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ABSTRACT2

The wind energy industry is continuously improving their operational and maintenance practice3
for reducing levelized costs of energy. Anticipating failures in wind turbines enables early warnings4
and timely intervention, so that the costly corrective maintenance can be prevented to the largest5
extent possible. It also avoids production loss owing to prolonged unavailability. One critical6
element allowing early warning is the ability to accumulate small-magnitude symptoms resulting7
from the gradual degradation of wind turbine systems. Inspired by the cumulative sum control8
chart method, this study reports the development of a wind turbine failure detection method9
with such early warning capability. Specifically, the following key questions are addressed: what10
fault signals to accumulate, how long to accumulate, what offset to use, and how to set the11
alarm-triggering control limit. We apply the proposed approach to two years worth of Supervisory12
Control and Data Acquisition data recorded from five wind turbines. We focus our analysis on13
gearbox failures detection, in which the proposed approach demonstrates its ability to anticipate14
failure events with a good lead time.15
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1 INTRODUCTION

Wind energy is among the fastest growing renewable energy sources. The year of 2020 has been marked17
as the biggest year ever with a record 93 GW of new installation in that year (GWEC, 2021). IEA (2020)18
predicted that over 2023-25, average annual wind energy additions could range from 65 GW to 90 GW.19
Adding to the growth, it was also reported that wind energy has become more cost competitive as indicated20
by a decreasing trend of the levelized cost of energy (LCOE) (IEA, 2020; U.S. Department of Energy,21
2021; GWEC, 2021). A significant portion of LCOE is related to turbine performance (availability and22
production) and reliability; for instance, Dao et al. (2019) reported a strong and nonlinear relationship23
between wind turbine reliability and operation and maintenance (O&M) cost. The better the reliability and24
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performance, the lower the LCOE. The challenge is how to keep the O&M cost low while maintaining a25
desired level of performance and reliability.26

Detecting a component failure relies on identifying anomalies or specific patterns in a dataset. The most27
commonly used data inputs for anomaly detection in wind turbines are those from the Supervisory Control28
and Data Acquisition (SCADA) system (de Novaes Pires Leite et al., 2018), failure logs, vibration (Pang29
et al., 2021; Natili et al., 2021), and occasionally particle counts, status logs, and maintenance record.30
Chapter 12 of Ding (2019) explains the two major schools of thought of fault diagnosis and anomaly31
detection: statistical learning based approach (Ahmed et al., 2019, 2021b, 2022; Orozco et al., 2018; Vidal32
et al., 2018; Moghaddas and Sheng, 2019; Xiao et al., 2022), including control chart approaches (Hsu et al.,33
2020; Riaz et al., 2020), and physical model-based approach (Guo and Keller, 2020). There are naturally34
approaches combining the two schools of thought (Yampikulsakul et al., 2014; Guo et al., 2020; Yucesan35
and Viana, 2021; Hsu et al., 2020). In this study, we focus on the statistical learning-based approaches.36

Depending on the availability of data labels in a training set, statistical learning-based approaches can37
be categorized as supervised and unsupervised learning. Supervised learning needs appropriately labeled38
data to train a predictive model, which, once a future input is given, predicts whether the future instance39
is a fault/failure event. Least-squares support vector regression (LS-SVR) (Yampikulsakul et al., 2014),40
support vector machine or regression (Vidal et al., 2018; Natili et al., 2021), random forest (Hsu et al.,41
2020; Pang et al., 2021), XG-Boost and long short-term memory (LSTM) networks (Desai et al., 2020;42
Xiao et al., 2022) are examples of this category. Labeling the training data can be challenging because43
the fault tags are often added manually. Labeling the training data can also be tricky. Usually, the data44
point corresponding to the failure instance is labeled as failure and all else are labeled as normal. Consider45
the typical SCADA data that is recorded every 10 minutes. What such labeling means is that one of the46
10-minute data point is labeled as faulty or failure, the data points even only 10 minutes before and after47
are labeled as normal. But is this a good labeling practice? Since the failures are relatively rare, what such48
labeling generates is highly imbalanced data, causing many off-the-shelf statistical learning method to49
render weak detection (Byon et al., 2010; Pourhabib et al., 2015). If more data points than that at the failure50
instance are to be labeled, then the questions of how many and which data points should be labeled arise51
but are hard to address. Some work (Williams et al., 2020; Desai et al., 2020) choose to label additional52
data points prior to the failure instance—so far such action remains ad hoc.53

When the data label is not available, unsupervised learning is the appropriate approach for anomaly54
detection. Unsupervised learning relies on the structure or pattern of the dataset to separate any anomalies55
from the normal data (Wang et al., 2012). One recent developed approach is based on the minimal spanning56
tree-based distance (Ahmed et al., 2019, 2021b, 2022), which works based on the connectedness of data57
points with their neighbor and identifies anomalies that are sufficiently different from the majority of its58
neighbors. Ahmed et al. (2019) demonstrated the application of such an unsupervised learning approach59
for anomaly detection in hydropower turbines.60

In a real-world problem, there is another category approach, referred to as one-class classification (Park61
et al., 2010) or semi-supervised learning, or in other words, in between the supervised and unsupervised62
approach. The one-class classification uses only the data under normal operation conditions. This could be63
because for a turbine, no failure has been recorded yet, or a small number of failures were recorded but the64
analysts felt they would be better off not using the failure event data. In this case, one can train a model on65
the normal data and test whether a future observation is conformed with the established normalcy. If not,66
then such observation is classified as anomalies. Yampikulsakul et al. (2014) is some of such approach,67
which used the residuals from the modeled normal data to determine abnormality. Technically the control68
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chart-based methods (Hsu et al., 2020; Riaz et al., 2020; Dao, 2021, 2022; Xu et al., 2020) fall into this69
category.70

Despite the advancement in statistical learning and fault detection, most of the fault detection methods71
reviewed above do not accumulate effectively small-magnitude early symptoms over time for symptom72
tracking. As stated earlier, the current approaches respond to a given event individually, to classify it73
as faulty or non-faulty; such approaches can be called as point-wise detection. The lack of symptoms74
accumulation and tracking explains why the current fault detection systems have very limited early warning75
capability.76

Motivated by the desired capability for symptom accumulation and tracking, we take notice of one77
quality control method, known as the cumulative sum (CUSUM) method (Page, 1954, 1961). CUSUM is a78
memory-type control chart and particularly noted for its ability to accumulate consecutive sample points in79
a process over time and thus effectively detect a small shift in the process that memoryless methods would80
otherwise fall short of detecting.81

Even though CUSUM is a well established approach, it is not easy to apply it to turbine failure detection.82
The implementation on the complex turbine SCADA data would require some major modification. For this83
purpose, Dao (2021) adapted a CUSUM-based approach that were typically used to test structural changes84
in economic and financial time series data. The approach cumulated the standardized residuals after the85
generator speed is fit through a linear mode and then used the residuals to establish the monitoring chart, of86
which the control limits were approximated as a function of the data size. This CUSUM-based approach87
was reported to detect two known failures just a few minutes before the failures took place. Xu et al. (2020)88
designed an adaptive CUSUM chart to monitor the residuals after the bearing temperature is fit through a89
random forest model. The alarms from the adaptive CUSUM were issued daily instead of every 10 minutes90
to reduce the alarm frequency, but there was not reporting that how early the failures could be detected.91

Similarly inspired by the concept and method of CUSUM, we set out to develop a symptom-accumulating92
method for fault detection with early warning capability. We targeted weeks ahead detection rather than93
minutes or hours ahead. But the plain CUSUM (also referred to as the vanilla version of CUSUM) is not94
effective in handling the complexities associated with a wind turbine system. The new method needs to95
address the four specific questions:96

• Which fault signals to accumulate? The plain CUSUM accumulates the raw measurements, or its97
sample average. Our research shows that for the turbine SCADA data in a high-dimensional space,98
accumulating the raw measurements or its sample average is not effective.99

• The use of an offset. What is actually accumulated is the difference between the anomaly score and an100
offset value, rather than the anomaly score itself. The offset value is used to prevent the accumulation101
of background noises. This is the aspect that the new method remains the same as the plain CUSUM102
method, but the way to choose the offset will be different.103

• How long to accumulate? In the plain CUSUM method, the accumulation is allowed until the instance104
of failure events. Should we do the same for turbine fault detection, it will cause too many false105
positives. We therefore set an accumulation window size to balance the two types of error in detection106
(i.e., false positives versus false negatives).107

• Setting the control limit. The control limit is also known as the decision threshold. In the plain CUSUM108
method, the control limit is chosen for producing the desirable average run length performance metric.109
In our design, we need to link the decision outcomes with the monetary gains and losses associated with110
the detection performance metrics, specifically, the true positives, false positives, and false negatives.111
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To demonstrate and evaluate the proposed approach, we implement the approach on real wind turbine112
datasets with a focus on gearbox failures. It is not surprising that gearbox is chosen for the demonstration113
purpose as it is the most popular component to investigate (Guo and Keller, 2020; Mauricio et al., 2020;114
Guo et al., 2020; Liu et al., 2021). Not only has it been one of the components that contribute most to115
turbine downtime (Tchakoua et al., 2014; Pinar Pérez et al., 2013; Dao et al., 2019; Pfaffel et al., 2017; Liu116
et al., 2021), but the replacement cost is also prohibitively high (Liu et al., 2021).117

The rest of the article is organized as follows. Section 2 explains the dataset used in this study. Section 3118
provides details about the proposed method, i.e., the answer to the aforementioned four questions. Section 4119
presents the implementation, results, interpretations, and analysis concerning the proposed method. Finally,120
Section 5 summarizes this work.121

2 DATA

The data we use in this work are retrieved from an online open data source (EDP, 2018b). An account122
registration is required but such registration is free. Except for the dataset about the geographical location123
of the turbines, all of the datasets from the open data source, including all that we used, are granted a free124
use CC-BY-SA license.125

The open source provides SCADA datasets of five wind turbines from the same wind farm with a126
two-years time span, which include: a set of signals recorded from the wind turbines, a set of met tower127
data, a failures log, and a status log. The datasets were collected from January 2016 through December128
2017. All these files are provided with the Wind Farm 1 tag on the file names. They are split into 2016 and129
2017 data. The five wind turbines in the data are named as T01, T06, T07, T09, and T11. All belongs to the130
same model in a 2 MW class with three-stages planetary/spur gearbox. The cut-in, rated, and cut-out wind131
speeds are 4 m/s, 12 m/s, and 25 m/s, respectively.132

We mainly use signals from wind turbines and the failures log for the analysis. These data are of good133
quality as there are only a very small amounts of missing values. The two-years recorded signals from five134
turbines are stored in .csv files, forming a table consists of 521,784 rows and 83 columns when combined135
together.136

The rows are the time series. With a 10-minute time resolution, the number of data points per turbine per137
year is 52,560 without missing values at all. For five turbines and two years, the total data amount would138
ideally be 525,600. The actual records of 521,784 account for slightly over 99% of the ideal total data.139

The 83 columns include the turbine ID, the time stamp, and 81 environmental (outside the nacelle) and140
turbine condition (inside the nacelle) variables. The environmental variables include wind speed, ambient141
temperature, wind direction, among others, whereas the condition variables include turbine components142
temperature, speed of the rotating components, active power etc. The 81 variables are not all physically143
distinct. Some are associated with the same physical attribute but provides different statistics, such as the144
average, minimum, maximum and standard deviation of wind speed in the 10-minute periods.145

Among the 521,784 records over two years, there are a total of 28 failures recorded in the log file. The146
source of failures varies but it can be grouped based on the components, i.e., generator, generator bearing,147
gearbox, transformer, and hydraulic group.148

We focus our analysis on the gearbox failure detection. For this purpose, we split the data into 80:20 of149
training set and testing set. This means the first 20 months of data are used for training and the four last150
months are used for test. In other words, the training data covers from January 1, 2016 through August 31,151
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2017 and the test data covers from September 1, 2017 through December 31, 20217. Four gearbox failures152
were recorded for the entire 2-years period, two are in the training set and the rest are in the test set. Table 1153
lists the gearbox failures information.154

Table 1. Gearbox failures log
Turbine ID Time stamp Remarks Training/test

T01 2016-07-18 02:10:00 Gearbox pump damaged In the training set
T09 2016-10-11 08:06:00 Gearbox repaired In the training set
T06 2017-10-17 08:38:00 Gearbox bearings damaged In the test set
T09 2017-10-18 08:32:00 Gearbox noise In the test set

The datasets were previously given as part of two open challenges: The EDP Wind Turbine Failure155
Detection Challenge 2021 and Hack the Wind 2018. The turbine signals data were very clean and well156
organized. As part of the 2021 Challenge, we were supposed to take the data as is. Only some basic data157
cleaning were performed such as removing all the missing values and checking whether data values are158
within reasonable physical ranges. No other information was provided to us (e.g., how the data provider159
pre-processed their data is unknown). We did downsize the data resolution from 10-minute to 1-hour160
averages and normalize the data prior to the implementation of our proposed method.161

3 METHODS

Let us first quickly recap how CUSUM works, which offers the blueprint for the design of our proposed162
method.163

Consider a CUSUM control chart for detecting a change in process mean. Denote by µ0 the baseline164
mean. The input signal is the sample observation, denoted by xt at time t. At any given time, a small165
sample of multiple xt’s, say five of them, are observed. Then the sample average, x̄t, is computed and used166
as the input value to a CUSUM chart. The sample size is denoted by n. When n = 1, i.e., at any given167
time, a single observation is made, then the sample average is the same as the original observation, i.e.,168
x̄t = xt. This n = 1 circumstance represents the majority of the cases when CUSUM is applied. Taking xt,169
the CUSUM method computes a score, through the CUSUM formula,170

Ct = max{0, Ct−1 + [xt − µ0 −K]}, (1)

where K is the offset, and the initial condition, C0, is set to zero. The standard CUSUM separates the171
upward change from the downward change and thus put a superscript “+” on the above CUSUM score, i.e.,172
C+
t , and create a slightly modified formula for C−

t for downward detection.173

Apparently, the CUSUM score, Ct, accumulates the difference of xt − µ0 and K, where xt − µ0 is the174
fluctuation of the process around its baseline mean. To detect, a control limit H is imposed. The score, Ct,175
is compared with H , and an alarm is triggered when Ct exceeds H . The two parameters, H and K, are the176
so-called design parameters of a CUSUM method, which are chosen using the training data. The training177
data are considered all in control, so that CUSUM method falls in the category of one-class classification178
or semi-supervised learning.179

Our CUSUM-inspired method follows the same procedure, but we need to provide our unique and180
specific solutions to the four questions raised in Section 1. Figure 1 illustrates the overall flow.181
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1. What is used as the anomaly score?182

Denote the turbine data matrix as Xm×p := {xtj} where t = 1, . . . ,m, j = 1, . . . , p, and for the whole183
dataset m = 521, 784 and p = 83. For the training data, its m is about 80% of the whole dataset. At any184
time point, we have a single observation of dimension p, denoted by xt := (xt1, xt2, . . . , xtp)

T .185

This xt cannot be directly plugged into Equation (1), because Equation (1) is for a univariate detection,186
meaning that the x therein is of dimension p = 1. We acknowledge the existence of multivariate CUSUM,187
which is of the same concept and uses a similar formula as the univariate CUSUM but can take in a188
multivariate input, i.e., a vector of xt.189

Using a multivariate CUSUM does not produce good detection outcomes for turbine failure detection.190
When we looked into the reasons behind, we think that one previous research provided the explanation.191
Ahmed et al. (2019) argued that in a multidimensional data space, anomaly and fault detection should192
not use Euclidean distances to differentiate data instances, because there is a high likelihood that the193
multidimensional data space embeds a manifold, known as the manifold hypothesis (Fefferman et al.,194
2016). In fact, the existence of manifold is rather ubiquitous and confirmed in many applications since its195
discovery in computer vision (Tenenbaum et al., 2000). A manifold is an inherent data structure restricting196
the reachability of data instances between each other. When such manifold embedding happens, the use of197
Euclidean distance is no longer appropriate and could mislead a detection system. Section 12.3 of Ding198
(2019) presents a detailed account of various distance metrics used in differentiating data instances in199
statistical machine learning. Section 12.3.4 specifically presents an illustration of how Euclidean distance200
mis-characterizes the similarity between data instances, thereby leading to wrong detection.201

In the multivariate CUSUM, the distance matric used is the statistical distance (explained in details202
in Section 12.3.3 in Ding (2019)), which is a variant of Euclidean distance. For multidimensional data203
space embedding manifold, using the statistical distance suffers the same problem as using the Euclidean204
distance.205

The solution for addressing this problem is to use a geodesic distance. But the geodesic distance is not206
always directly computable but often approximated by some other means. Ahmed et al. (2019) propose to207
use the minimal spanning tree (MST) to approximate the geodesic distance. They argued that using MST208
provides one of the best approximations because of two good properties of MST—minimal ensures the209
tightest distance and spanning implies ergodicity. They demonstrate, using 20 benchmark datasets and210
in comparison with 13 existing methods, a clear advantage of using the MST-based anomaly detection211
method.212

Therefore, we choose to adopt the MST approach for our anomaly score calculation. The detailed213
procedure is explained in Section 12.5.2 of Ding (2019), so we will not repeat it here. Also, Ahmed et al.214
(2019) makes their computer code available (Ahmed et al., 2021a), which facilitates the implementation of215
the MST-based anomaly score computing algorithm. The computer code includes the construction of the216
MST on a given dataset, so that users do not need to construct the MST by themselves, either.217

If we treat the MST-based anomaly score computing procedure as a black box, the input to the black box218
is the multivariate vector xt and the output of the box is a unvariate anomaly score. Note that using the219
EDP data for computing the anomaly score, we use the combined data from all five turbines together. Let220
us denote the anomaly score by zt, which is normalized to take a value between 0 and 1. A greater score221
implies a higher possibility for a data point to be anomalous. There are a few variants of the MST-based222
anomaly score due to the continuous development on this topic (Ahmed et al., 2021b, 2022). The specific223
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variant we used for turbine fault detection is the Local MST (LoMST) originally proposed by Ahmed et al.224
(2019) and again exhibited in Chapter 12 of Ding (2019).225

2. How long to accumulate and set the offset?226

Here we discuss the second and third questions together.227

Like all point-wise detection methods reviewed in Section 1, the MST-based methods and its vari-228
ants (Ahmed et al., 2019, 2021b, 2022) do not do symptom accumulation. For this reason, it does not229
include an offset. The concept of accumulation window does not apply, either.230

As shown in Equation (1), the offset, K, is explicitly included in CUSUM. On the other hand, CUSUM231
does not explicitly impose an accumulation window size. CUSUM is designed to detect simple changes232
like a mean shift. It is the fluctuation around the mean, xt − µ0, less the offset K, that gets accumulated.233
This value can be positive or negative. When xt − µ0 −K is negative for multiple steps, it could turn Ct234
to zero, which is known as a reset. With this reset mechanism, CUSUM allows its score to continuously235
accumulate without manually setting the accumulation window size. The duration when Ct is nonnegative236
can be naturally considered as the de facto accumulation window.237

The wind turbine failure detection is far more complicated than detecting a mean shift. It is challenging238
to know around which baseline its anomaly score zt fluctuates. This means that its counterpart of µ0 is239
difficult to decide. What we propose to do is to take a direct difference between zt and K, i.e., zt −K. But240
because K, as an offset, is usually smaller than zt, zt −K tends to be positive and does not create the reset241
mechanism as in CUSUM. If we let zt −K continue accumulating, the accumulation will almost always242
go exceeding the control limit, once given sufficient time, leading to too many false positives. Because of243
this, for our detection method, we impose an explicit accumulation window size, denoted by W , so that the244
accumulation resets when reaching to the limit of the accumulation window.245

We propose to choose the offset K based on the probability distribution of the anomaly scores. The basic246
idea is as follows. In the absence of anomalous events, one anticipates a natural fluctuation in the anomaly247
scores, more or less like a normal distribution. When the actual anomaly score distribution exhibits a long248
tail going beyond the natural fluctuation, the anomaly scores corresponding to the long tail are deemed249
truly anomalous, whereas the normal distribution-like portion, symmetric with respect to the average, are250
considered corresponding to the background noises. Figure 2 illustrates the idea. The vertical dashed line is251
the offset chosen, which separates the density curve into two parts—the blue part is for the background252
noises and the red part for anomalies. The offset is chosen, so that the blue density curve is roughly253
symmetric and the curve beyond that point becomes almost flat. This selection approach needs visual254
judgement, so it does entail certain degree of subjectivity. In this regards, it bears a resemblance with the255
scree plot, which is used to select the number of principal components in a principal component analysis256
(PCA) (Jolliffe, 2002). The scree plot is also a graph plot based tool that needs a visual judgement to decide257
on the particular value to choose. Despite such subjectivity, it is still nonetheless the most widely used tool258
for deciding the number of principal components.259

The choice of the accumulation window size W will be chosen by making use of the training data. A260
number of considerations include how many clusters are produced, how distinguishable the clusters are261
based on the distance between them, and how many clusters actually predict the true failures in the training262
data. True positives way ahead a failure event is most desirable. In practice, it is preferred to tolerate263
certain number of false positives in exchange for detecting the true failure events over the cases of few false264
positives but many missed detections, because the cost of a missed detection exceeds by a large margin265
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that of a false positive. The specific trade off between these cost components is to be optimized using a266
cost/saving utility function, to be discussed in the sequel.267

3. How to set the control limit?268

To determine the control limit, we make use of the information from the failures log to tag the failure269
time and then use the training data to optimize the control limit. Different from the plain CUSUM chart270
that optimizes their average run length performance, we adopt a utility function that connects the failure271
detection performance with monetary gains and losses. The basic idea is to choose a control limit that272
maximizes the true detection, while at the same time regulating the number of false positives at an273
acceptable level. A utility function is an objective function that unifying the gains and losses from different274
actions. The specific utility function is adopted from an open challenge—Hack the Wind 2018 (EDP,275
2018a)—for its practical relevance and realistic monetary parameters (as it is set by a major wind company).276
We believe the function adopted bears general applicability, although the specific monetary parameters277
may be adjusted for particular owners/operators and applications.278

Three detection possibilities are considered: the true positives (TP), the false positives (FP), and the279
false negatives (FN). When a true detection happens, a potential saving is in order. The saving amount is280
related to how early such warning can be issued. Therefore, the TP saving is set in the Hack the Wind 2018281
challenge as282

TPsaving =
∑

i=1,...,#TP

(Rcost −Mcost)

(
∆ti
60

)
, (2)

where #TP is the number of true positives, Rcost and Mcost are the replacement and maintenance cost283
(also known as repair cost), respectively, and ∆ti is the number of days ahead the failure time. The saving284
function in Equation (2) assumes that 60 days before the failure event is where the maximum saving can be285
achieved. The saving decreases as the detection happens closer to the instance of the failure.286

When a false negative happens, it means a miss detection. Then, the cost is the replacement cost, which287
is the most costly option. When a false detection happens, the consequence is an inspection cost, denoted288
by Icost. As such, the FN and FP cost components are, respectively,289

FNcost = #FN×Rcost,

FPcost = #FP× Icost,
(3)

where #FN and #FP are the number of the false negatives and false positives, respectively. The utility290
function, U(H), combines all the saving and cost elements, where H is the control limit. The control limit291
is decided by maximizing the utility function, i.e.,292

max
H

U(H),

where U(H) = TPsaving − FNcost − FPcost.
(4)

In the Hack the Wind 2018 challenge, the early warning is assumed up to 60 days in advance. In our293
study, we extend it to 90 days in advance. This extension is mainly because the source of failures in a wind294
turbine gearbox varies, from one that is temporary and random to a wear-out failure due to a longtime295
running in poor working conditions (Liu et al., 2021). The extension is expected to capture this wear-out296
type of failure. When a failure is not detected before the event, it is considered as a false negative. When an297
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alarm is issued but with no corresponding failure in the dataset, it is considered a FP. In the Hack the Wind298
2018 challenge, a detection within two days of the failure event is also considered a miss detection, i.e., an299
FN, as it is too close to the failure event to prevent the failure from happening. We keep the same treatment300
in this study.301

4. Additional Remarks302

As a summary, our CUSUM-inspired failure detection method entails the following main steps:303

1. Compute the anomaly scores for all data points of interest; both training and test sets.304

2. Subtract the offset value from the raw anomaly scores, so as to flag only those data points with high305
anomaly scores as anomalies.306

3. Using the training data, determine the accumulation window, a maximum time between two consecutive307
anomaly data points of which the anomaly scores are to be accumulated.308

4. Again use the training data to optimize for the control limit H , beyond which the accumulated anomaly309
score triggers an alarm.310

Figure 3 illustrates the step-by-step process of our proposed method when it is applied to the data of T09.311
In the actual analysis reported in the next section, we use the data pooled from all five turbines, but the312
concept and method remain the same.313

4 RESULTS AND DISCUSSION

We implement our proposed method aiming at detecting gearbox failures in wind turbines. In this section,314
we start off explaining further implementation details and the parameters chosen in the proposed detection315
method. After that, we will discuss the results and evaluate the performance of the method.316

4.1 Implementation Details and Parameters317

Prior to the implementation of the proposed method, we perform data preprocessing and variables318
selection. The data is originally a 521,784×83 matrix. We downsize the number of rows by aggregating319
data from its original 10-minute temporal resolution to 1-hour averages. This proprecessing reduces the320
number of rows to 87,052 for all five turbines, or about 17,400 rows per turbine.321

Variables selection is important for screening the available variables into a smaller set of meaningful and322
highly relevant variables. We conducted various tests to reduce variables that have a high collinearity with323
other variables. In the end, we select a subset that consists of gearbox oil temperature, gearbox bearing324
temperature, nacelle temperature, rotor speed, ambient wind direction, and active power. We perform our325
detection method, as explained in Section 3, on the data with this subset of variables.326

The LoMST anomaly score is computed using the code provided by Ahmed et al. (2021a). In producing327
the LoMST scores, a local neighborhood size is needed; for that we use 25, which is an empirical choice.328
The rest of the parameters used in the detection method are: (1) the offset K = 0.3 (2) the accumulation329
window size, W = 7 days, and (3) the control limit, H = 8. In deciding H , the following cost parameters330
are used in the utility function: Rcost = C100,000, Mcost = C20,000, and Icost = C5,000. These cost331
parameters are taken from the Hack the Wind 2018 challenge (EDP, 2018a).332
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4.2 Results333

Figure 4 presents the results from the implemented method on the dataset. Recall that there are four334
gearbox failures recorded within the 2-year time span—two are in the training set and the other two are in335
the test set. All four failures can be detected by the proposed method.336

Table 2 presents the time of alarm of the gearbox failures based on the results in Figure 4. The early337
warning lead time, measured by the alarm-to-failure time, ranges from 21 to 89 days. The average warning338
lead time based on the training set is 55 days. We also took a close look at the nature of the gearbox339
failures. Recall that Liu et al. (2021) classified the faults in the wind turbines gearbox into two categories:340
the wear-out failures and temporary random faults. Note further, from Table 2, that the first and fourth341
failures are caused by gearbox pump and noise, the second failure’s source is not known, and the third is342
from the gearbox bearing. A bearing failure is typically a wear-out type that builds up slowly. Our method343
successfully anticipates this failure, with a 89-day lead time. The second failure is most likely of the similar344
type, but we do not have adequate information, based on the failure remark in the dataset, to be assertive345
one way or the other. The other two failures—the pump and the noise—are more of temporary random346
faults. The lead times of detection are shorter than 60 days.347

Table 2. Gearbox failures detection results summary.
Failure ID Turbine ID Failure time Alarm time Alarm-to-failure

1 T01 2016-07-18 02:10:00 2016-06-27 09:00:00 21 days
2 T09 2016-10-11 08:06:00 2016-07-14 14:00:00 89 days
3 T06 2017-10-17 08:38:00 2017-07-20 18:00:00 89 days
4 T09 2017-10-18 08:32:00 2017-08-26 21:00:00 53 days

4.3 Method Evaluation348

Our proposed method works well in anticipating gearbox failures on the given data. Since the method349
does produce both false positives, in addition to the true detection, we should evaluate the final performance350
of the method using the total saving formula in Equation 4.351

Table 3 presents the saving calculating, as a result of detection performance metrics. We present two352
scenarios: one uses a common control limit and the other uses individual control limits for each turbine.353
Following the approach that decides the common control limit for all turbines, the turbinewise control limit354
could be decided as: 8, 10.5, 18.8, 15.5, and 22 for T01, T06, T07, T09, and T11, respectively. Recall that355
the common control limit is 8. It turns out that the common control limit works better. It does not have356
any miss detection, i.e., #FN=0. As a result, its expected saving for the test data is a positive C130K. By357
comparison, using the turbinewise control limits would miss one true gearbox failure in the test data and358
would therefore result in a negative C25K test case saving, or equivalent, a C25K expense for the test359
cases.360

The analysis presented in Table 3 also reaffirms an important message we articulated earlier, which is361
that detecting a true failure is far more beneficial than reducing a few additional false positives. If we362
look at the number of false positives (column #FP) in Table 3, we can see that using the turbinewise363
control limits is very good at reducing the number of false alarms. Yet, the one missing detection costs364
much more than reducing three false positives in the test data. This is much expected, as the replacement365
cost, the consequence of a missed detection, is twenty times of the inspection cost, the consequence of366
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Table 3. Calculated savings from detection.
dataset #TP #FP #FN Calculated saving

Using common threshold for all turbines
Training set 2 11 0 C53,000.00
Test set 2 4 0 C130,666.67
Training & test set 4 15 0 C183,666.67

Using individual turbine threshold
Training set 2 2 0 C94,000.00
Test set 1 1 1 - C25,000.00
Training & test set 3 3 1 C69,000.00

a false positive. This cost imbalance is generally true, although the specific numerical ratio depends on367
applications.368

To evaluate the merit of the proposed CUSUM-LoMST method, we compare it with the following369
alternatives:370

• Pointwise LoMST. This is the original LoMST method without accumulation.371

• Traditional CUSUM, based on (Dao, 2021). This is the CUSUM without using the LoMST score and372
other modifications made in this paper.373

• Correlation-based feature selection, before applying the proposed CUSUM-LoMST method.374

• PCA-based feature selection, before applying the proposed CUSUM-LoMST method.375

The third and fourth alternatives in the above list are suggested by one of the reviewers for testing whether376
different feature selection approaches could help improve the performance of the proposed CUSUM-377
LoMST method. The correlation-based feature selection is based on (Castellani et al., 2021), which is to378
include the features that have a high Pearson correlation score with the gearbox speed and gearbox bearing379
temperature. The PCA-based feature selection is to use the first few significant principal components of the380
features selected by using the Pearson correlation score.381

Table 4 presents the failure detection results and the respective savings. From the results we can see that382
the two alternative feature selection approaches do not help in this case. Their main shortcoming is that383
they produce more false alarms as compared to the proposed approach. On a positive note, both feature384
selection approaches still yield positive savings on the test data, as they are able to detect the two true385
failures.386

The pointwise LoMST and the tradition CUSUM method do not perform well. The principal problem387
of the pointwise LoMST is its inability to detect the true failures on the test data. This is not surprising,388
as from the get-go, our argument is that the pointwise methods would miss the failure events without389
accumulating the signals. The traditional CUSUM method (Dao, 2021) was able to successfully detect the390
true failures in the test data but did so at the expense of producing a lot more false alarms. In fact, traditional391
CUSUM produced more false alarms than all other alternatives in comparison. Figure 5 presents a small392
section (the first quarter of Year 1) of the CUSUM plot. We notice that the plot suffers from seasonal effect393
and it has to be reset several times; otherwise the CUSUM score will stay outside the control limits for394
very long time. The high number of false alarms eventually forces the traditional CUSUM method to enter395
the region of economic loss (or negative savings) on the test data.396
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Table 4. Comparison of four alternative methods with the proposed CUSUM-LoMST.
Training set

#TP #FP #FN Calculated saving
CUSUM-LoMST
(proposed method) 2 11 0 C53,000.00

Pointwise LoMST 1 13 1 −C139, 666.67
Traditional
CUSUM 2 61 0 −C219,666.67

Correlation-based
feature selection 1 13 1 −C85,000.00

PCA-based feature
selection 1 23 1 −C135,000.00

Test set
#TP #FP #FN Calculated saving

CUSUM-LoMST
(proposed method) 2 4 0 C130,666.67

Pointwise LoMST 0 5 2 −C225,000.00
Traditional
CUSUM 2 26 0 −C6,000.00

Correlation-based
feature selection 2 14 0 C52,666.67

PCA-based feature
selection 2 11 0 C71,666.67

5 CONCLUSION

We propose a method that combines the use of LoMST and a CUSUM approach for detecting anomalies397
and failures. This method is applied to two years worth of wind turbine data for detecting gearbox failures398
in wind turbines. Compared to pointwise detection methods without accumulation or a traditional CUSUM399
method without adaptation to the wind turbine specifics, the proposed CUSUM-LoMST method produces400
better detection outcomes and longer lead time, leading to more savings to the industry.401

Through this study, we would like to offer the following insights:402

• Correctly detecting true failure events with sufficient lead time is far more important than keeping403
the number of false alarms low. This is not to say that reducing false alarms is not important. But a404
detection method that does not detect is practically useless. Until the day when one reaches the ideal405
state of having both high detection rates and low false positive rates, the emphasis should be prioritized406
towards detection capability.407

• Accumulating small-magnitude symptoms is key to enable early warning capability. But the very408
action of accumulation exacerbates the delicate trade off between true detections, false positives, and409
false negatives, which means that accumulation-capable methods need a careful design to strike the410
right balance.411

• For the detection in a multidimensional space, selecting the right variables and reducing them further412
into a scalar anomaly score for accumulation is a challenging job but the final detection performance413
depends heavily on such choices. Our proposed use of the MST-based anomaly scores appears414
advantageous, at least for the data we tested. But we acknowledge that on this aspect much more415
research is needed to make the treatment systematic and less subjective.416
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We did apply the proposed CUSUM-LoMST detection method to other faults in the EDP Open Data,417
which includes those from transformer, generator, generator bearing, and hydraulic group. In those418
detections, our proposed method remains strong in terms of detection power, but the number of false alarms419
increases too fast, overwhelming the benefit of the detections and sometimes tipping the balance over420
towards an overall loss. Continuing the improvement so that the right balance of true detections and false421
alarms can be reached is indeed our ongoing research pursuit.422
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Figure 1. The flowchart of the main steps in the CUSUM-inspired detection method.
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Figure 2. The density curve of the anomaly scores of the entire data points. The vertical dashed line marks
the offset, which is 0.3 for this particular analysis.

Frontiers 17



Latiffianti et al. Gearbox Fault Early Warning Through CUSUM

0.
2

0.
4

0.
6

0.
8

A

O
ut

lie
r 

S
co

re

01−2016 05−2016 09−2016 01−2017 05−2017 09−2017

0.
2

0.
4

0.
6

0.
8

B

O
ut

lie
r 

S
co

re

01−2016 05−2016 09−2016 01−2017 05−2017 09−2017

0
5

10
15

20
25

C

C
um

ul
at

iv
e 

S
co

re

01−2016 05−2016 09−2016 01−2017 05−2017 09−2017

0
5

10
15

20
25

D

C
um

ul
at

iv
e 

S
co

re

01−2016 05−2016 09−2016 01−2017 05−2017 09−2017

Figure 3. Illustration of the actions in the proposed method. In this example, only T09 data is used. In each
of the figures, there are two vertical dashed red lines. The one to the right is the time boundary between
the training and test data. The one to the left is the 60-day mark before the test set. A plots the output of
LoMST anomaly score calculation. B adds the offset, so that only anomaly scores above the offset are
accumulated in the next step. Those scores are highlighted in red color. C is the plot of cumulative anomaly
score, where one can see the effect of accumulation and tracking. The vertical green line indicates the time
of a true gearbox failure recorded in the training data. D adds the control limit for detection, which is the
horizonal red line. With this control limit, it flags two alarms in the training data and none in the test data.
One of the two alarms is a true positive, with the early warning lead time of 89 days and the other is a false
alarm.
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Figure 4. Gearbox failure detection results using the proposed method. These results are obtained by
setting the control limit as H = 8, which is common for all turbines.
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Figure 5. An example of CUSUM plot based on the method in (Dao, 2021). The time axis is in the unit
of 10 minutes, as the method in (Dao, 2021) uses 10-minute data. This plot covers the first quarter (three
months) of the data. In this particular set of data, the plot goes outside the control limit twice; once went
out of the lower limit and once of the upper limit. After going up beyond the upper limit at around 5, 000th

data point, the plot almost consistently stays above the line.
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