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Abstract—Distributed sensing, a system-wide deployment of
sensing devices, has resulted in both temporally and spatially
dense data-rich environments. This new technology provides
unprecedented opportunities for quality and productivity im-
provement. This paper discusses the state-of-the-art practice,
research challenges, and future directions related to distributed
sensing. The discussion includes the optimal design of distributed
sensor systems, information criteria, and processing for dis-
tributed sensing and optimal decision making in distributed
sensing. The discussion also provides applications based on the
authors’ research experiences.

Note to Practitioners—This paper is based on a panel discussion
on the topic of the emerging technology of distributed sensing and
the associated challenges and opportunities. The panel, constituted
by a group of leading researchers and practitioners with exper-
tise in operations and statistics, convened during the Institute for
Operations Research and the Management Sciences (INFORMS)
2003 annual meeting in Atlanta, GA. This panel focused its discus-
sion on the information layer technology of distributed sensing for
quality and productivity improvements, which differentiates this
panel from other similar panels that were formed in a different so-
ciety. The panelists provided their visions about the state-of-the-art
practice, research challenges, and future research directions, and
also discussed potential applications based on their own experi-
ences.
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1. INTRODUCTION

ENSOR integration, coupled with unceasing electronic

miniaturization and nanofabrication, makes it possible to
produce inexpensive sensing devices. These inexpensive and
smart devices with multiple heterogeneous onboard sensors,
networked through wired or wireless links and deployable in
large numbers, are distributed throughout physical systems to
maintain the production performance, to ensure the life-cycle
quality of products, and to improve the quality of management
and service. This system-wide deployment of sensing devices
is referred to as distributed sensing and the whole infrastructure
is called a distributed sensor system. One example of using dis-
tributed sensing for quality improvements is in pharmaceutical
manufacturing (more examples are presented in Section V),
of which the standard deviation of vials filling processes
should approach zero as positive deviations result in expensive
material loss or overdose while negative deviations result in
an insufficient dose. The use of distributed sensors at check
weighs and filling nozzles will result in the minimization of the
filling process [1]. In fact, MIT’s Technology Review identifies
the wireless distributed sensor network as one of the top ten
emerging technologies that will change the world [2]. Indeed,
this new technology has resulted in a data-rich environment
with both temporally and spatially dense information [3]-[5]
and provides unprecedented opportunities for quality and
productivity improvement.

Major technologies associated with distributed sensor sys-
tems can be generally decomposed into three layers: 1) at the de-
vice layer: development and fabrication of sensing devices that
can sense, process, and communicate; 2) at the network layer:
networking architectures and protocols that ensure reliable, se-
cured information transmission and communication; and 3) at
the information layer: collaborative, multimodal, and fault-tol-
erant information processing that will complete the transition
from the “data-rich” layer to the “information-rich” layer for
optimal decision-making.

The general concept of networked sensor systems has at-
tracted considerable attention such as the SensIT program [6],
[7]. Prototypical distributed sensor systems are now available,
for example WINS [8] and smart dust [9]. These provide
hardware infrastructures for the device and network layers
discussed above. The challenge now is to provide decision
support capabilities that will allow the full potential of a dis-
tributed sensor system to be realized. More challenges need
to be tackled at the information layer in order to realize a dis-
tributed sensor system to perform sophisticated and integrated
tasks for monitoring, detection, diagnosis, and/or control in an
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Fig. 1. Issues at the information layer of the distributed sensor network.
evolving and complicated physical environment. In particular,
this involves the design problems of selecting the appropriate
sensors, prescribing optimal sensor distribution (i.e., location)
in a multilayer network and the intimately related data uti-
lization problem of supporting effective decision-making in a
distributed environment.

The design problem is crucial because a poorly designed
system 1is likely to generate irrelevant, redundant, conflicting,
and/or incomplete information. An optimal design must ob-
serve the imposed constraints, such as the resources available
to install and operate a networked sensor system, the effective
range and sensitivity of each type of sensor, and the critical
features and tolerances of products/processes. The data utiliza-
tion problem can be further classified into two subproblems:
the information processing and the decision-making process.
These two problems are closely related and their boundaries
are sometimes difficult to draw. Information processing con-
verts original sensor data into a format more conducive to
data compression, feature extraction and interpretation, or
pattern recognition. The decision-making process naturally
follows information processing; in simple environments, the
decision-making process becomes straightforward after appro-
priate information processing. However, there exists a more
sophisticated decision-making process for a distributed sensor
network, namely, data gathered by distributed sensors must
be combined to support collaboration among different parts
of the network, which is necessary to produce meaningful
system-wide decisions.

More specific research issues are identified in the subsequent
sections, which will address each of the three challenges as-
sociated with distributed sensing design and data utilization.
In the design section, we will discuss design criteria, multi-
objective optimizations, design methods of sensor systems ac-
counting for the complexity of underlying physical systems,
and designs under multiple ownerships. In the information pro-
cessing section, we will elaborate the issues relevant to sensor
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and information heterogeneity, information criteria for feature
preserving and model selection, feature extraction from data
with complex structures, robust and adaptive information pro-
cessing, and sensor characterization of nonlinearity. In the de-
cision-making section, we will present thoughts on distributed
and collaborative decision making, distributed data collection
and process control, and self-diagnosis and self-compensation
for high system reliability. Fig. 1 demonstrates these inter-re-
lated issues.

For general references in this paper, we define several terms
used in Fig. 1 as well as the later sections. Monitoring refers
to the task of overseeing, checking, and tracking the status of
a parameter or a state variable. Detection refers to the task of
revealing, discovering, and capturing a change in a parameter or
a state variable that is being monitored. Diagnosis refers to the
task of identifying the cause due to a change of a parameter or a
variable upon its detection. Control refers to the task of exerting
or directing adjustments and other necessary actions to a process
so that it will stay in a desired course. In fact, the meanings of
the terms used in this paper are consistent with their common
meanings in the general literature.

This paper focuses on the design and data utilization
challenges in a distributed sensing setting for quality and
productivity improvement, and is organized as follows. Sec-
tion II deals with optimal sensor configuration. Section III
discusses the information processing issue. Section IV focuses
on decision-making issues. Section V presents a few examples
of applications based on the authors’ research experiences.
Section VI includes a few additional remarks.

II. OPTIMAL CONFIGURATION OF DISTRIBUTED SENSING

Even if sensors generally become smaller and inexpensive
due to advances in electronic miniaturization techniques, the
entire sensor network and its maintenance could still be costly
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if not carefully designed. Design of a sensor system is real-
ized through the design and determination of 1) an individual
sensor unit; 2) the number of sensors needed; 3) sensor loca-
tions; and 4) operational strategies. Problem 1) is a device layer
issue which is not dealt with in this paper. Problems 2)-3) have
a broader relevance and will be the focus of this section. For
Problem 4), some of the operational aspects such as how often
measurements will be taken may seem straightforward when
in-process automated sensing devices are used to measure a
100% product in production [10]. Challenges will arise in many
situations where such measurements might indeed exceed the
memory storage and power requirements that deem it impos-
sible to implement. The discussion of other operation strategies
related to decision-making will be presented in Section I'V.

As stated before, Problems 2) and 3), which focus on the de-
termination of the number and locations of sensors, are usu-
ally called the problem of “sensor placement” in engineering
practice [11], [12]. It is important to note that the “location of
a sensor’” bears two meanings in the literature. It may refer to
the location of a physical feature that a sensor measures or the
place where a sensor is physically installed. In this paper, the
first meaning is more relevant and, thus, is often implied.

Previous work primarily incorporates limited sensor collabo-
ration, for example, sensors on the same workstation, for single
objective monitoring missions [12]-[17]. The theoretical foun-
dation of design criteria was initially developed in the research
of optimal experimental design [18], [19], where the Fisher In-
formation Matrix is used to characterize the estimation/predic-
tion accuracy for a linear regression model. Certain measures
of the Fisher Information Matrix, known as the D-, E-, A-opti-
mality, are then used as the criteria for optimal sensor placement
so that estimation/prediction accuracy can be optimized.

Given the new paradigm of distributed sensing, the sensor lo-
cation is no longer limited to a localized area. They may form
sensor clusters. Nagel [20] presented a discussion of the seven
items involved in microsensor clusters: the multiple sensors, in-
terface electronics for sensor excitation and signal conditioning
(amplification), a microcontroller or a computational unit with
associated memory, a means of communicating information out
or receiving commands, a source of power, and a printed-cir-
cuit board (PCB) and housing. More important, sensor clusters
are distributed throughout a system, either at different levels in
a hierarchical network or along a production line with multiple
sensors clustered at individual workstations. This new setup of
sensor system design is called “optimal configuration of dis-
tributed sensing” or “optimal strategy for sensor distribution.”

In this paper, we identify the following major challenges
related to the optimal configuration of distributed sensing: 1)
develop design criteria and formulate multiobjective optimiza-
tions; 2) network structure design accounting for the complexity
of underlying physical systems; and 3) characterization and
design of sensor systems under multiple ownerships.

A. Design Criteria and Multiobjective Formulations

One aspect related to the performance of a sensor system is to
quantify sensor collaboration. Two sets of related performance

indices were developed before—observability in control theory
[21] and identifiability/estimability in estimation theory [22],
where observability refers to the capability of discovering or
tracking unknown state variables in a dynamic yet usually de-
terministic system, whereas the identifiability/estimability, with
its root in statistics, refers to the capability of uniquely identi-
fying the fixed or random effects in a linear static system. New
research is needed to translate these indices such that they are
directly connected to the performance evaluation of a distributed
sensor system. Recently, an analysis of diagnosability was per-
formed for distributed sensor system in multistage manufac-
turing processes [23], [24]. The diagnosability of a distributed
sensor system is defined for the mean and variance components
of the random system inputs. Diagnosability is mathematically
similar to the concept of identifiability/estimability in statistics
but the new term better suits the mission of fault diagnosis.
Higher order statistics may be used to provide additional infor-
mation or account for the lack of knowledge of a system model
[25]—an approach known as blind source separation, wherein
another criterion of separability is proposed [26].

Another aspect is the reliability of a sensor system. Unlike
most of the reliability models of electronic components, there
are no basic failure modes which are common to sensors de-
signed for different purposes and operating at the same condi-
tions. For example, each sensor family, such as flow sensors,
inertial sensors, pressure or radiation sensors, is normally based
on a very specific flow of process steps. Even within a sensor
family, processes can differ drastically when they are based on
various preferential technologies, such as bulk or surface micro-
machining as it is the case for inertial sensor for example [27].
Therefore, reliability prediction of a class of sensors is obtained
with high uncertainty. Then, improved performance of sensor
systems is likely to be obtained through system redundancy.
Redundancy is a natural way to improve sensor system relia-
bility because a multisensor setup will allow the sensor to watch
over each other and identify the failing sensors based on their
own outputs—a procedure known as sensor self-diagnosis [28],
[29]. A possible performance index could be self-diagnosability,
which measures how healthy the sensor redundancy is. Simply
put, too little redundancy may not allow self-diagnosis and too
much redundancy could impose unnecessary costs. Thus, relia-
bility estimates of distributed sensor networks need further in-
vestigation in terms of sensor locations, individual sensor relia-
bility, network configuration, and redundancy level (where and
how many). Determination of the bounds of the reliability esti-
mates is a challenge for further research as difficulties increase
with the level of uncertainty in an individual sensor’s reliability
and the size of the configurable network.

A distributed sensor system, especially for those enterprise-
wide implementations, is usually too complicated for a single
scalar measure to adequately characterize its performance in
both the local level and the global level. It is desirable to decom-
pose a system-wide index into subsystem levels, for instance,
between-station and within-station diagnosability in a multi-
stage manufacturing or within-layer and across-layer diagnos-
ability in a hierarchical network [23].

With various criteria depicting different aspects of distributed
sensor systems and constraints of being low cost and potentially
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low maintenance, optimal sensor system design will unavoid-
ably take a multiobjective formulation (e.g., design for diagnos-
ability, design for self-diagnosability, design for sensitivity), the
establishment of which is a major task in itself.

B. Complexity of Underlying Physical Systems

Most real-life problems, such as manufacturing/production
systems, are complex, nonlinear, and dynamic. The complexity
generates considerable difficulty for optimally designing a
distributed sensor system to monitor the underlying physical
systems. Understanding the interaction between the distributed
sensor system and the physical process plays an important role
in making the resulting sensor system more effective.

The information flow in a physical system is determined
by the nature of each physical action and the topology of the
physical system. The information related to key processes and
product features is evolving with or without the presence of a
sensor system. With a sensor system in place, however, this
dynamically evolving information will be retrieved at different
locations and could be pieced together for revealing the status of
the physical system. Therefore, the overall detection capability
of a distributed sensor system depends not only on how much
information sensors can retrieve from the process at selected
locations but also on how the information is transmitted through
the process. The latter is determined by the physical system
instead of the deployment of a sensor system.

Aware of this interaction, a strategy has recently been pro-
posed by Ding et al. [30] for sensor distribution in a serial pro-
duction system. The information chain linking process changes
to sensor measurements can be tentatively partitioned into two
consequent steps: 1) information transmission from station ¢ to
station k, characterized by transmissibility ratio A;; and 2) in-
formation detection through sensors on station k, characterized
by detecting power 7, > 0. Fig. 2(a) shows an example of
sensor distribution in multistage manufacturing. Process faults
occur on station ¢ and propagate to station k. The overall diag-
nosability relies on both across-station transmissibility and de-
tecting powers on individual stations. Optimal sensor distribu-
tion strategy should be developed to identify stations at which
the fault information is not completely transmitted and then de-
cide the optimal detecting power on that station. Fig. 2(b) shows
an iteratively propagating strategy to identify those missing sen-
sors (i.e., Ajj < 100%) at which a saturation in diagnosability
could be observed. The installation of new sensors at those lo-
cations will complete the broken information chain and im-
prove the system-wide diagnosability. Therefore, investigating
the placement of sensors in order to achieve complete informa-
tion propagation in the minimum number of sensors presents a
challenging area of research. It should be noted that this system
resembles those studied under consecutive k-out-of-n: F system
in reliability engineering [31].

For manufacturing with more complicated topologies, a
promising approach is to use the concept of agent—an au-
tonomous element which can sense and respond. An agent
system is constituted by a large number of simple-functional
elements (called agent) but can otherwise fulfill highly so-
phisticated tasks. The objective of sensing is to respond to
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Fig. 2. Information flow in multistation network.

anomalies and problems. As the system is distributed, it be-
comes imperative that local information processing assumes
an important role. Given an anomaly, it may be necessary to
schedule alternatives processing, materials, facilities, tools,
and manpower. Agents such as software entities can reside on
the equipment and collect data, extract features, and send the
anomaly information to a distributed coordinator. This coor-
dinator can invoke anomaly (diagnosis) detection and invoke
the appropriate scheduling of resources to enforce replacement
and control. Each agent will be autonomous and communicate
when an event gets triggered. A collaborative agent platform
can be developed where, in interactive resource allocation
agents, manpower agents, tools agents, facilities agents, and
scheduling agents can work together to take the information
from the sensors and respond appropriately [32]-[34]. We envi-
sion future systems having multiscale and multilevel capability
for diagnosis and control starting from sensing to procurement
from the supply chain.

C. Characterization and Design Under Multiple Ownerships

The current assumption for sensor and process components
ownership is that they are owned by the same organization.
However, the global economy concept has resulted in the phys-
ical separation of many manufacturing operations for the same
organization. As a result, data and information collection from
various sensors distributed globally present new and interesting
research problems, such as the configuration of the dynamic
system networks where data are collected at different time zones
which might have a direct impact on processes operating in close
proximity. This might make it difficult, if not impossible, to
make timely changes in dependent processes. We need to note
that the information collected from various sensors will be used
in many situations by different organizations and rethink the
design criteria (and multiobjective formulation) and the com-
plexity of the system. Suppose that some variations in the up-
stream manufacturing processes will be critical to the down-
stream manufacturing processes. However, two different orga-
nizations own these two streams of processes. In the upstream
operations, when we design the sensors to collect information
without considering the needs in the downstream operations,
there is a chance that some important data are not collected for
understanding how the variations are propagated throughout the
processes. Therefore, it is important to determine the optimal lo-
cation of the sensors in order to detect such variations as early
as possible in the production process. Other challenging issues
include how to characterize the design in different organizations
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and how to build a robust sensor system for handling possible
sensor malfunction (providing imperfect data).

Under multiple ownerships, there is usually a large number
of sensors to be allocated among processes and the optimization
problem for sensor distribution thus becomes inherently difficult
due to the curse of dimensionality. Meanwhile, with a multi-
objective formulation, the objective function is likely nonlinear
and accompanied by complicated physical and geometrical con-
straints. As an example, a Knapsack formulation [35], the same
as in resource allocation, is often used in the problem of max-
imum coverage of a detecting area [36]. However, the Knapsack
problem is inherently NP-hard. In order to solve the large-scale
problem, optimization algorithms need to be scalable, namely, it
should remain effective when the scale of the problem (e.g., the
number of decisions) has dramatically increased. This would be
one of the key components to be developed because distributed
sensing will generally result in a large-scale problem with many
decision variables or massive datasets.

III. INFORMATION PROCESSING IN DISTRIBUTED SENSING

As we mentioned in Section I, information processing and
decision-making can be hardly separated completely. We in-
clude in this section information processing and the simple sub-
sequent decision-making. More complicated decision-making
tasks (e.g., collaborative decision-making in distributed envi-
ronments, sensor self-diagnosis, and real-time process control)
are discussed in Section IV.

We identify the following major challenges related to infor-
mation processing for distributed sensing: 1) sensor and infor-
mation heterogeneity; 2) information criteria for feature pre-
serving and model selection; 3) feature extraction from data
with complex structures; 4) robust and adaptive information pro-
cessing; and 5) sensor characterization of nonlinearity.

A. Sensor and Information Heterogeneity

The implementation of a diverse variety of heterogeneous
sensors is desired because a heterogeneous sensor system can
provide both complementary and competitive information about
a physical system. Complementary information refers to mea-
surements of different characteristics of the process while com-
petitive information refers to measurements of the same charac-
teristic but from different sensor units. A heterogeneous sensor
system will provide a more reliable and accurate view of op-
erational status of physical processes. For instance, one phys-
ical machine fault (say, an unbalanced shaft) may generate dif-
ferent symptoms (e.g., vibration, temperature changes, motor
force, etc.) and can be measured by different sensors (e.g., an
accelerometer, thermal couples, and current, respectively). On
the other hand, one sensor may sense different types of machine
faults occurring simultaneously with similar symptoms.

In [12], it is usually assumed that sensor noises are indepen-
dent and have equal variance (i.e.,& ~ (0, c2-I)), where £ is the
sensor noise vector, o2 is the variance, and I is an identity ma-
trix. This assumption is usually made for the system of which all
of the sensors must measure the same physical variable through
the same transduction method. A sensor system under this cir-
cumstance is generally called a homogenous sensor system. A

heterogeneous sensor system will likely violate the above as-
sumption on € because heterogeneous sensors in a distributed
sensor system will surely have different statistical character-
istics. Even for the same types of sensors, they may be at a
different stage of their service life so that their measurement
precisions are different. Of course, no actual sensor system is
absolutely homogenous since no two sensors are identical. A
widely used statistical hypothesis testing procedure, the likeli-
hood ratio test [37] (with the alternative hypothesis set as “there
is a change in the model (or the parameter value) describing the
sensor data”), can be used to verify when the above homogeneity
assumption holds and when it is violated.

The sensor heterogeneity in a distributed sensor system will
introduce information heterogeneity. The information hetero-
geneity will take more dramatic manifestation than the sensors.
To name but a few, some information is represented by a peri-
odic temporal signal and the others may be a collection of spatial
point measurements, or some may take continuous values and
the others could be categorical, or some are real physical mea-
surements and the others could be from pseudomeasurements
(i.e., the design information or outputs from deterministic sim-
ulations without random errors).

The effect of sensor and information heterogeneity on in-
formation processing has not yet been adequately addressed.
Systematic modeling of sensor and information heterogeneity
needs to be investigated. In a recent development [38], it is
shown that when sensor heterogeneity comes into play, the
original diagnosability condition of a sensor system no longer
holds. Weighted least-squares estimation is probably the most
widely used method to account for this heterogeneity. In
dynamic systems, Kalman filters [39] may be developed for
individual sensors. System states will be estimated and updated
using a weighting function determined from specific charac-
teristics of individual sensors. At a higher inference level, a
generalized Bayesian inference framework, also known as the
Dempster—Shafer theory [40], [41], is used to produce a belief
interval, which corresponds to the upper and lower bound of
the posterior probability, based on the conditional probability
of heterogeneous measurements.

B. Information Criterion for Feature Preserving and Model
Selection

This information quantification is different from the perfor-
mance quantification of sensor systems discussed in the pre-
vious section. Here, we refer to the criteria or measures to quan-
tify the “usefulness” of information in measured signals or data.
The purpose of information processing is to either extract the
features from raw signals or establish empirical characterization
of system behavior. For this reason, information quantification
serves as the basis for information processing techniques.

Information quantification is intended to define the boundary
between a useful feature and irrelevant information, or signifi-
cant terms in empirical models versus those insignificant ones.
The currently available information criteria usually try to make
a distinction between systematic signals and pure noises. For
instance, one such criterion is entropy from Shannon’s infor-
mation theory [42], with applications primarily in communica-
tion. Entropy is defined as —X,, cxp(x;) log p(z;), where N is
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the set of all possible ;s and p(z; ) is the probability density of
x;. Pure noise will have the largest entropy and a constant signal
will have zero entropy. Other types of criteria used in denosing
include the SURE [43], the AMDL [44], and a modification of
Donoho’s denoising approach [45].

The usefulness of information obtained from sensors also
lies in the empirical characterization of system behavior. Al-
though certain physical laws characterize process behaviors of
components (or subsystems), the variations of the components
and their propagation over the (successive) systems at multiple
stages require empirical data for its characterization. Moreover,
some of the physical laws are not well understood (especially in
new process development) and, thus, from a data-mining point
of view, sensor data are very useful in understanding the ef-
fect of the process conditions on its performance. This is par-
ticularly important when the system under the surveillance of
a distributed sensor system is large and complicated, where the
experimental design activities cover only a part of the system.
Typical criteria for model selection include the Akaike informa-
tion criterion (AIC) [46] and the Bayesian information criterion
(BIC) [47]; these two are closely related. The AIC/BIC criterion
is usually used for parameterizing a signal with an empirical
model, namely, it selects an appropriate empirical model while
preventing the overfitting problem, the occurrence of which will
deteriorate a model’s predictive capability upon new observa-
tions [46, Ch. 7].

The aforementioned information criteria largely define the
boundary between a systematic signal and pure random noises,
which is one aspect of information quantification. However,
applying these criteria directly in information processing has
the tendency to overfit the data and retains an excessive number
of coefficients [48]. Thus, they may not serve well in distributed
sensor systems. In fact, the “irrelevant” information in many
physical systems could be more than pure random noises.
For example, in a fault diagnosis application in the stamping
process [49], researchers found that the relevant information
for the fault diagnosis purpose is by and large associated with
the peak/valley areas of a tonnage signal curve (refer to Sec-
tion V-B and Fig. 5 for more details). This motivates research
emphasis on investigating approaches for combining engi-
neering knowledge and information processing requirements in
redefining “usefulness” versus “irrelevance” of information so
that a more efficient data model can be developed to represent
the original data.

C. Feature Extraction From Data With Complex Structures

The ultimate goal in information processing is feature ex-
traction. Development of feature extraction methods can be
classified into spatial analysis [50], [S1] and temporal analysis
[52], [53]. Spatial analysis relies mainly on the crosscorre-
lations of measurements at different locations. Multivariate
statistical methods, such as principal component analysis [54]
(PCA)-based pattern recognition [55], factor analysis [56], [57],
variance components analysis [22], [24], and signature metrics
approach [58], [59], have been used to extract process operation
patterns from correlation matrices. Temporal analysis methods,
which analyze autocorrelated data, include time-series methods
[60] such as exponential smoothing [61], autoregressive moving

average (ARMA) modeling [62], or Kalman filtering [39], [62],
and time—frequency analysis, such as wavelet transform [63],
[64].

Note the difference between two aforementioned multivariate
analysis methods: factor analysis and the PCA-based pattern
recognition. The factor analysis method refers to the procedure
of using system outputs’ data alone to fit a linear model structure
that can provide more insightful interpretations of the data. PCA
is often included as an intermediate step in the factor analysis
to find the subset of the most important factors. The PCA-based
pattern recognition is different in the sense that it will treat the
eigenvectors associated with the few largest principal compo-
nents as the fault patterns and then use them for the diagnosis
purpose.

Wavelet analysis is a key method among the temporal anal-
ysis methods for information processing and feature extraction
[48], [49], [65], [66]. Unlike the Fourier transform where the
basis function is only a sinusoidal wave, a choice can be made
of the wavelet shape to suit the features of the signal. In addi-
tion, the Fourier transform describes the average characteristics
of the signal over the time history, but the wavelet transform
identifies the local features of the signal. In a sense, the wavelet
transform is a windowed Fourier transform but with adaptive
window sizes so that different time—frequency components can
be localized. When the size and shape of a wavelet are similar to
an event inside the signal, the transform identifies large ampli-
tude, a property can be used to detect transients in a signal. By
simply dilating the wavelet size in the transform, local features
with different time-scales can be described by the distribution
in the “time—frequency” plane. These features of wavelet anal-
ysis can be advantageous for examining the nonstationary signal
where a large-scale or small-scale change occurs when localized
or distributed anomalies are introduced during operations. To
that end, Kamarthi et al. [69], Suh et al. [45], and Bukkaptnam
etal. [70], [71] showed several applications of wavelets in man-
ufacturing with reference to enforcing online real-time quality
control. In addition, in nonliner systems, it is possible to observe
self-similarity of signal features. In such a case, it will be very
effective to use fractal dimensions, such as information, corre-
lation, and capacity dimensions. These give excellent features
which will be very effective in terms of storage and transmis-
sion in real-time analysis [70].

Traditionally, spatial and temporal analyses have followed
separate paths. Since a distributed sensor system is capable of
monitoring both spatial and temporal evolutions of a physical
process, it is highly desirable to perform a joint spatio-tem-
poral analysis using data gathered through the distributed sensor
system. Joint spatio-temporal analyses were initially developed
in geostatistics [50], [67] and were mainly applied in meteo-
rology [68] for forecasting spatially and temporally evolving
weather conditions. A more complete work of applying spatio-
temporal methods to other applications is not yet broadly re-
ported.

D. Robust and Adaptive Information Processing

Information processing is complicated by the fact that sig-
nals exhibit different physical characteristics and are associ-
ated with the inherent information uncertainty. Many param-
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eters and thresholds are involved in transforming the original
data into a set of features or a collection of feature-preserving
coefficients. The determination of those parameters and thresh-
olds itself depends to a great extent on the physical environ-
ments and information-processing requirements. A set of op-
timal thresholds under one circumstance may not be optimal
when the process changes; or, an optimal estimator may lose
its optimality when there are outliers or sensor anomalies. For
example, the optimum threshold degradation level of the light
intensity of light-emitting diodes (LEDs) for their replacements
when they are infrequently used is different from the optimum
level when they are in continuous use. In a constantly changing
physical world, it is challenging yet desirable to develop infor-
mation processing techniques that are more robust and adaptive.

Robust information processing refers to the techniques that
are insensitive to measurement outliers and is related to sensor
self-diagnosis, which will be discussed in the next section. The
difference is that robust information processing may not need
to make the decision about which sensor has failed. A simple
example is that a sample median is a more robust statistic than
a sample mean. Yet, many current information processing pro-
cedures focused on modeling mean sensor data, which is not
robust against abnormalities (e.g., extremely large or small data
in the two tails of the sensor data distribution). The concept of
median should be extended to more complicated information
processing scenarios. References [72] and [73] show the possi-
bilities of using median polish in spatial data modeling suitable
for image analyses. Since the median does not use the values of
the extreme data, these types of procedures are more robust to
abnormalities. Much of the ongoing work is in the area of robust
statistics [74] or robust estimation [75].

Adaptive thresholding will also help to improve the robust-
ness of information processing. Determining the optimum
thresholds for process diagnostics and improvements based
on sensors data and the conditions of the process is a difficult
task. This is due to many factors, such as errors in sensors’
observations and lack of perfect correlation between the process
parameters, environmental conditions, and the sensors’ mea-
surements. More important, in many situations, it becomes
necessary to have adaptive thresholds as the process conditions
and parameters change according to some patterns. Consider
the case when a machine is being monitored using multiple
sensors. The machine condition is assessed by the symptom
limit value Sy and its two components: the alarm value S,
and the breakdown value Sy. If a running machine reaches the
alarm value, it is an indication that it experiences intensive
wearing. Hence, the type and advancement of the fault must be
identified in order to prepare the maintenance procedure. If a
machine reaches the second limit value S, the shutdown of a
machine for maintenance becomes necessary. The knowledge
of these two limit values is of great importance for critical
machines which run continuously with automatic monitoring
and shutdown system. However, in most cases of diagnostic im-
plementation, for large and expensive machinery in particular,
it is difficult to perform active diagnostic experiments, which
means establishing the S, on the basis of the known machine
condition. Hence, the determination of Sy, is possible only as
the result of passive diagnostic experiments, where the values

of S are observed on the group of running machines without
knowledge of their condition [76].

A detailed description of condition inference techniques and
the use of statistical methods to estimate the limit symptom
value Sy, can be found in Cempel [77]-[80]. A simple solution
for determining Sy, is given by Dabrowski [81]. It is deter-
mined in the way its tail probability does not exceed a given
small level o : P.(S > Sp) < «. Another possible way of
determining Sy, from passive experimental data is based on
the Neyman—Pearson technique [82] of the statistical decision
theory. It minimizes the number of breakdowns at an assumed
and allowed percent of needless repairs A by means of a proper
choice of the breakdown symptom value Sj. According to [78],
this condition of minimizing the breakdown number can be
written as follows:

A=P, /p(s)ds (1
Sy

where p(s) is the probability density function of the condition
parameter .S, and P, is the probability of good machine condi-
tion. Cempel [79] treated observed symptoms as an outcome of
the Weibull-type stochastic process and estimated S using (1).
Additionally, he defined the alarm symptom value S, and esti-
mated it using

Sy

A=P, /p(s)ds. 2)

Sa

E. Sensor Characterization of Nonlinearity

We have discussed several techniques such as ARMA
models, Fourier transforms, and wavelets for feature extraction
in distributed sensor networks. One fundamental question
relates to the nonlinearity of processes. Most physical systems
that we interface with, including ourselves, are complex. They
are composed of various interdependent entities whose collec-
tive behavior and functionality portray a significantly larger
variety compared to each entity. Large-scale distributed sensor
networks fall into this category of complex systems. Devel-
oping models of these systems, computational or otherwise, is
the main imperative for harnessing these systems. The use of
the first-principles knowledge, including the underlying physics
and biology alone, to model these sensor networks is a futile
exercise. This is because such systems, from first principles
standpoint tend to have infinite degrees of freedom (i.e., if we
want to develop rules to track the evolution of such systems,
we need to develop infinitely many of these). Further, these
systems are characterized by multifariously related entities and
events, and the evolution of their behaviors, defined in terms
of states and statuses of their underlying processes, distinctly
marks their dynamics. As these states evolve, the emergent
behaviors seldom follow periodic or similar regular patterns.
This is because most of the real-world processes exhibit non-
linear and chaotic dynamics. Consequently, even medium-term
predictions of their emergent behaviors can be extremely
cumbersome and almost impossible. Evidently, this type of
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system cannot be easily harnessed or controlled. Chaos theory
can provide us with rigorous analytical tools and methods to
develop models of sensor networks which are nonlinear and
complex and, hence, can enable us to control them. The key
idea here is that under steady operating conditions, a complex
system is usually governed by significantly fewer active de-
grees of freedom than those in the first-principles models. In
other words, only a few of the infinitely many, at least several,
degrees of freedom govern the evolution of these systems
under operating conditions. In fact, if we use chaos theory, we
can capture all of the complicated emergent behaviors of a
system using nonlinear models that have two to four degrees of
freedom. Extraneous noise can be captured completely.

In order to understand the underlying dynamics, thorough
sensor signal characterization will be necessary. Sensitive
dependence to initial conditions, false nearest neighbor tests,
Lyapunov exponents will help in characterizing sensor signals.
Bukkapatnam et al. [83], [84] report the characterization of
sensor signals in machining context and prove the existence
of chaos in machining. Such an analysis will be very useful
in real-time situations as the features can be now Lyapunov
exponents, and fractal dimensions. These features will better
capture the inherent nonlinearity of the sensor data than the
traditional feature extraction techniques alone.

IV. DECISION MAKING IN DISTRIBUTED SENSING

We will discuss decision-making tasks involving a large
number of sensors in a network hierarchy in this section. The
sheer number of sensors requires a new paradigm to support
decentralized information processing and distributed decision
making, first at each sensor node and then with collabora-
tion among the relevant devices in the network, to produce
meaningful, system-wide results. Sensor collaboration plays
a central role in making a distributed sensor system more
informative. It will take full advantage of both temporal and
spatial information obtained from different sensors at different
stages in a process and respond rapidly according to different
urgency levels, should it be an immediate, intermediate, or
slow response. Sensor collaboration also provides redundancy
and, thus, enables sensor system self-diagnosis or self-com-
pensation, leading to a higher fidelity estimation of the true
process status. Sensor distribution strategies, as we discussed
in Section II, should aim at optimizing the collaboration among
sensors in a network.

This paper identifies the following major challenges related
to decision making for distributed sensing: 1) distributed and
collaborative decision making; 2) distributed data collection
and process control; 3) self-diagnosis and self compensation
for high system reliability.

A. Distributed and Collaborative Decision Making

A distributed sensor system usually adopts a multilayer, hi-
erarchical structure so that it can easily adapt to complicated
topologies of manufacturing or other physical processes. Ag-
gregating all of the data at the central controller for decision-
making may not satisfy the timeliness requirements for rapid
responses to catastrophic events. Additionally, passing along all

of the data with unnecessary redundancy to the central con-
troller will certainly put a burden on network communication
and could cause serve data congestion and delay, especially for
Internet-based remote diagnosis systems or when wireless sen-
sors are being used.

Ideally, certain event of interest will be detected in a dis-
tributed manner based on the local measurements of smart sen-
sors equipped with local processors. By local information pro-
cessing and exchange, a consensus on a reduced dataset will be
made and sent to a cluster head at the next layer. The cluster head
(serves as an intermediate fusion center) will combine the deci-
sion from the sensors in the same vicinity and decide on what
type of information is to be transmitted to the next layer and
what kind of control decision should be fed back to individual
sensors. In this way, the cluster heads could further compress
the preprocessed data to avoid the creation of a communication
bottleneck within the network. Certainly, it is also of interest to
consider the case where the local decisions made at a number
of sensors are communicated to multiple cluster heads for data
fusion.

The hierarchical architecture designed above enables us to
combine the benefits of the fully distributed and fully centralized
configurations. The fundamentals of distributed detection and
estimation are given in [85]. Either the Bayesian hierarchical
model or the Neyman—Pearson criterion can be used to combine
local decisions at a fusion center to generate a global decision.
Usually, a set of hypotheses will be initiated. Upon new obser-
vations, new hypotheses may be formed and old ones will be up-
dated, combined, or eliminated so that the new set of hypotheses
will generally have a higher probability confidence. One ap-
proach using the Neyman—Pearson formulation is to determine
the optimum local and global decision rules that minimize the
global probability of miss detection (or equivalently maximize
the global probability of detection). When the sensors are de-
ployed so that one observation is independently conditioned on
observations from other sensors, one can show that the data-fu-
sion rules are threshold rules based on likelihood ratios [37] and
then the problem now becomes one of determining the optimal
threshold at each sensor, as well as at the fusion center. For the
recent development of hierarchical data modeling methods for
supporting multilevel decisions, please refer to Wang et al. [86].

B. Distributed Data Collection and Process Control

The advancement of distributed sensing techniques also
provides opportunities for inline automatic control of com-
plex manufacturing systems. In general, an automatic control
strategy is widely used to control an individual machine or
device, where the dynamic equations are readily available to
describe the system behavior. However, it is difficult to obtain a
model to describe a complex manufacturing system where mul-
tiple machines, or variables, are interrelated in a process level.
For such a system, the design of experiment (DOE) methods
[87] is normally employed, performing experiments and ob-
taining empirical models to describe the interrelationships
among various variables. When distributed sensing is available,
the inline sensing capability is greatly improved and some
noise variables can be either directly measured or estimated
through measured quantities. The concepts of DOE-based
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automatic process control are introduced recently to adjust
the controllable variables during production based on inline
sensing data [88], [89]. Fenner, Jeong, and Lu [90] provided a
framework of developing two-stage automatic control schemes,
where the state-space model was used for incorporating sensor
data collected at several process stages.

In building the state-space model of sensor data collected
at various stages for developing a multistage process control
rule, it is important to include the knowledge from the phys-
ical processes for designing distributed data-collection schemes.
For example, when some of the process stages are critical, but
placing sensors there could be technically difficult or costly,
sometimes the physical model, such as the chemical kinetics
SiH, = Si+2H,, allows us to locate other measurable variables
(see [91] for details). In this example, when one Si atom is de-
posited, there are two Hy molecules released in the gas phase.
Thus, the sensor on Hj intensity can tell us how much the Si
atom is deposited.

For handling the possibility of multiple goals and ownerships
in different process stages, the work in [92] of using the game
theory [93] to structure the negotiation and coordination be-
tween partners is needed. This reference provides a framework
of how partners can work together to decide robust process con-
ditions for each process stage. The ideas presented in this section
need to be extended to general distributed framework beyond se-
rially connected multistage manufacturing systems.

C. Self-Diagnosis and Self Compensation for System
Reliability

Even if a single sensor is relatively reliable, the large number
of sensors in a distributed sensor system presents a high prob-
ability that at least some sensors may malfunction. Without
isolating sensor anomalies from underlying process changes,
abnormal sensor readings can cause frequent false alarms and
jeopardize information fidelity. Sensor self-diagnosis identifies
malfunctioning sensors and, thus, improves sensor system
reliability.

Traditionally, sensor system reliability has been ensured by
employing offline gage repeatability and reproducibility (R&R)
calibration [94]. But this can be time consuming and costly for
a distributed sensor system. A sensor failure can be diagnosed
by including built-in test equipment and monitoring a few vital
physical parameters such as voltage or current [95], [96]. How-
ever, several problems arise in implementing such a “hardware”
approach. The monitoring system itself is subject to failure,
monitoring of which requires another test system. This would
prevent adequate monitoring that assures the system work as
intended under all conditions.

Sensor redundancy in a distributed sensor system is the fun-
damental reason to enable sensor self-diagnosis (i.e., it allows
for decisions regarding sensor failure to be based on the outputs
of sensors themselves). The key to detecting sensor failures is
to analyze the residual based on actual redundant observations.
Under normal work conditions, sensor noise should have zero
mean and also show close agreement between the observation
and expected nominal behavior of the system. Any residual re-
constructed from the observation that indicates a discrepancy

between observed and expected system behaviors can help track
the sensor failure that is responsible.

It is noted that residual analysis is also used in statistical
process control (SPC) monitoring for an autocorrelated process
[97], [98]. The difference is that the SPC approach assumes that
sensors are working as intended and the changes are from the
underlying process that is being monitored by the sensors. For
sensor system self-diagnosis, however, we need to project an
observed signal into a subspace that contains only the sensor
noise so that sensor failures can be isolated from the underlying
process changes. To that end, parity space approaches [28], [29],
[99]-[101] developed from control theory for detecting abrupt
changes [102] appear to meet this requirement and may be a
promising technique that is worth further exploring.

According to each type of sensor anomalies (e.g., drift, shift,
or wild reading), subsequent actions for compensation will de-
cide if the reading should be completely discarded or if it may
provide partial information for process fault diagnosis. Prior in-
formation from the historical sensor data, their anomalies, and
corrective actions could be formulated into probability distribu-
tions by using cluster analysis. Combining this distribution with
new sensor data described by the likelihood model character-
izing the current data distribution, one can formulate Bayesian
posterior distributions for predicting sensor failure probabilities
and deciding appropriate corrective actions.

V. EXAMPLES OF APPLICATIONS AND OPPORTUNITIES

This section will present a few examples of applications of
distributed sensor systems. They are mainly based on the re-
search experiences of the authors. The intention is to provide
engineering backgrounds and outline potential applications to
the above discussions on technical challenges and theoretical
developments. It is not intended here to cover the application
domains all inclusively. For a more comprehensive discussion
on applications, please refer to [4], [103], and [104].

A. Structural Damage Monitoring and Maintenance

One of the interesting applications of determining the optimal
locations of sensors is related to the monitoring of the structural
“health” of engineering structures [105]. Researchers have pre-
sented several methods for determining the optimal number and
location of sensors in engineering structures, such as towers,
high-rise buildings, tunnels, and bridges. These methods are
based on different optimization techniques. In most of these
published studies, many variables have been investigated. These
include the number and location of sensors, number of struc-
tural degrees of freedom, number of tests, and number of struc-
tural modes. Almost all of these studies assume that the loca-
tion and the magnitude of damage are known a priori, before
locating the sensors [106]. However, the variability of the loca-
tion of the loading source has not been well investigated. We
illustrate how the optimal locations of sensors (issues related to
Section II) in a complex engineering structure are determined
by citing Ettouney et al.’s paper [106]. They investigate a sus-
pension bridge (Fig. 3) subject to two loading conditions, and
their combination. The first loading condition is the vertically
applied dead load (DL) and the second is the horizontal seismic
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Fig. 4. Optimum sensors location under uniform damage criterion.

loading (SL). The combination of these two loading conditions
is assumed as the basis for any damage that might occur to the
bridge.

They also assume that the number of available sensors for
damage detecting is 20 and that the optimal sensor location is
determined independently from the loading conditions. Fig. 4
shows the optimal sensor location (OSL) when uniform damage
in all of the structural elements is assumed. The figure also
shows that all of the sensors that were computed with the uni-
formity assumption are vertical sensors.

Ettouney et al. [106] use the goal programming technique to
determine the optimal locations of the sensors under the two
loading conditions. The weighting factors for each of the two
optimum conditions were the design load factors applicable to
each loading condition. The resulting OSL for the combined
case utilizes only horizontal sensors and their locations are dif-
ferent than those shown in Fig. 4. Further information is given
in [106].

B. Diagnosis and Prognosis for Equipment and Facility
Through Multisensor Data Fusion

Example 1. Complex Cycle-Based Signals in Sheet Metal
Stamping: Sheet metal stamping is a complex manufacturing
process widely used in the automobile, aerospace, and ap-
pliance industry to produce the metal product by deforming
the sheet metal according to the prefabricated geometry of a
die. Stamping tonnage sensors are used to monitor process
changes and potential process faults. A stamping press with
some process variables is shown in Fig. 5. Four tonnage sensors
(strain gauge sensors) are distributed on the four press uprights
(or on the two linkages). The total stamping force is obtained
by the summation of these tonnage forces. The right graph
insert shows one cycle of a total tonnage signal measured
from a double-action forming process. Based on engineering
understanding, a few features related to certain process faults
are indicated therein. For more details of a stamping process,
please refer to [107].

The tonnage signal is generally known as a functional signal.
Characterization and control of functional signals present
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Fig. 5. Stamping press and tonnage signal features.

challenges related to information processing criteria (Sec-
tion III-B) and feature extraction technique (Section III-C).
Given its complicated contour, it is difficult to benchmark the
shape of the signal under a normal process variation so that a
multivariate statistical control can be established for detection
and monitoring. It is more challenging to develop sensible
information criteria for feature characterization, extraction, and
data compression. Some recent developments are made mainly
using wavelet transform techniques, including multilayer co-
efficient selection criterion based on signal segmentation [49]
as well as a criterion called relative reconstruction error [48].
Empirical evidences showed that they achieved a much higher
data-compression ratio if appropriately implemented. The ton-
nage signal was also used for the purpose of process monitoring
and fault diagnosis through efforts such as feature extraction
[108], [109], sensor fusion [110], and signal decomposition
[111], [112].

Example 2. Diagnostics for Westland Helicopter Main Trans-
mission: Sensor data representation and data fusion is critical
to the distributed sensor problem. Fig. 6 represents two test sce-
narios. For a detailed discussion, the reader is referred to [45]
and [113].

Westland Data obtained from Westland CH-46E aft main
transmission consists of eight accelerometer signals for each
of the 68 no-fault and seeded-fault runs. Only one faulted
component is embedded in the gearbox during data collection.
The types of fault embedded are 1) planetary bearing corrosion,
2) input pinion bearing corrosion, 3) spiral bevel input pinion
spoiling, 4) helical input pinion chipping, 5) collector gear
crack, 6) quill shaft crack, and 7) no defect. During every
experimental run, vibration signals were collected from eight
accelerometers, mounted at different locations on the transmis-
sion at 103 116.08-Hz sampling rate with 16-b quantization.

Mechanical Diagnostics Test Bed (MDTB) is constructed
at the Applied Research Lab (ARL) at Penn State University
to generate a gearbox’s mechanical failure test data. MDTB is
composed of a 30-hp, 1750-r/min ac motor and a 75-hp, 1750-
r/min ac motor. The gearbox is driven by the 30-hp ac drive
motor and the torque is provided by the 70-hp ac absorption
motor. The gearbox tested is the Dodge single reduction helical
gearbox with a reduction ratio of 1:1.5 and a maximum power
rating of 10 hp with an input speed of 1750 r/min. The motors
and gearbox are hard-mounted and aligned on a bedplate which
is able to prevent vibration transmission to the floor. Ten ac-
celerometers are placed on different locations on the gearbox
and torque sensors are mounted on the input and output sides
of the gearbox. The gearbox was run at different loading levels
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in order to accelerate gearbox failures. The data is collected
in 10-s windows at set times and triggered by accelerometer
root-mean-square (rms) thresholds.

The sensor signals in both of these experimental setups were
represented using wavelet transforms (WTs). The WT is capable
of decomposing a signal into different frequencies with different
resolutions [multiresolution analysis (MRA)] (i.e., it provides
time-scale (frequency) representation of a signal). Moreover,
when an orthogonal WT is used, Parseval’s theorem is readily
applicable such that the energy of a signal z(¢) can be related
to the energy in wavelet coefficients and the energy in the trans-
formed domain is partitioned in time and scale space. This dis-
tribution of energy of the signal can be displayed in the form of
two (time—scale plane) or three (time-scale-amplitude) dimen-
sional plots called a wavelet scalogram. Patterns in the scalo-
gram make it possible to visually interpret important signal at-
tributes, such as the pattern of the signal evolution due to a fault
in the gearbox. The scalogram thus can help identify robust fea-
tures to be used in diagnosis and prognosis.

In this example, the Morlet wavelet is used as a prototype
function (mother wavelet). The Morlet wavelet is defined as the
product of a complex exponential and a Gaussian envelope. The
computation of wavelet coefficients is performed by convolving
the signal z(¢) with the Morlet wavelet samples. Patterns in the
scalogram make it possible to visually interpret important signal
attributes such as the pattern of the signal evolution due to a
fault in the gearbox and, thus, the scalogram helps identify ro-
bust features to be used in the classifier as well as the predictor.
The leakage of energy into different bands of frequencies has
a slowly increasing trend in the beginning and as the condi-

tion of the gear reaches imminent failure condition, the slope
tends to be steeper. Based on this observation, a fault severity
index is computed. If the value of the fault severity index crosses
the threshold, it indicates that a defect in the gear is severe and
failure is imminent so that appropriate maintenance action needs
to be taken. The information obtained from the fault severity
index is useful in implementing an anticipatory maintenance
system.

C. Distributed Sensing in Multistage Hot Deformation
Processes

In a hot deformation process (e.g., forging and rolling), there
are multiple, different types of sensors embedded in manufac-
turing equipment and processes. As for the example shown in
Fig. 7, more than 50 sensors are distributed along the production
line of a crankshaft forging process, which includes two parallel
induction heating lines, six forging stations, two quality inspec-
tion stations, plus a number of material handlings and cooling
stations. The duplications of individual sensors are indicated by
a number in the legend of Fig. 7.

The hot deformation process exemplifies many characteris-
tics of a general multistage manufacturing process (MMP) and
the associated distributed sensor system therein. Itis usually dif-
ficult to identify the manufacturing root causes in an MMP since
quality defects that are detected on the current station could be
caused by variation transmission and accumulation from up-
stream stations. When in-process heterogeneous sensors are de-
ployed along the production line to measure quality character-
istics of intermediate products, a distributed sensor system pro-
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vides a greater capability of tracing down a root cause by pro-
cessing quality information retrieved at different stations.

Conventional solutions attempt to apply the statistical con-
trol technique to every single station in an MMP since the root
cause within a single station is easier to identify. The imple-
mentation of this solution is neither necessary nor economical
since it involves obtaining the measurement, constructing the
controller, and implementing control charts at each station. In
fact, this solution overlooks the inherent relationship among dif-
ferent stations. As a result, a vast amount of useful information
is not fully utilized to reduce the number of sensors, actuators,
and control charts. In other words, the in-process data analyzed
by statistical tools will not be effective if there are no method-
ologies to determine the types of data needed and the location
where they should come from. Fundamental research issues (re-
lated to Sections II, III-A, III-B, IV-C) can be summarized as:
1) how to coordinate the information obtained at different sta-
tions; 2) how to quantify the performance of a distributed sensor
system in MMPs [23], [24], [114]; and 3) how to optimally
distribute sensing stations and determine the sensor number at
each sensing station [30], [115], [116]. The application of dis-
tributed sensor systems in MMPs has drawn considerable recent
attention, some of which addresses this hot deformation process
specifically [117], [118].

D. Factory- or Enterprise-Level Distributed Sensing and
Coordinated Decision

Sections V-B and V-C illustrated examples with mechan-
ical systems. This section utilizes semiconductor manufacturing
systems to show the potential of the procedures presented in
Sections IIT and IV in factory- or enterprise-level operations. A
typical factory for manufacturing semiconductor devices (e.g.,
microprocessors, memory chips, and microcontrollers) is orga-
nized around many workstations coordinated with each other for
production scheduling, material handling, and inventory control
policies. Most of the machines in the workstations are equipped
with sensors and controllers for monitoring and controlling pro-
duction. Each batch of products is routed through these work-
stations as the devices are built up layer by layer on the wafer
surface. For efficient use of machines, a lot usually revisits the
workstations many times for different layers of processing. Due
to the possibility of products being rejected or requiring rework,
these routes are often probabilistic. Thus, there are usually many
different classes of lots in the queue of each workstation waiting
for further processing. The classes are differentiated by product

type and, within each type, are differentiated by which stages in
the process the products have gone through.

In real-life applications, various production scheduling algo-
rithms decide which machine shall work on what lot next when it
finishes processing the last lot (or finishes being repaired, which
may happen all too often). Inventory control rules make deci-
sions on when to release a new lot of semifinished products into
the manufacturing line and when to order new raw materials
and components upstream in the factory and supply chain. Until
now, in the semiconductor factory, most production scheduling
and inventory control models plan for a shift or a day ahead of
schedule. With the data collected from various sensors, one can
extend the scheduling and inventory models to dispatch produc-
tion lots and order supplies in real time. The decision models
established in Sections III and IV from various sensor data pro-
vide the real-time status of the product, machine, and process
quality. When these models built on sensor data make predic-
tions about future changes in machine availability or product
yield, the scheduling and inventory models can include those
predictions in its parameter set so that decisions can be made
based on both current and future conditions.

The extended scheduling and inventory models will help
us realize the impact of the sensor information and will drive
new production control policies. For example, when a machine
quality model (built from sensor data) indicates that this ma-
chine is not doing well (such as when many SPC alarms have
occurred), the scheduling algorithm should request preventive
maintenance (and expect an increased likelihood of a failure
until the maintenance occurs). For the workstation containing
the machine, its average throughput will suffer. Thus, the sched-
uling algorithm should re-route some of the lots at upstream
workstations to slow down the use of this workstation. If the
problematic workstation is a bottleneck, the inventory control
algorithm shall cut down the release of new lots into the factory
and reduce the orders of raw materials and components from
the supply chain.

In conclusion, sensor data models will provide a better under-
standing of the functional status of the manufacturing systems.
The average cycle time and inventory cost (and their variations)
should become lower than that without the models built with
sensor information.

E. Integrate Cyber and Physical Spaces Through Wireless
Sensors

Wireless sensors provide an interface between cyber space
and the physical world. Cyber space is built primarily for
communications purpose. The physical world, where data/in-
formation are generated, includes both natural and manmade
systems. The promise of (wireless) sensor networks is to enable
the person-to-things and things-to-things communication by
embedding processing and communication into the physical
world or equivalently presenting the physical world in cyber
space [119], [120]. One application area in the industrial
monitoring and control is the heating, ventilating, and air
conditioning (HVAC) of buildings [121].

In most, if not all, buildings with HVAC systems, the number
of sensor nodes (thermostats and humidistats) used to control
the HVAC system is mainly limited due to the cost associated
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with their wiring connection to the rest of the HVAC system.
Generally, there is less than one sensor node per room in office
areas. As a result, the location configuration of these sensors,
as well as the air handlers and dampers, has to be optimized in
order to have proper HVAC control. However, such a configu-
ration optimization can be quite challenging due to the dynamic
nature of heat sources (moving of people and equipment) and
the frequent physical changes in the buildings, such as the ad-
dition and removal of walls and conversion of office areas to
lab and factory areas or vice-versa. This will lead to an incon-
sistent and/or nonuniform HVAC environment conditions. The
underlining root cause is the lack of sufficient information about
the environment in the building for the HVAC system to make
proper control adjustments at various locations.

By eliminating wiring and, thus, the associated cost, a large
number of wireless sensors may be employed to solve the above
problems. The addition, relocation, and removal of wireless sen-
sors are quite effortless. Redundant nodes may be deployed for
the fault-tolerance purpose. Furthermore, people and equipment
with wireless sensor and/or communication nodes will be able to
communicate with the HVAC system regarding their needs and
environment conditions. An HVAC system will measure its per-
formance according to the comfort level of all objects (people,
equipments, etc.) it serves. The HVAC system may not satisfy
the needs of all objects in its environment but will inform the
objects the possible environment condition changes due to its
upcoming actions. The objects may take certain actions, such
as moving to different locations or changing the physical con-
ditions of the environment (e.g., opening doors, etc.).

The low cost, abundance, and convenience of wireless sen-
sors are not coming without new challenges. Most of the wire-
less sensors do not know their physical positions at the deploy-
ment except their topological links to other nodes in the wireless
sensor networks. Also, they may be moved around for various
reasons. Therefore, a mapping of the physical world onto the
cyber space must be done [119]. The system may be overloaded
with data collected, fundamentally due to the fact that the phys-
ical world generates an unlimited quantity of data for observa-
tion, monitoring, and control. In some cases, the available sensor
nodes are overly redundant as to deteriorate the communica-
tion quality, and the system may need to selectively silence or
lower the transmission frequency of some sensors. These chal-
lenges align with issues addressed in Sections III-A, III-B, and
IV-A. Which sensors are to be selected is again the problem
of the optimal sensor configuration but viewed from a different
angle. The data collected by multiple sensor nodes monitoring
the same room may be inconsistent. The wireless actuators, such
as handlers and dampers, may not have a geometrically cor-
rect association with the wireless sensors and, thus, may lead
to the HVAC changes in the unintended areas. These challenges
will thus demand more robust, collaborative processing (Sec-
tion III-D) and reliable decision-making enabled by self-diag-
nosis and self-compensation capability (Section IV-C).

VI. CONCLUDING REMARKS

This paper is based on a panel discussion which was con-
vened during the 2003 annual meeting of the Institute for Oper-

ations Research and the Management Sciences (INFORMS) in
Atlanta, GA. It discussed the technical challenges related to dis-
tributed sensing, which are grouped into three inter-related cat-
egories of optimal sensor distribution, information processing,
and optimal decision-making.

Advancements in distributed sensing will be expected to gen-
erate a far-reaching and long-lasting impact on every aspect of
our lives. The panel feels that the following factors and their
intricate interactions contribute to the challenges related to dis-
tributed sensing: the complexity of physical systems, the un-
certainty and heterogeneity of information, the high dimension-
ality of sensor space and information space, and the increasing
expectation and requirement on decision-making capability. A
technological breakthrough in distributed sensing will be likely
made by innovatively integrating knowledge and methods of
physical modeling, statistics, operations research, and informa-
tion technology. Consequently, for addressing the wide range of
technical challenges, specific application domains will be ex-
plored first and methodology integration will come later.
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