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a b s t r a c t

The use of power production efficiency metrics for wind turbines is important for evaluating their
productivity and quantifying the effectiveness of actions that are meant to improve the energy pro-
duction. The goal of this research is not to propose a new efficiency metric since there are already
multiple efficiency metrics widely used in practice: availability, power generation ratio, and power co-
efficient. Our objective here is to sort out the question of how these efficiency metrics are related to, or
different from, one another. We believe addressing this research question has a great degree of practical
significance as it is a question practitioners are often puzzled with. Understanding the similarities and
differences of multiple efficiency metrics may even lay a foundation for the future proposals of new
efficiency metrics. Our evaluation of whether the existing metrics are consistent with each other is
driven by the use of actual data from an offshore wind farm. We observe that the three metrics show
some degree of consistency but the power generation ratio, albeit the least popular, appears more
representative of all metrics and more illustrative of the underlying efficiency. We also found that there is
about 4% efficiency difference between wake-free and in-the-wake turbines for this specific wind farm.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Wind energy is a sector of renewable energy production that
relies on capturing energy from the wind. The wind, the source of
this energy, is highly stochastic and intermittent, so maintaining
the efficiency of the energy production at a satisfactory level is
critical for its broader usage as a power supply. The efficiency of the
energy production can be improved by effective operational con-
trols [1], condition monitoring and preventive maintenance [2],
and/or timely upgrade and replacement of turbine components [3].
A well-defined efficiency metric, therefore, not only provides a
better overview of how efficiently a turbine is running but also
supports various decision-making processes regarding the opera-
tions and maintenance (O&M) of wind turbines and farms by
quantifying the impact and effectiveness of an action that had been
performed or is to be performed.

Various types of efficiency metrics for wind turbines and farms
are available in literature. Depending on context, one may distin-
guish between turbine efficiency, generator efficiency, and
transmission and storage efficiency [4], between aerodynamic ef-
ficiency, transmission efficiency, and conversion efficiency [5], or
between power extraction efficiency and power generation effi-
ciency [6]. To make it clear, in this paper, we focus on wind power
production efficiencydhow well a turbine, as a holistic system,
produces power output given wind resources. We refer to this
power production efficiency simply as efficiency throughout this
paper.

Quantifying the efficiency of wind power production is a chal-
lenging task as the power production involves sophisticated aero-
dynamics and multiple factors, with some of them unknown or
unobservable, affecting the efficiency. Currently, the industry
standard, under IEC 61400-12-1, recommends using power coeffi-
cient [7] established upon significant simplification of the compli-
cated nature of the power production system. Such simplification
sometimes renders the metric inadequate for a proper represen-
tation of the efficiency of wind turbines in operation. Due to these
challenges in efficiency quantification, it is common in practice to
use multiple metrics for evaluating the efficiency of wind turbines
and farms [8].

When evaluating the efficiency based on multiple metrics, an
immediate question to be addressed is whether or not the
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evaluation from each metric draws the same conclusion. In this
paper, we consider three metrics that are most commonly used in
practice, namely, availability, power generation ratio, and power
coefficient, and aim to address the aforementioned question. If the
metrics do not always agree with one another (they indeed do not),
then subsequent questions are how consistent the results based on
the different metrics are and which metric provides better insight
concerning the efficiency of turbines and farms. We try to answer
these questions and make suggestions accordingly.

Other than the three efficiency metrics stated above, there are
more complicated efficiency metrics emerging in the literature, for
example, the new metric recently introduced in Ref. [9]. Although
the efficiencymetric proposed in Ref. [9] is more advanced andmay
gain popularity in the long run, it is not yet widely used as the
aforementioned three metrics and its computation is much more
involved. We decide to exclude this new metric for the comparison
in this paper. On the other hand, the metric in Ref. [9] is calculated
based on power curves (as the fraction of average power curve over
full potential power curve), so it is similar to power generation ratio
in nature. The insight garnered for the power generation ratio could
be possibly used to shed lights on the relationship between the
metric in Ref. [9] and others.

We would like to stress that the goal of this research is not to
propose a new efficiency metric, but instead, it is to address the
question of how the existing metrics are related to, or different
from, one another. We believe addressing this research question is
sufficiently meaningful, as keeping adding new efficiency metrics
without thoroughly understanding the existing ones tends to
confuse the practitioners, rather than helps clarify the matter.
Understanding the similarities and differences of the existing effi-
ciency metrics may in fact lay the foundation for the future pro-
posals of new efficiency metrics.

The task of evaluating the alternative efficiency metrics is not
trivial, primarily because there is no universal criterion deter-
mining the consistency of the metrics. In addition, the intrinsic
efficiency of turbine itself is not directly observable nor is the un-
derlying truth known, so it is difficult to decide which metric is
better and in what aspect. We compare and evaluate the three
metrics concerning how they are related to one another by using a
set of tools of probability distribution, pairwise difference, corre-
lation and linearity. As the metrics are defined over a given time
duration, the analysis results may depend on the length of the time
duration. We consider different time resolutions in analysis to
address this issue.

The subsequent sections proceed as follows. Section 2 presents
the definitions of the three metrics and describes how to calculate
them using turbine operational data. Section 3 examines the re-
lations and differences of the calculated metrics at multiple time
resolutions and determines if they are consistent with each other.
We also analyze whether onemetric is superior to the others if they
are not always consistent. Based on the findings in Section 3, Sec-
tion 4 applies the efficiency metric(s) to characterize the efficiency
of an offshore wind farm with a special focus on the wake effect.
Section 5 concludes the paper.
2. Common efficiency metrics for wind power production

In this section, we describe three efficiency metrics for wind
power production: availability, power generation ratio (PGR), and
power coefficient. We also explain their calculation procedures.

Following the industry standard IEC 61400-12-1 [7], we use 10-
min averaged measurements for calculation of the metrics. Based
on the IEC standard, wind speed is first adjusted by air density
through
V ¼ V 0
�
r

r0

�1=3

; (1)

where V 0 and V are the wind velocity measurements before and
after the adjustment, respectively, r denotes air density calculated
from the measurements of air pressure and air temperature, and
r0¼1.225 kg/m3 is the international standard atmosphere air
density at sea level and 15 �C.

Suppose that we are interested in the efficiency of wind turbines
measured for a specific time duration, which could be a week, a
month, or a year. Consider a weekly resolution as an example. We
then calculate efficiency metrics for every single week and evaluate
the time series of the metrics with the unit time of a week. The
same calculation can be easily extended to other time resolutions.
Let (Vt,rt,Pt) for t¼ 1,…,T denote a data pair observed during a given
time period (a week for weekly resolution), where P represents the
power output measurements and T is the total number of the data
pairs observed during the time period. We calculate a single value
of an efficiency metric for each given time period using (Vt,rt,Pt) for
ct¼ 1, …,T.

2.1. Availability

One of the efficiency metrics used broadly in the wind industry
is availability [10,11] described in the industry standard IEC TS
61400-26-1 [12]. The availability tracks the amount of time in
which power is produced by a turbine and then compares it to the
total amount of time for which the turbine could have produced
power. A wind turbine is supposed to produce power when the
wind speed is between the cut-in and cut-out wind speeds, which
are the design characteristics of a given turbine. The cut-in speed is
theminimumwind speed needed for the turbine to begin operating
and generating power. The cut-out speed is the point at which the
wind speed reaches its maximum level allowed for safe operation
of the turbine. At this speed, the blades are braked and feathered to
stop operation, preventing the turbine from damages that may be
caused by a harsh wind condition [13]. Turbines are expected to
produce power at all times when recorded wind speeds are within
these two limits. If a turbine does not produce power when the
wind conditions are allowing, the turbine is then deemed unavai-
lable. The availability is thus defined as

Availability ¼ #fðVt ; rt ; PtÞ : Pt >0; Vci � Vt � Vco; t ¼ 1;…; Tg
#fðVt ; rt ; PtÞ : Vci � Vt � Vco; t ¼ 1;…; Tg ;

(2)

where #f,g counts the number of elements in the set defined by
the brackets, and Vci and Vco, respectively, are the cut-in and cut-out
wind speeds. The denominator in (2) approximates the total time
(in terms of the number of 10-min intervals) that a turbine is ex-
pected to produce power [14], whereas the numerator approxi-
mates the total time that a turbine does produce power.

2.2. Power generation ratio

While the availability calculates a ratio in terms of the amount of
up running time, PGR defines a ratio relevant to the amount of
power output. The idea is similar to that of production-based
availability, recently advocated by the industry standard IEC TS
61400-26-2 [15]. By contrast, the availability discussed in the pre-
ceding section is referred to as time-based availability. The
production-based availability calculates the ratio of actual energy
production to potential energy production, where the potential
energy production is the sum of actual energy production and lost
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production that is caused by an abnormal operational status of a
turbine (e.g., downtime, curtailment). The lost production needs to
be estimated and its estimation requires detailed information about
a turbine's operating status, not easily accessible to anyone outside
the immediate operator of a wind turbine or wind farm.

Instead of estimating the lost production, we make a revision in
this paper, making the assessment easier to carry out. Our revision
is to use a nominal power curve provided by a turbine's manufac-
turer for calculating the value of potential energy production. The
resulting ratio is in fact the PGRmentioned earlier, which is in spirit
similar to the production-based availability.

A power curve defines power output as a function of wind speed
and estimates power output for a given wind speed. As such, the
potential energy production in the PGR can be written as bPðVtÞ for
given Vt where the function bPð,Þ denotes a nominal power curve.
Then, the PGR of a given time duration (including T observations)
can be computed as

PGR ¼
PT

t¼1PtPT
t¼1

bPðVtÞ
: (3)

IEC recommends that the nominal power curve be estimated by
the method of binning [7]; see Fig. 1. The method first generates
multiple bins with equal size (e.g., 1m/s) partitioning the domain of
wind speed. For each bin, the sample mean of power output is
calculated from the power data whose wind speed falls into the
specific bin. The samplemean together with themiddle point of the
bin provide a point-wise estimate of the power curve evaluated at
the middle point of the bin. Connecting these estimates derives a
piece-wise linear curve defining the nominal power curve. A
nominal power cure, in terms of the point-wise estimates, is usually
provided by the turbine's manufacturer.
2.3. Power coefficient

Different from the availability and PGR, power coefficient
explicitly reflects a law of physics, and it measures the aerodynamic
efficiency of awind turbine. Power coefficient (Cp) refers to the ratio
of actual energy production to the energy available in the ambient
wind flowing into the turbine blades [16]. The available energy in
the wind can be characterized by air density, turbine's blade swept
area (A), and wind velocity. As such, Cp is calculated as
Fig. 1. Manufacturer's power curve. The dots indicate the power curve estimates
evaluated at each bin, and the piecewise linear curve connecting all the dots forms the
nominal power curve. The dashed vertical lines illustrate the wind speed bins.
CpðtÞ ¼ 2Pt

rtAV
0
t
3; (4)

for any given observation t. Note here that the Cp calculation uses
the wind speed V 0 (without air density adjustment) since the
calculation itself involves air density.

For a given time period (say, a week), there are multiple Cp
values; in fact, T of them in total. The Cp values can be plotted
against thewind speed. Then, one can bin the Cp values by groups of
1m/s according to their respective wind speeds and get the aver-
ages of Cp for individual bins. By doing so, a Cp curve is produced, in
a similar fashion as how the nominal power curve is produced. The
maximum value on the Cp curve is chosen as the turbine's repre-
sentative power coefficient [9,17]. Hereafter, we refer to this peak
value on a power coefficient curve as the power coefficient unless
otherwise stated.
3. Comparison of the metrics

We compare the metrics described in the previous section by
using actual operational data provided by an offshore wind farm.
Table 1 and Fig. 2 present some information about the wind farm
and a rough sketch of the wind farm's layout, respectively.

The dataset was produced over a span of four years ranging from
2007 to 2010. It includes measurements which were recorded at
each individual turbine as well as other atmospheric statistics that
were tracked by a meteorological mast. We extract the data needed
for the calculation of the metrics and match the data points for a
turbine and the mast by aligning their respective timestamps. After
such an alignment, any time point with missing data are
eliminated.

Temporal resolutions to be examined include weekly, monthly,
quarterly, and yearly time resolutions with a primary focus on
weekly andmonthly as they provide greater amounts of data points
and detail. Quarterly and yearly resolutions are used for more
general trends and comparisons.

For each temporal resolution, we calculate the three metrics of
availability, PGR, and power coefficient as described in Section 2;
hereafter denoted as M1, M2, and M3, respectively. While the av-
erages of M1 and those of M2 calculated for each turbine are within
a similar range (0.75e1), the averages of M3 are noticeably lower at
the 0.35e0.5 range, about half the values of M1 and M2. This is
understandable as power coefficient (M3) is limited by the Betz
Limit to a theoretical maximum of 0.593, though a commercial
turbine realistically operates at about 0.45 [18]. To make all the
three metrics comparable in magnitude, we multiply M3 by two
and use the rescaled metric (2�M3) for the subsequent analysis.

We first plot the time-series of the three metrics for a peripheral
turbine that locates the closest to the met mast (referred to as WT1
Table 1
Information about the offshore wind farm. The d in the last two rows refers to rotor
diameter. NW-SE and NE-SW denote northwest-southeast orientation and
northeast-southwest orientation, respectively. Values are given in a range or as an
approximation, due to a confidentiality agreement in place forbidding the disclosure
of the exact corresponding values.

Location Europe
Number of wind turbines 30e40
Cut-in wind speed (m/s) 3.5
Cut-out wind speed (m/s) 25
Rated wind speed (m/s) approximately 15
Rated power (MW) approximately 3
Turbine spacing: NW-SE 7e8d
Turbine spacing: NE-SW 11e12d



Fig. 2. A rough sketch of the layout of the offshore wind farm. This wind farm has
30e40 turbines with 20e26 peripheral turbines and 10e15 interior turbines. Periph-
eral turbines are located along the black lines and interior turbines along the gray lines.
A meteorological mast is indicated by a square near the left edge of the farm.

Table 2
Correlation betweenmetrics forWT1. Weekly andmonthly temporal resolutions are
shown.

M1 & M2 M1 & 2�M3 M2 & 2�M3

Weekly resolution (full) 0.975 0.946 0.959
Monthly resolution (full) 0.986 0.966 0.978

Weekly resolution (reduced) 0.843 0.661 0.785
Monthly resolution (reduced) 0.956 0.876 0.929
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hereafter). Fig. 3(a) presents the time-series of the metrics gener-
ated based on the monthly resolution over the four-year span. The
figure demonstrates that the metrics follow similar overall trends,
with peaks and troughs at similar periods of time. The level of
variation associated with the three metrics looks similar. In fact, all
the three metrics have similar coefficients of variation, though the
one for M2 tends to be slightly higherdon average, 0.264 for M2
compared to 0.254 and 0.252 for M1 and 2�M3, respectively.
These patterns and characteristics are consistently observed in the
other turbines on the wind farm. The similar insights can be drawn
for the weekly resolution.

In Table 2, we calculate correlation coefficients between the
metrics for WT1. Similar to the first two rows of the table, the
correlation coefficients are above 0.9 for all turbines, indicating
strong correlations between the metrics. By considering the well-
aligned time-series and the high correlation coefficients, one may
impetuously conclude that the three metrics are consistent with
each other and they can substitute for each other when evaluating
the efficiency of turbines. However, if we eliminate some periods of
nearly zero power production (for example, a period for which any
metric is below 0.2; see Fig. 3(b)), which may be due to pitch sys-
tem faults [19], gear box faults [20], or some scheduled mainte-
nance, or a combination of these reasons, the metrics based on such
a reduced period produce significantly lower correlation
(a ) (b

Fig. 3. All three metrics plotted at monthly time resolution for WT1: (a) for the full period;
time (dashed line).
coefficientsdfor this particular turbine, as low as 0.661 between
M1 and 2�M3 at weekly time resolution. This implies that the
original high correlation derived from the full period data could be
contributed substantially by the non-operating periods of the tur-
bine, which further suggests possible disparity between themetrics
under typical operating conditions.

In the following sections, we use themetric values calculated for
the reduced period only, in order to better differentiate the metrics
in terms of their capability of quantifying the efficiency of turbines.
3.1. Distributions

Fig. 4 demonstrates the distributions of the calculated metrics
for a single turbine, but it is representative of the other turbines as
they all show similar distribution spreads. While M2 and 2�M3
both have relatively broad spreads of data, M1 has amuch narrower
range. A significant portion of its density is concentrated near one
at which the distribution is truncated, with a steep taper to lower
values. In contrast, M2 and 2�M3 both take the shape similar to
the bell-shaped curve with smoother tapers in both directions.
M1's concentration of values makes it difficult to differentiate be-
tween the efficiency of turbine at different time periods. As more
values are within the same range, the variations in turbine per-
formance are concealed. This can potentially mislead turbine op-
erators into believing that the turbines operate at a similar
efficiency level, even though the underlying turbines' efficiency
levels differ.

Such a unique distributional characteristic of M1 can be inferred
by its calculation procedure. As expressed in Eq. (2), the numerator
of M1 counts the number of members in a set that is a subset of the
one associated with the denominator, so it has a maximumvalue of
one at all points in time. This is a desired property for an efficiency
metric, which is not observed from M2 or 2�M3. M2 can exceed
one because manufacturers' power curves display expected power
values as an averaged measure and particular instances of power
production may exceed the expected productions [21]. The value of
2�M3 is bounded from above by the Betz Limit at 1.186 (after
)

(b) after eliminating the periods in which the turbine does not operate for most of the
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Fig. 4. Probability densities of the metric values at weekly time resolution for WT1: (a) M1; (b) M2; (c) 2�M3.
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rescaling), which itself is greater than one. It is interesting to
observe that M2 appears to be bounded by a value similar to 1.186.

The unique property of M1 when combined with its binary
quantification of whether or not power was generated, however,
adversely affects its quantification capability. As long as a turbine is
generating power at a point in time, that point would be counted as
a one. Even some time points with power production that is
significantly lower than expected would still be counted as ones.
Averaging over these counts produces the metric weighted heavily
towards one. Periods with high efficiency (in terms of the amount
of actual power production) look the same as low efficiency periods
as long as the power produced exceeds a low threshold.

The methods calculating M2 and M3, on the other hand, allow
for a sliding scale measure of power production so that they ac-
count for howmuch power was produced. Values of M2 and 2�M3
thus have greater spread and do not concentrate as narrowly
around any particular value as M1 does. This ability to better
distinguish between time periods of differing performance as well
as the distributional features render M2 and 2�M3 stronger
metrics than M1. They allow for a more detailed portrayal of a
turbine's efficiency over time as opposed to M1's more general
overview of whether or not the turbine was in operation.
|
−

×
|

(c )

|
−

×
|

Fig. 5. Magnitudes of absolute difference between metric values at weekly resolution
for WT1: (a) M1 vs M2; (b) M1 vs 2�M3; (c) M2 vs 2�M3. The dashed line in each
plot is the average of the absolute differences in that plot. An absolute difference is
considered as a small difference, if its value is smaller than 0.05, as a large difference, if
its value is greater than 0.15, and as a medium difference, if its value is in between.
3.2. Pairwise differences

Fig. 5 illustrates the absolute difference between the calculated
metrics on a weekly basis. Darker bars indicate the periods of
significantly large differences while lighter bars are for the periods
of smaller differences.

Fig. 5(c) shows that the large differences between M2 and
2�M3 are sparsely distributed through the four years. In contrast,
as shown in Fig. 5(a) and (b), there are significantly more instances
of large value differences between M1 and either of the other
metrics, especially between M1 and 2�M3. This implies that both
M1 and 2�M3 are more similar to M2 than to each other. M1 and
M2 calculate a ratio of the actual performance over the expected
performance, although M1 focuses on the amount of time and M2
examines the amount of power. This sets 2�M3 apart fromM1 and
M2. On the other hand, M2 and 2�M3 quantify the efficiency of
turbine with respect to the amount of power production, whereas
M1 concerns the amount of operational time, which makes M1
distinct from the other two.

In Fig. 5, the large or medium differences tend to be heavily
concentrated within some specific periods, notably in the second
half of 2007 and the first half of 2010. In fact, these periods
represent those in which turbines' true efficiencies are relatively
low. There are two different aspects describing this phenomenon.

First, recall from Fig. 4 that M1 tends to be heavily weighted
towards its maximum, overestimating turbine's efficiency in the
relative scale. If a turbine produced some power for most time in-
stances within a given period, its availability should be close to one.
The large differences between M1 and the other two metrics then
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imply that the turbine was producing some power for most of the
times but the amount of the power production was considerably
low relative to its expectation (in Fig. 3, see the later part of 2007
where M1 is higher than the other two).

Secondly, recall that M3 represents a maximum effect (on the Cp
curve), whereas M2 is an integration effect. For a functional
response, the two effects can be understandably different. The large
differences between M2 and 2�M3 suggest that a turbine pro-
duced a sufficient amount of power only for a small portion of the
given time period. In this case, the turbine's maximum efficiency
measured by 2�M3 is relatively high, but M2 is relatively low
because the turbine did not produce much power on average dur-
ing the same period (see the middle of 2007 and the beginning of
2010 in Fig. 3). M1 also measures an integration effect, but in terms
of the operational time, so the same argument is applicable when
explaining the difference between M1 and 2�M3. Most of the
time, when there is a large difference between M2 and 2�M3, a
large difference between M1 and 2�M3 is also observed (see
Fig. 5(b) and (c)).

All of these observations can be found in the cases of other
turbines as well. Although the concentration periods of large and
medium differences vary, all turbines display the clustering pattern,
and such clusters are closely related to the different characteristics
of the metrics.

When comparing the mean of the absolute differences between
the metrics (indicated by the dashed horizontal lines in Fig. 5), the
disparity between the metrics becomes less pronounced. While a
metric pair with the smallest mean difference varies by turbines,
the largest mean difference is consistently observed between M1
and 2�M3, sometimes by a significant amount than that between
M1 and M2 or M2 and 2�M3. This suggests that M2 has compa-
rably closer values to M1 and 2�M3. As such, M2 is more consis-
tent in value with either of M1 and 2�M3 and its values are a
better reflection of all the three metrics.

3.3. Correlations and linear relationships

As shown in Table 2, we calculate correlation coefficients be-
tween the metrics based on the reduced data set (periods of nearly
zero power production removed). The post-removal correlation is
the highest betweenM1 andM2 for most turbines. The correlations
between M2 and 2�M3 (or equivalently, between M2 and M3) are
also relatively high. For most turbines, the correlation coefficients
between M1 and M2 remain within the 0.8 range at weekly reso-
lution while those between M2 and M3 are generally in the 0.7
range.

The lowest correlations are found between M1 and M3 for all
turbines and time resolutions, with the correlation coefficient
values usually around 0.5e0.6 but dipping sometimes into the 0.4
range. The values displayed in Table 2 are among the higher values
of M1-M3 correlation of turbines. Another turbine has an M1-M3
correlation of just 0.417 for the reduced weekly data. This indicates
that the relationship between these two metrics is much weaker,
highlighting the strength of M2 for its much stronger relationship
with either of the other metrics.

Weekly time resolution is best for highlighting difference in
correlation between metrics. Correlations rise as the time resolu-
tion becomes coarse; monthly, quarterly, and yearly resolutions in
general return a correlation in the range of 0.9. We believe that the
averaging effect when using a coarse time resolution irons out a
certain degree of details, making the metrics based on the coarse
time resolutions less differentiating.

To analyze the consistency of the metrics, we also evaluate the
linearity between any pair of the metrics around y¼ x line. Suppose
that we generate data points (x,y) paired by the values of two
metrics. If the data points perfectly fit to the y¼ x line, an increase
in one metric implies the same amount of increase in the other
metric. As such, their ability to capture changes in efficiency is
identical, or equivalently, they are consistent.

However, as noted earlier, the scales of the metrics are not the
same, e.g., M1 and M2 are about twice of the unscaled M3.
Assessing the extent of linearity around the y¼ x line thus requires
to match the scales between the metrics.

To align the scales, we perform linear regression upon the
different metric pairs. For example, for the M1eM2 pair, we fit a
linear model of M1 ¼ b,M2þ ε to estimate b, where ε is a random
noise term. Let bb denote the coefficient estimate. We then use the
estimate bb to rescale the values of M2, generating scale-adjusted
data points (M1, bb, M2). With the scale adjustment, the data
points should be centered about the y¼ x line. If they show strong
linearity around the y¼ x line, we can conclude the metrics for the
corresponding pair are consistent with each other. To determine
the extent of linearity, the average magnitude of the data points'
vertical distance from the y¼ x line (in an absolute value) is
computed.

Fig. 6 presents the scatter plots of the scale-adjustedmetrics and
the y¼ x line. For the illustration purpose, we show the result of the
peripheral turbine used so far (WT1) as well as the result of an
interior turbine (WT2). For themetrics calculated for the peripheral
turbine, the linear regression yields the scale adjustment co-
efficients (bb) of 0.97, 1.93, and 1.99 for M1eM2, M1eM3, and
M2eM3 pairs, respectively. The coefficient of 0.97 for the M1eM2
pair, for instance, implies that M2 will have the same scale with M1
after multiplying it by 0.97. For the interior turbine, the scale
adjustment coefficients are 0.98, 2.01, and 2.06, respectively.

In the figure, points are more concentrated near where x and y
equal one. Whenever x refers to M1, there is a very apparent clus-
tering of points at x¼ 1 due to the truncation of the distribution of
M1 at one. On the other hand, the data points for the M2eM3 pair
are well spread around the region, a characteristic reminiscent of
the metrics' distributions examined earlier.

After the scale-adjustment, the data points tend to be placed
above the y¼ x line for relatively low x values, e.g., less than 0.8,
whenever y-axis represents a rescaled M3 (triangles and di-
amonds). This confirms the difference between the maximum ef-
fect (for M3) and the integration effect (for M1 and M2) discussed
earlier.

As shown in Table 3, the average distances between the points
and the y¼ x line is the greatest for the M1eM3 pair for both tur-
bines, suggesting that the M1eM3 pair has the weakest extent of
linearity. This reinforces the understanding from the analysis of
absolute differences that M1 and M3 are the least consistent met-
rics, while M2 has stronger relationship with both other metrics.

3.4. Overall insight

According to the above analyses, while all metrics display some
level of consistency, M2 is the most consistent with the other
metrics. The absolute differences in metric values demonstrate that
M2 produces values that are more representative of the three
metrics. Correlations between the metrics also suggest that
changes in turbine performance mapped by M2 are illustrative of
such trends displayed by other metrics. Moreover, the evaluation of
the linearity between the metrics shows that M1 or M3 has a
stronger relation with M2 than with each other. It is not too far
fetched to reach the conclusion that M2 better represents all three
metrics.

Various aspects of our analysis have shown M1's deficiency in
discriminating changes in turbine performance. Practitioners are
well aware of M1's deficiency, which becomes the chief reason to
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Fig. 6. Linear relationships between metrics at weekly time resolution: (a) for a pe-
ripheral turbine WT1; (b) for an interior turbine WT2. Plots generated from scaling
values by the x to y ratio. The dashed line illustrates y¼ x line. The x and y axes vary for
each relationship as defined in legend.

Fig. 7. Range of angles for which the wake of Turbine 1 (upstream turbine) causes
velocity deficit and hence power deficit if a turbine is within the range.
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recently adopt the production-based availability metric. The defi-
ciency ofM3 could sometimes be overlooked, andwe herebywould
like to re-iterate. M3 takes the maximum on a Cp curve. This
maximum does not always effectively reflect turbine performance
as it ignores the performance under some wind conditions that do
not associate with the maximum point. A recent work indeed
demonstrates this shortcoming of M3 by using a set of simulated
data [9].
Table 3
Average absolute vertical distances from the y¼ x line.

M1 vs bb, M2 M1 vs bb, M3 M2 vs bb, M3

A peripheral turbine 0.050 0.068 0.055
An interior turbine 0.046 0.068 0.052
4. Evaluation of wake effect

Depending on the location of a turbine and where the wind
comes from, awind turbine may suffer from a significant amount of
power loss due to wind velocity deficit and turbulence caused by
the operation of nearby turbines; known as the wake effect [22].
Understanding the wake effect is important for maintaining the
power production efficiency of a wind farm via effective opera-
tional controls [23,24] and designing the layout of a wind farm in
preparation [25,26]. In this section, we analyze the wake effect and
its influence on the power production efficiency by using the PGR
(M2) to show the actual use of the metric in practice.

Fig. 7 presents a snapshot of a wake situation (for illustration
purpose only). The incoming wind loses its energy after being
extracted by an operating turbine (Turbine 1), and this energy loss
is revealed by velocity deficit at downstream locations. The level of
the velocity deficit varies depending on the distance from the up-
stream turbine and the angle deviating from the wind direction (q).
The velocity deficit remains observable up to a certain angular
deviation from the given wind direction. If another wind turbine
(Turbine 2) is within this “in the wake” region (where the velocity
deficit is expected; the shaded area), it experiences power deficit as
Fig. 8. Multiple wind sectors. In each sector, the set of wake free turbines versus the
set of turbines in the wake can be confidently determined based on the wind direction
and wind power output data. Some sectors (D2eD4 and D10eD11) are narrower than
others due to the irregular shape of the wind farm at the north-western corner.
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a consequence of the velocity deficit. Given the fixed locations of
the turbines, whether to expect a power deficit and how much
deficit to expect strongly depends on where the wind comes from.
When the wind direction reverses, the role of upstream and
downstream will reverse, too.

To assess the loss in power production efficiency caused bywake
effect, we first need to identify which turbines are free of the wake
and which are in the wake, so that we can compare the power
production efficiency between the two sets of turbines. Since the
members of the two sets keep changing as wind direction changes,
we partition the support of the direction into multiple wind sectors
in each of which the two sets can be determined with confidence
(see Fig. 8). Algorithm 1 describes how we generated the wind
sectors.
Algorithm 1
Wind sector generation.
The basic idea of Algorithm 1 is that, to be a wake free turbine,
the target turbine should not be in the wake region of a nearby
turbine. Two parameters are used to decide the wake region: the
distance between two turbines and the wake angle. The distance
threshold is chosen to be 20d, where d is the rotor diameter, and the
wake angle threshold is chosen to be ±22.5� (45� in total) [27,28].
We consider only peripheral turbines as the candidates for a wake
free turbine. Once the set of wake free turbines for a wind sector s,
FðsÞ, is determined, the set of turbines in the wake, IðsÞ, is taken
simply as the complementary set.

The wind sector generation additionally requires the informa-
tion of wind direction. As such, we now use the data pairs
(Vt,Dt,rt,Pti) for t¼ 1, …,T and i¼ 1, …,n where Dt denotes wind di-
rection and i is an index for n turbines. Different from the previous
analysis in Section 3, we use mast measurements for the wind
speed V to account for the available wind resource that is common
in the local area. The measurements are still 10-min based, and we
use the weekly time resolution considering its effectiveness shown
in Section 3.

To compare the wake-free turbines with the in-the-wake tur-
bines, we calculate the PGR for each group. Let Jwf ðDtÞ and
J itwðDtÞ, respectively, denote the set of wake-free turbines and the
set of in-the-wake turbines varying with wind direction at each
time t. Then, we calculate the group PGR as follows

PGRwf ¼
PT

t¼1
P

i2J wf ðDtÞPtiPT
t¼1

P
i2J wf ðDtÞ

bPðVtÞ
;

PGRitw ¼
PT

t¼1
P

i2J itwðDtÞPtiPT
t¼1

P
i2J itwðDtÞ

bPðVtÞ
:

(5)

Fig. 9 and Table 4, respectively, present boxplots and descriptive
statistics of the group performance. As expected, the wake-free
turbines show a higher power production level, and the differ-
ence between PGRwf and PGRitw is in the range of 4.0e5.3%. In terms
of the mean and median, the difference is 4.4% and 4.0%,
respectively.

Themagnitude of the efficiency loss (PGRwf�PGRitw) is relatively
small compared to the 10% power loss estimate stated earlier [29],
where the percentage was calculated for an offshore wind farm
comprising 20 turbines closely located in a row in a bow shape. For
the wind farm studied in Ref. [29], the turbine spacing (between-
turbine distance) is 2.4 times the rotor diameter (d), which is rather
tight compared to typical turbine spacing. The offshore wind farm
used in this study has the turbine spacing of approximately 7e8d
and 11e12d for the northwest-southeast and northeast-southwest
orientations, respectively. Considering the significant impact of
turbine spacing on wake loss [28], it is not surprising to see the
considerable gap between our result and the result reported in
Ref. [29].

5. Concluding remarks

In this paper, we examined the capabilities of different metrics
for wind power production and compared three metrics broadly
used in practicedavailability, power generation ratio, and power



Fig. 9. Boxplots of the group PGR calculated at weekly time resolution.

Table 4
Descriptive statistics of the group PGR calculated at weekly time resolution.

Mean 25% quantile Median 75% quantile Standard Deviation

PGRitw 0.987 0.932 0.965 1.001 0.113
PGRwf 1.031 0.985 1.004 1.046 0.081
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coefficient. Power generation ratio was used as a proxy for the
production-based availability, due to its easiness in computation.
Nonetheless, power generation ratio itself can be used as a per-
formance metric in practice, as illustrated in Section 4.

This study is important as it provides an answer towhich metric
among the three different kinds is the most accurate and reliable
measure of turbine performance changing over time. We evaluated
the three metrics in various aspects such as (i) probability distri-
butions, (ii) pairwise differences, and (iii) correlations and linear
relationships to determine how representative they are of the data
as a whole.

Through our assessment, we found that power generation ratio
is the strongest and most consistent metric for evaluating the
offshore wind farm used in this study. The probability distributions
of power generation ratio and power coefficient have relatively
balanced tails on both sides of the mode, whereas the distribution
of availability is truncated at a certain point and exhibits a small
spread. In this aspect, power generation ratio and power coefficient
are better metrics as their distributions allow for greater sensitivity
to differences in the efficiency of turbine. When examining the
pairwise absolute differences, the correlations, and the linear re-
lationships between the metrics, we consistently found that the
greatest dissimilarity existed between availability and power co-
efficient; on the other hand, power generation ratio was relatively
well-matched with either of the other metrics. As power genera-
tion ratio was more representative of all three metrics, it could
serve as the most comprehensive and reliable metric.

The analysis applied in this study was based on the data pro-
vided by a specific offshore wind farm. As such, we admit that the
analysis results may not readily extend to other wind farms,
although the procedure of analysis and examination is generaliz-
able. Our experience indicates that the insights garnered here
should also have good potential for generalization. Still, considering
substantially different characteristics between onshore and
offshore wind farms [30], extending this study to other wind farms,
especially to onshore farms, would be interesting and useful while
confirmingwhether the trends found in this study exist for farms in
different environments.
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