who
provided us with the data has informed us that the turbine wind
speed measurements have been adjusted through an NTF and
can be treated as if they were measured in front of the rotor.

We evaluate the performance of a model with respect to its
out-of-sample prediction errors. For this, we split each turbine
pair’s annual data into training and testing subsets by a ratio of
80:20. In other words, we use randomly selected 80% of a given
dataset to train the model and the remaining 20% to calculate
the prediction error. To measure the prediction error, we use
the Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) defined, respectively, by

RMSE =
√√√√ 1

ntest

ntest∑
i=1

(ỹi − ˆ̃yi)2, MAE = 1
ntest

ntest∑
i=1
|ỹi − ˆ̃yi|,

where ỹi for i = 1, . . . , ntest is the power difference calculated
for the testing dataset, ˆ̃yi is the corresponding prediction of the
power difference, and ntest is the number of data pairs in a test
set, typically between 6000 and 8000.

We compare the proposed method with four other meth-
ods: a physics-based method and three data-driven models.
The physics based method is Jensen’s model (Jensen, 1983).
The three data-driven models are the data-binning approach
(Barthelmie, et al. 2010), the IND model, and the GMRF wake
model (You et al., 2017). We choose Jensen’s model as a rep-
resentative of the physics-based models due to its wide use in
commercial operation environments. The CFD-based models
are limited to restrictive research settings that have access to
supercomputing capability, and these models are computation-
ally prohibitive even for the analysis of a pair of turbines when
they are applied to commercial-sized wind turbines in actual
wind farm operations.

To implement these methods, certain tuning parameters
need to be set. Jensen’s model has a wake decay constant. We
set this value to 0.075, the value commonly used for onshore
wind farms (WAsP, 2016). Implementation of the physics-based
model additionally requires power curve estimation, for which

Table . Comparison of prediction error in terms of RMSE. The value in the table is
the percentage of power difference relative to the maximum power of the turbine.
The boldface values are the smallest in each column.

RMSE (%)

Pair  Pair  Pair  Pair  Pair  Pair 

Jensen’s model . . . . . .
IND model . . . . . .
GMRF model . . . . . .
Data binning approach . . . . . .
GAMwith TPRS-N 6.68 6.27 8.02 7.58 6.83 6.99

we followed the standard procedure described in IEC (2005). For
the data-binning approach, instead of using a subset of data with
a restricted range of wind speed and wind direction, we simply
chose to use the entire dataset. This extension is straightforward,
and the result of using the whole dataset is better in terms of
RMSE than using the restrictive subset.We generate wind direc-
tion bins using a bin width resolution of 5◦ following Barthelmie
et al. (2010). For the IND model, which is an additive B-spline
model taking wind speed and turbulence intensity as covariates,
we have to determine the number and locations of knots for
each covariate. We follow the suggestions in You et al. (2017)
and use equidistant knots covering the range of each covariate.
For theGMRFmodel, the authors of You et al. (2017) generously
implemented their method on our data (all six turbine sets) and
reported the resulting RMSE and MAE values to us.

Tables 2 and 3, respectively, present the RMSE and MAE
values for the five methods and six turbine pairs, denoted as
percentage values of themaximum power output. The proposed
spline-based model is labeled as “GAM with TPRS-N” in the
tables. Jensen’s model, due to its simplicity and additional
errors induced by the use of a power curve–based conversion,
leaves a relatively large portion of variation in the original data
unexplained and, hence, registers the highest RMSE values.
Relative to Jensen’s model, all data-driven methods, except
for the IND model, significantly reduce the level of uncer-
tainty by accounting for the variation observed in the data.
The IND model, without explicitly accounting for the effect
of wind direction, performs only slightly better than Jensen’s
model, sometimes exhibiting even higher MAE values. This
demonstrates the importance of modeling wind direction as an
influential covariate.

Recall that the GMRF model was not specifically developed
for the single-wake situation. By construction, the GMRFmodel
is designed to perform better with more turbines, as it benefits
from the spatial modeling of multiple turbines at different
locations. Understandably, the method loses its benefits when

Table . Comparison of prediction error in terms of MAE. The value in the table is
the percentage of power difference relative to the maximum power of the turbine.
The boldface values are the smallest in each column.

MAE (%)

Pair  Pair  Pair  Pair  Pair  Pair 

Jensen’s model . . . . . .
IND model . . . . . .
GMRF model . . . 4.70 . .
Data binning approach . . . . . .
GAMwith TPRS-N 3.75 4.08 5.23 . 4.47 4.34
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IISE TRANSACTIONS 9

applied to a pair of turbines. Still, the method shows significant
improvement, with an 18% reduction in RMSE and 14% in
MAE, on average, compared with Jensen’s model.

The data-binning approach, while fitting the trend of data
without any restriction, in fact attains competitive prediction
errors. This should not come as a surprise, as the binning
approach is an extreme version of a localized fitting method
and can adapt to local data features, as long as one uses a small
enough binning resolution and there are dense enough data
points to fit. The data-binning approach is often competitive
or the best method in terms of out-of-sample prediction when
comparing with other fitting methods. The fact that its RMSE
and MAE are in fact larger than those of our proposed spline-
based model suggests that the data-binning approach overfits
the (training) data. We also reiterate that the binning approach
is less insightful at providing wake characteristics, as we argued
in an earlier section of this article. In addition, the data-binning
approach will run into a dimensionality issue rather quickly,
if there are more variables to be binned other than the wind
direction, an issue that has been discussed at length in Lee et al.
(2015b).

Our proposed model demonstrates its superiority over other
alternatives in terms of the prediction error of the power dif-
ference. It yields the smallest RMSE values across all six turbine
pairs and the smallest MAE values for five among the six pairs.
Its RMSE (MAE) is, on average, 30% (24%) smaller than that
of Jensen’s model, 26% (21%) smaller than the INDmodel, 15%
(12%) smaller than the GMRF model, and 6% (7%) smaller
than the data-binning approach.

5. Analysis of wind turbine wakes in actual
operations of wind turbines

In this section, we quantify annual wake power loss in actual
wind turbine operations. Quantification of the wake power loss
based on an annual period supports economic assessment of
wake effect in terms of Annual Energy Production (AEP), a
key performance metric that is contractual binding and recom-
mended by IEC (2005). Doing so also provides practical insights
into the economic impact of decisions and actions attempting
to alleviate the wake power loss.

To quantify the annual wake power loss and derive the wake
characteristics revealed during an annual period, we apply
the proposed method to the entire year-long dataset. Figure 7
illustrates the fitted wake effect. By our estimation, the wake
loss is strictly positive, but what we show in the plot is actually
−ω̂1(V,D)× 1D1 (D)+ ω̂2(V,D)× 1D2 (D), so that one sees
both positive and negative portions. The power difference of
some pairs of turbines, when plotted against wind direction,
exhibits large variation with several peaks and troughs. Even
under such a noisy circumstance, our model captures the wake
power loss signals well, by focusing on where the wake power
loss is expected. In the figure, the vertical dashed lines indicate
the bearings; i.e., θ1 = 0 and θ2 = 0. Comparing Figure 7(e) to
Figure 4 (generated from Pair 5), it is obvious that our wake loss
estimation method captures the signals much better than the
data binning approach could, making the subsequent derivation
of the wake characteristics more convincing. We also observe

from Figure 7 that the wind direction associated with the high-
est power loss is not exactly aligned with the bearings of the
turbine pairs. This implies that there are measurement errors
in wind direction. When applying the data-binning approach,
practitioners typically generate angle bins starting from a bear-
ing by making it the midpoint of an angle bin (and propagate
with a resolution of 5°, for example) and then regard the wake
loss estimate of this specific bin as the wake depth. It turns out
that, in the presence of measurements errors in wind direction,
such a practice has an obvious disadvantage and will surely
underestimate the wake depth due to the discrepancy between
a bearing and the actual wind direction with the highest wake
loss (see Fig. 7(d) for an extreme example).

Table 4 shows the wake characteristics for the six turbine
pairs. The first two rows are the wake depths, namely, the mag-
nitude of the wake power losses. The last two rows are the wake
widths. The wake depth is identified as the peak of the wake
loss estimate representing the maximum power loss. The wake
width should be determined by the angles around the bearings at
which the power loss eventually becomes zero. However, given
noisy signals spreading over a large range of wind directions, the
fitted wake power loss is not completely zero even in the regions
where it is unquestionably wake free. To estimate the wake
width, we therefore find the range of wind direction for which
the loss is greater than 1% of the rated power of the turbine.

For the wake depth, Table 4 presents two percentage values
for each turbine. The one outside the parentheses is the wake
power loss relative to the rated power of that turbine, whereas
the one inside the parentheses is the loss relative to the free-
stream equivalent power output. Recall that throughout this
article, we have not shown the actual power values, due to the
confidentiality agreement in place, but rather have shown the
normalized power values, as a percentage, relative to the rated
power. These turbines belong to the general 2 MW turbine
class. This does not mean that the rated power of the turbines is
exactly 2 MW, but it is in that vicinity. Using this information,
one can estimate the wake power loss magnitude in the unit of
megawatts.

In the literature, however, the wake power loss is often
expressed as the ratio of the loss over the free-stream equivalent
power output (Barthelmie and Jensen, 2010; Adaramola and
Krogstad, 2011; Hansen et al., 2012), so we have

ω̂t (Vi,Di)

ŷt (Vi,Di)+ ω̂t (Vi,Di)
, t = 1, 2, i = 1, . . . , n,

where ŷt (Vi,Di) denotes the expected power generation
given (Vi,Di). Depending on (Vi,Di), ŷt (Vi,Di) could be the
expected power in the wake of another turbine, so that we mean
to recover the free-stream equivalent power output by adding
ŷt (Vi,Di) and ω̂t (Vi,Di). To calculate ŷt (Vi,Di), we first define
a neighborhood of (Vi,Di); i.e., Ni = {(V,D) : V ∈ (Vi −
εV ,Vi + εV ],D ∈ (Di − εD,Di + εD]} where εV and εD are
predetermined constants. We set εV = 0.25 m/s and εD = 2.5◦,
following common practice (IEC, 2005; Barthelmie et al., 2010).
Then, we calculate ŷt (Vi,Di) by taking the average of the power
outputs whose corresponding wind speed and direction are
members of Ni. This is a two-dimensional binning with 2εV
and 2εD as the respective bin width. The second percentage
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10 H. HWANGBO ET AL.

Figure . Estimated wake effects using GAM with TPRS-N: (a) for Pair ; (b) for Pair ; (c) for Pair ; (d) for Pair ; (e) for Pair ; (f ) for Pair . The red shaded areas represent
the fitted wake loss in terms of −ω̂1(V,D) · 1D1

(D)+ ω̂2(V,D) · 1D2
(D). Two dashed vertical lines indicate wind direction that is parallel to the line connecting the

pair of turbines.

values in Table 4, namely, the ones inside the parentheses, are
the wake power losses expressed in this conventional fashion.

The peak power loss relative to the free-stream equivalent
(the value inside the parentheses) ranges from 33 to 59%. The
wake width for the 12 turbines ranges from 40◦ to 62◦ with

concentration around 40◦–53◦. The wake depth commonly
stated in the literature is in the range of 30–40% (Barthelmie
et al., 2009, 2010; Sanderse et al., 2011), which appears to be
at the lower bound of our estimates. In addition, our wake
width estimates are noticeably larger than the 25◦ to 40◦ range

Table . Wake depth (unit: %) and width (unit: degrees) for the six pairs of turbines.

Pair  Pair  Pair  Pair  Pair  Pair 

Depth: Turbine  . (.) . (.) . (.) . (.) . (.) . (.)
Depth: Turbine  . (.) . (.) . (.) . (.) . (.) . (.)
Width: Turbine  40.1 42.7 53.1 52.2 41.1 53.4
Width: Turbine  61.8 47.9 44.6 43.6 46.8 49.6
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IISE TRANSACTIONS 11

Table . Annual power loss for the six turbine pairs.

Percentagemeasure (%)

Pair  Pair  Pair  Pair  Pair  Pair 

Turbine difference (η̃2−1) . . . −. . .
Wake loss: Turbine  (ω1) . (.) . (.) . (.) . (.) . (.) . (.)
Wake loss: Turbine  (ω2) . (.) . (.) . (.) . (.) . (.) . (.)
Average loss for the pair . (.) . (.) . (.) . (.) . (.) . (.)

stated previously (Barthelmie et al., 2010; Troldborg et al.,
2011; McKay et al., 2013). We believe that the difference can be
attributed to two major factors. The first one is that our estima-
tion can identify the wake region more accurately, producing
better estimates of the two main characteristics, whereas the
methods in the literature rely on ad hoc data segmentation and
partition and often use a partial set of data based on a pre-
selected range of wind direction and, consequently, their wake
power loss estimates do not capture the characteristics as well as
our estimator. The second factor is that the historical estimates
are usually averages over multiple turbines, understandably
leading to a narrower range.

Table 5 shows how each term in the power difference model
(4) affects the power generation of a turbine pair in an annual
period, namely, the AEP power difference or AEP loss. The first
row is the between-turbine power production difference inde-
pendent of wake effect, expressed relative to the rated power.
The second and third rows present the wake loss. Similar to
Table 4, the values outside the parentheses are the losses relative
to the rated power, whereas the values inside the parentheses are
the losses relative to the free-stream equivalent. Both percent-
ages represent the AEP wake loss but use different baselines.

The wake loss relative to the rated power is in fact related to
the capacity factor of a wind turbine (“Capacity factor,” 2017).
Recall that the capacity factor is the ratio of the actual power
production of a turbine for a selected period of time, say, a year,
over the supposed power production the turbine could have
produced, had it operated at its maximum capacity (i.e., at the
rated power) all of the time; the typical range of the capacity
factor is 25–35%. The wake loss relative to the rated power,
therefore, can be seen as the direct reduction to a turbine’s
capacity factor. We hereby refer to the corresponding AEP loss
as the capacity factor AEP loss and refer to the AEP loss relative
to the free-stream equivalent as the traditional AEP loss, which
is computed, if using Turbine 1 group as an example, by

∑n
i=1 ω̂1(Vi,Di)∑n

i=1 {ŷ1(Vi,Di)+ ω̂1(Vi,Di)} .

The fourth row is the average AEP loss for a pair of turbines.
The average is weighted by the number of data points in the
respective wake regions to account for the annual distribution
of the AEP loss for the turbine pairs. For this reason, the values
in the fourth row may be slightly different from the simple
average of the two individual losses. The traditional AEP loss
for a pair is computed by

∑n
i=1 {ω̂1(Vi,Di)+ ω̂2(Vi,Di)}∑n

i=1 {ŷ1(Vi,Di)+ ω̂1(Vi,Di)+ ŷ2(Vi,Di)+ ω̂2(Vi,Di)} .

The average capacity factor AEP loss is computed by
setting the denominator in the above equation to be∑n

i=1 {(rated power)+ (rated power)} = 2n× (rated power).
From Table 5, one may notice that the magnitude of the

between-turbine difference is sizeable, sometimes even larger
than that of the wake effect. This result suggests that modeling
of the between-turbine difference as a separate term in the
power difference model is important to our mission to estimate
the wake effect; otherwise, the estimate of the wake effect can
become significantly biased.

One can immediately observe that the AEP losses are much
smaller than the peak power loss (wake depth). This is expected
because the annual loss is the average over all kinds of wind
speed and direction conditions in an entire year. Under many
circumstances, the wake loss is much smaller than the peak
loss. The capacity factor AEP loss is between 0.5 and 2.0%,
meaning that if the turbine’s actual capacity factor is 25%, then
its ideal capacity factor, if the turbine always operated wake
free, could have been between 25.5 and 27%. This difference,
while appearing to be a small percentage, should not be taken
lightly. Consider a wind farm housing 200 turbines all in the 2
MW turbine class. A 1% capacity factor AEP loss for the whole
farm translates to $1.3 million loss in revenue at the wholesale
price of $37 per MWh (Statista, 2016).

One may also notice that the wake loss endured by Turbine
2 in a pair is always greater than that of Turbine 1. This can
be explained by the relative positions of the turbines and the
prevailing wind direction over this farm during that particular
year. Figure 8 presents the wind rose plots for three pairs of
turbines. The plots show that the north-western wind, for which
Turbine 2 of each pair endures power loss, is more frequent
and stronger than the south-eastern wind, for which Turbine 1
experiences power loss. Unsurprisingly, we observe that the
AEP loss of Turbine 1 group is usually less than 0.83% (1.64%),
whereas the AEP loss for Turbine 2 group is greater than 1.00%
(2.34%) and can be as high as 2.05% (4.13%).

In the literature, it is well known that turbine spacing is
a decisive factor affecting the magnitude of wake power loss
(Barthelmie and Jensen, 2010; Sanderse et al., 2011; Laan et al.,
2015). We therefore suspect that the variation of the annual
power loss between the individual turbine pairs can be explained
by the between-turbine distance of each pair. Using the average
AEP loss for the six turbine pairs (the fourth row in Table 5) and
the corresponding between-turbine distances, we fit a simple
linear regression model as has been done by Barthelmie and
Jensen (2010). Figure 9 shows the scatter plots and the regres-
sion line fitting a respective AEP loss. For the capacity factor
AEP loss, the p-values of the intercept and slope estimate are
0.005 and 0.013, respectively. For the traditional AEP loss, the
corresponding p-values are 0.006 and 0.022, respectively. These
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Figure . Wind rose plots illustrating the relative frequency of incoming wind for different direction sectors and for different speed ranges: (a) for Pair ; (b) for Pair ; (c)
for Pair . These wind rose plots of Pairs , , and  are representative of those of Pairs , , and , respectively, because such groups of two pairs share the same mast that
takes the wind direction measurements.

Figure . Relation between AEP losses and turbine spacing: (a) for the capacity factor AEP loss and (b) for the traditional AEP loss. The between-turbine distance is
expressed as a multiple of the rotor diameter.

results confirm that the turbine spacing indeed by and large
explains the pair-wise difference in the AEP losses. Additionally,
an extrapolation based on the fitted regression lines suggests
that the wake loss would diminish after the turbine spacing
reaches either 5.3d or 5.6d, depending on which AEP loss is
used in the analysis. Nevertheless, in either circumstance, the
10d separation used in this study to isolate a particular turbine
pair from the rest of the turbines appears safe enough to render
the turbine pairs free of wake of any other turbine on the wind
farm.

Regressing the turbines’ inherent production difference (the
first row in Table 5) on the between-turbine distance, on the
other hand, suggests that there is no significant correlation
between them. The p-values of the intercept and slope estimate
in this case are 0.81 and 0.77, respectively, with R2 of 0.02. As
such, unlike the wake effect, the between-turbine production
difference does not seem to be affected by the between-turbine
distance. The obvious distinction of the regression results
between the two cases supports that our model is capable of
separating the power difference (ỹ) into the between-turbine
production difference part (i.e., η̃) and the wake effect part
(i.e., ω1 and ω2), so that our wake effect estimate is well
derived.

6. Concluding remarks

Our study presents a data-driven wake effect model based on
a spline model structure. A non-negativity constraint is incor-
porated in the model estimation to make sure that the estimate

of wake power loss is consistent with physical understanding.
Our spline-based wake model produces the smallest prediction
error when compared with one physics-based wake model and
three data-driven wake models.

Nowadays, a systematic and effective way of combining
physics-based models and data-driven models is to incorporate
important constraints suggested by physical understanding
into a data-driven model. Such constraints may include non-
negativity, monotonicity, or convexity/concavity for various
orders of derivatives of the response. Our proposed wake model
is in fact in line with such a trend. We understand that there
is no limit as to how physics-based models may be integrated
with a data-driven model. We do want to take this opportunity
to stress the importance and benefit of combining the physics-
based models and data-driven models; much more needs to be
done in future work.

Application of the proposed wake model is limited to the
analysis of single-wake behaviors, due to its model structure
established upon the pair-wise difference between the power
outputs of two turbines. The general power production func-
tion introduced prior to the pair-wise analysis does allow a
potential extension to the multiple turbines case at the wind
farm level. Another possibility is to combine the strength of this
spline wake model with that of You et al. (2017) and develop
a wake model that accounts for spatial relationship among
multiple turbines while imposing non-negativity on wake loss
at the same time. Such data-driven models could be promising
alternatives to complement complicated physics-based wake
models for evaluating the wake power loss of a wind farm.
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Appendix

A. The effect of the reduced rank k on the
prediction performance

In this section, we illustrate the effect of the reduced rank
k on the prediction performance of the proposed estimator.
We use the same datasets that were used in Section 4 and the
same criteria of RMSE and MAE for quantifying the prediction
accuracy. We trace the prediction performance of the spline
method while changing the value of the reduced rank k.

Figure A1 shows how the RMSE and MAE vary with
different k values, where we use five different values of
k = 10, 20, 30, 40, 50. The prediction tends to be more accu-
rate as k increases, but the additional benefit of using a large
k diminishes once k reaches a certain level. When k = 20, the
values of both RMSE and MAE become quite comparable to
those for a higher k value. As such, we believe that k = 30 is a
large enough choice for the rank reduction purpose.

Figure A. Prediction performance varying with different values of ks: (a) in terms of RMSE and (b) in terms of MAE.
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