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Abstract— Anomalies are data points or a cluster of data
points that lie away from the neighboring points or clusters and
are inconsistent with the overall pattern of the data. Anomaly
detection techniques help distinguish the anomalous observations
from the regular ones, and thus provide the basis for developing a
standard performance guideline for process control. The process
of identifying anomalies becomes complicated in the absence
of labeled training data as in supervised learning. Moreover,
Euclidean distance between two points is less likely able to
reflect the intrinsic structural distance imposed by the under-
lying manifold structure. In this paper, the authors propose a
minimum spanning tree (MST)-based anomaly detection method.
The merit of the method is that an MST provides a new
distance measure, capable of capturing the relative connectedness
of data points/clusters in a complicated manifold, and could
be a better (dis)similarity metric, than the simple Euclidean
distance, to identify anomalies in unsupervised learning settings.
The proposed method is compared with 13 popular anomaly
detection methods on 20 benchmark data sets, demonstrating a
considerable improvement in its ability of identifying anomalies.
Furthermore, the MST-based anomaly detection is applied to
the data set from a hydropower turbine and demonstrates
remarkable detection competence.

Note to Practitioners—This paper is motivated by the problem
of unsupervised anomaly detection in a hydropower generation
plant, which operates with turbine systems that are instrumented
with dozens of sensors. Each turbine has subcomponents or func-
tional areas such as several bearing systems, a generator, and so
on. Sensors collect various types of data in real time such as
temperature of oil inside the bearing systems, temperature of
the bearings, ambient temperature, vibrations in each functional
areas, a variety of harmonics in functional areas, temperature
of the coil in the generator, and many more. In total, each
turbine collects more than 200 attributes from its sensors. The
sensor data are then stored in a control system and kept as
time stamped historical data points. When a service/maintenance
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engineer suspects that there is a malfunction in a turbine, she/he
extracts a data set from the control system that contains the
collected sensor data for that turbine for the selected period of
time (few weeks to few months), and then stores this data in a
relational databases or simply in a comma separate value (csv)
file for further analysis. The objective is to efficiently identify and
isolate anomalies in the turbines. Toward this goal, we propose a
new solution for tackling this challenging problem, which is an
unsupervised method based on the concept of MST. The proposed
method can be used as a competitive tool to aid the practitioners
in their search of anomalies for making their systems better.

Index Terms— Geodesic distance, hydropower generation
plant, minimum spanning tree (MST), process automation,
unsupervised anomaly detection.

I. INTRODUCTION

ANOMALY detection techniques are supposed to identify
anomalies from loads of seemingly homogeneous data

and doing so can possibly lead us to timely, pivotal, and
actionable information. Detection of anomalies can be linked
to numerous real-life applications including but not limited
to credit card fraud detection, cyber security, medical image
analysis, surveillance, and industrial process safety. Accurate
and timely detection of anomalies can save us from potential
human, financial, and informational loss.

There are three broad categories of anomaly detection
approaches, depending on the labels of the data in a training
set. Supervised anomaly detection comes into play when we
have appropriately labeled training data in advance (both
normal and abnormal) so that we can train a model based
on these labeled data and use it to decide the labels of future
data. Support vector machine (SVM) [1] or artificial neural
network [2] are the examples of this approach. However,
when we have only normal instances and no anomalous
data, we can still use the normal data to train a model and
classify future observations as anomalies if they deviate from
the normalcy. This normal-data-only approach is known as
semisupervised anomaly detection. One-class SVM [3] falls
under this category. The most difficult scenario is the absence
of any label of the data. As a result, it is not possible to conduct
a supervised training. One, therefore, has to rely entirely on
the structure of the data set and detect the anomalies, if any,
in an unsupervised manner. This last category is known as
unsupervised anomaly detection.

1545-5955 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6936-074X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

In this paper, it is the last category of unsupervised anomaly
detection we are concerned with. Our problem is motivated
by such a need encountered in a hydropower generation plant,
which operates with turbine systems that are instrumented with
dozens of sensors. Each turbine has subcomponents or func-
tional areas such as several bearing systems, a generator, and
so on. Sensors collect various types of data in real time such
as the temperature of oil inside the bearing systems, vibrations
in each functional areas, a variety of harmonics in functional
areas, and many more. In total, each turbine collects more than
200 attributes from its sensors. The sensor data are then stored
in a control system and kept as time stamped historical data
points. Anomaly can be triggered from various sources and
can cause a range of problems. For instance, an anomaly can
be overheating of bearing oil and metal components, vibrations
from bearings, low active power, or a combination of values
from several components producing an out of control situation.
To protect the health of components, it is vital to identify the
anomalies as they appear.

When a service/maintenance engineer suspects that there is
a malfunction in a turbine, she/he extracts a data set from
the control system that contains the collected sensor data
for that turbine for the selected period of time (few weeks
to few months), and then stores this data in a relational
database or simply in a csv file for further analysis. Star-
ing at a spreadsheet of data, a service/maintenance engineer
often wonders if there is an automated, efficient way to
isolate the anomalies in the turbines. This problem falls
under unsupervised anomaly detection because the historical
data set in the spreadsheet almost surely have both normal
data and anomalies. It is just that the service/maintenance
engineers do not know which is what. What makes this
problem more challenging is the number of attributes in
the data space, amounting to a few hundreds and making
a low-dimensional visualization difficult to carry out. This
paper was in fact derived from the discussions with industrial
collaborators on how to develop analytic algorithms that
could adapt to analysis of large volumes of multidimensional
data.

One fundamental issue in anomaly detection is proving
the distinctness of anomalous observations relative to the
normal observations. It is the absence of any learned rule from
training data in the unsupervised setting that makes it a harder
problem. The most commonly used dissimilarity matrix in the
literature is still the Euclidean distance or some of its statistical
variants such as the Mahalanobis distance [4]. Simply put,
if ‖A − B‖2 > ‖A − C‖2, it implies that A and C are
more similar. When a minority of data points are dissimilar
from a majority of data points, then the minority of data
points is considered an anomaly. Zimek et al. [5] observed
that the Euclidean distance-based metrics lose its effectiveness
in structured data spaces. To solve this problem, several
schools of thought have been researched from different per-
spectives; we will provide a detailed account of the alternative
approaches in the next section of literature review. Here,
we wish to stress one important revelation of why Euclidean
distance does not work well in structured data spaces, as first
reported in [6].

It was argued in [6] that when a data space embeds an
inherent structure forming a nonlinear manifold, the Euclidean
distance for any two arbitrary points on the nonlinear manifold
is unlikely to reflect their intrinsic similarity; please refer to the
illustrative example in [6, Fig. 3]. The conclusion in [6] is that
a geodesic distance must be used in a nonlinear manifold to
reflect accurately the distance between the data points. We note
that although a complicated structure happens more frequently
in a high-dimensional space [5], it could indeed happen to low-
dimensional spaces too, so that the Euclidean-based distance
metric loses its effectiveness in low-dimensional spaces as
well. As a matter of fact, the illustrative example in [6, Fig. 3]
is in a 3-D space.

Geodesic distance is the minimum possible distance
between two points in a curved surface like the surface of
the earth. It was also shown [6] that as the number of
data instances increases, the shortest path distances among
data instances provide the best approximation to the geodesic
distances. This important insight plays a vital motivational role
for our research reported in this paper, as what we propose
here is to use a minimum spanning tree (MST) to provide
an approximation of geodesic distances in a structured space
and then use it as the (dis)similarity metric. More specifically,
we model the data observations as a network of nodes where
edges represent the Euclidean distance from one another.
An anomalous node would be the one which is less connected
to its neighboring nodes. An MST is a measure that can
capture the relative connectedness among the nodes, while
at the same time, approximates the geodesic dissimilarities
among observations forming a nonlinear manifold. It has been
shown in the literature [7]–[9] that MST is indeed a capable
approximation of geodesic distances in a high-dimensional
data space embedding complicated structures.

There are several positive aspects associated with the pro-
posed approach. First, the distance between two nodes in
an MST, with the exception of the immediate neighboring
nodes, is no longer the direct Euclidean distance between
them; rather, it is the new dissimilarity metric which takes into
account the overall connectivity among data points reflecting
the complexity in a structured data space. So, the MST-based
dissimilarity measure is a good candidate to approximate the
geodesic distance and has the potential to overcome the limi-
tation of direct Euclidean distances. Next, to take into account
the presence of clusters of different shapes and densities,
we develop MST locally and compare a node’s connected-
ness with its neighboring cluster only. Doing so enhances
the detection ability of the local, point-wise anomalies. The
numerical analysis in comparing our proposed method with
13 other anomaly detection methods on 20 benchmark data
sets demonstrates the superiority of the MST-based approach
and supports the claimed merit.

We are aware that MST has been used to find anom-
alies [10]–[14]. The objective of most of them [10]–[12], [14]
is to isolate the clustered anomalies by removing the links
of the global MST one by one. Our attention in this paper
is more about local, pointwise anomalies. What was done
in [10]–[12] and [14] is similar to Stage 1 of the proposed
method (more details later), which is really a preprocessing
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step in our method. Our main attention is on Stage 2, the local
anomaly detection. The method in [13] falls in the category
of semisupervised anomaly detection, which is fundamentally
different from the unsupervised problem we deal with. Apart
from that, our proposed approach uses neighborhood-based
local MST which is rather different from the concept of
k-point MST used in [13].

The rest of the paper unfolds as follows: Section II sum-
marizes some of the existing approaches in the anomaly
detection literature with their relative merits and drawbacks.
Section III describes the main idea of our proposed approach
and the steps of the algorithm developed. Section IV presents
the comparative performance of our method with respect to
13 other alternatives on 20 benchmark data sets. Section V
analyzes the hydropower data set and flags the potential
anomalies. Finally, we conclude the paper in Section VI.

II. LITERATURE REVIEW

Anomaly detection methods in the literature can be catego-
rized into four major domains depending on their criteria of
identifying anomalies. They are: distance and density-based
methods, clustering-based methods, subspace-based methods,
and ensemble-based methods.

We want to stress that a common thread in almost all the
methods is the use of Euclidean distance-based dissimilarity
metric. This is certainly true in the distance-based methods
in which a point is considered an anomaly if it lies further
away from most of the points [15]. The distance-based crite-
rion entails a number of variants to handle the complexity
in real life. For instance, the k-nearest neighbor (k-NN)-
based methods compare a candidate data point with its k-
NNs, rather than all the data points, because it was believed
doing so enhances the detection capability [16]–[18]. The
density-based criterion is another variant, in which a point is
considered an anomaly if the density around it is considerably
lower than the density around its neighbors. The local outlier
factor (LOF) [19], which is by far the most cited work
in the anomaly detection literature, along with some of its
variants [20]–[22] falls under this category. In the density-
based methods, the data density surrounding a candidate point
is calculated based on the pairwise Euclidean distances.

The density-based methods provide a different perspective
for identifying anomalies, which is to consider the data clus-
tering tendency. According to [23], there are three categories
of clustering-based anomaly detection algorithms. Methods
in [24]–[26] fall under the first category, which identify
the instances that do not belong to any regular cluster as
anomalies. The second group of clustering technique is a
variation of the first group and uses a clustering algorithm
to detect clusters, and then calculate an anomaly score by
taking the distance from a point to its nearest cluster center.
Both of these groups do not take into account the anomalies
that can also form clusters, and in those cases, such methods
will fail to detect these anomalous clusters. The third category
of clustering-based algorithms [27]–[30] were introduced to
tackle this problem which assumes that normal observations
belong to large and dense clusters, whereas the anomalous
observations belong to small and sparse clusters or lies further

away from the cluster centroid. The clustering-based methods
look at the distance measure differently, mostly in the form
of between-cluster versus within-cluster distance comparison.
Nonetheless, the Euclidean pairwise distances are still funda-
mental to these methods.

The use of Euclidean distance-based metric loses its effec-
tiveness in a data space embedding inherent structures, which
is mostly likely of high dimensionality. Several approaches
were carried out to resolve this issue from different direc-
tions. A greater effort of addressing the detection issue is
the school of methods generally known as the subspace-
based methods, following the thought that one should look
for anomalies only in relevant subspaces rather than searching
them in the entire space [5]. Of course, the challenge lies in
which subspace to search. For instance, principal components
analysis (PCA) [31] renders the subspace that has the largest
variances most relevant, while multidimensional scaling [32]
selects the subspace that preserves the interpoint distances in
their low-dimensional representation. They are both capable
of preserving the original data space structure in linear vector
spaces, but they tend to lose the data structure in the presence
of nonlinear manifolds [6].

Many other variants of subspace-based methods exist.
A grid-based subspace clustering [33] was proposed for
searching sparse, rather than dense, grid cells to report the
objects contained within those sparse grid cells as anomalies.
High-dimensional outlying space miner [34] ranks a point
as an anomaly in any subspace if the sum of its distance
from its k-NNs crosses a predetermined threshold. Subspace
clustering [35] can be also helpful as anomalies are found in
abnormally few clusters or low-dimensional clusters. Subspace
outlying degree (SOD) [36] detects an anomaly based on
its deviation to the subspace spanned by a set of reference
points. High contrast subspaces (HicS) [37] relies on finding
those subspaces where attributes are correlated (statistically
dependent). GLOSS [38] suggested that global neighbor-
hoods should be considered when detecting anomalies locally
in selected subspaces. Subspace methods undoubtedly made
progress in the unsupervised anomaly detection literature. But
fundamentally, finding out the right subspaces to explore is
still a difficult problem to solve.

Aware that we cannot rely on any single detection technique
to detect different kinds of anomalies, people simply decide
to aggregate them together, forming the school of ensemble-
based anomaly detection algorithms [39], [40]. One unsolved
concern of such techniques is how to combine scores from
totally different methods. In addition, we also need to ensure
the diversity and accuracy of the chosen methods; otherwise,
final solution would be biased from the similar errors.

In a nutshell, a blank in the anomaly detection research
waiting to be filled in is a method which is capable of
detecting local, pointwise anomalies in a structured data space.
Instead of making incremental improvements over any one
of the existing methods, our research shows that we need
to rethink the fundamental issue of how we differentiate
data instances in unsupervised learning settings. The current
reliance on Euclidean distances appears to run out of steam.
In this paper, we introduce a suitable dissimilarity metric
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Fig. 1. Formation of an MST. Left: complete graph. Right: MST.

that approximates the intrinsic distance of data points in the
original feature space. Our proposed approach is an important
attempt to provide a solution to this challenging anomaly
detection problem in an unsupervised setting.

III. MST-BASED ANOMALY DETECTION METHOD

As mentioned earlier, our main focus is to come up with
an MST-based distance metric which reflects the dissimilarity
among anomalies and normal data points in structured data
spaces. We would first like to provide a brief background
on MST.

To understand the MST, let us consider a connected undi-
rected graph A = (V , E), where V denotes the collection of
vertices or nodes and E represents the collection of edges
connecting these vertices as pairs. For each edge e ∈ E ,
there is a weight associated with it. It could be either the
distance between the chosen pair of nodes or the cost to
connect them together. An MST is a subset of the edges in E
that connects all the vertices together, without any cycles and
with the minimum possible total edge weight. This total edge
weight is the sum of the weights of the individual edges,
also known as the total length or total cost of the MST.
If we use the Euclidean distance between a pair of nodes
as the edge weight, then it is called the Euclidean MST.
Consider the example in Fig. 1, where V = {1, 2, 3, 4} and
E = {e12, e13, e14, e23, e24, e34}. Edges in E are all different
in length. If we want to connect all the nodes in V without
forming a cycle, there could be 16 such combinations with
only one having the minimum total edge length; that one is
the MST for this connected graph.

If we consider data instances as vertices and the Euclidean
distance between any pairs of data points as the edge weight,
then we can construct an MST to connect all the nodes. There
are three well-known algorithms ([41]–[43]) that can find
the MST, given a graph. Although the distance between a pair
of immediately connected nodes is still Euclidean, the distance
between a general pair of nodes (i.e., data points) is not.
Rather, it is the summation of many small-step, localized
Euclidean distances hopping from one data point to another
point. As the MST reflects the connectedness among the data
points in a nonlinear manifold, the MST-based distance is the
geodesic distance between two data points, which, according
to [6], provides a better metric to differentiate them.

Using MST helps address another complexity often encoun-
tered in anomaly detection, which is to detect pointwise anom-
alies in the presence of anomalous clusters. Fig. 2 presents

Fig. 2. Pointwise anomalies versus anomalous clusters.

an illustrating example in which there are well-separated four
clusters whose structures are not difficult to identify. The star-
shaped symbols represent the local anomalies relative to their
nearest cluster. Cluster 4 itself is an anomalous cluster whereas
clusters 1, 2, and 3 are regular clusters. Existing anomaly
detection methods, such as LOF [19], adjust their view field
on anomalies by setting different values of the nearest neigh-
borhood, k—when a small k is used, the local anomalies are
detected but the anomalous cluster 4 will be unidentified, while
when a large k is used, all the instances can be separated into
two parts, namely, Group 1 and Group 2, in which Group 2
contains cluster 4. Under that circumstance, one has to pay
the price of not detecting the local anomalies in Group 1.
The reason that using MST can help is because MST can be
used as a clustering tool [10], [12] to isolate the anomalous
clusters first. Then, it can be refined to define the dissimilarity
distances in a local setting. This thought points to a two-stage
procedure, which is to remove the global anomalous clusters
first and then detect the local pointwise anomalies later; both
stages use MST as the common methodological foundation.

Specifically, our detection algorithm proceeds as follows.
The first stage is to identify the anomalous clusters, if they
exist. The procedure is similar to the existing work of how
MST is used [10]–[12]. First, we build a global MST using
all the data points. The specific MST construction algorithm
we use is in [41]. After the formation of the global MST,
we then look for a long edge and treat it as the connecting
edge between the anomalous cluster and the rest of the MST.
Once this edge is disconnected, it separates the MST into two
groups, and the smaller group is considered an anomalous
cluster.
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Fig. 3. Distribution of MST edges.

For this purpose, we suggest using the control limit
approach, μ + q · σ , as commonly used in the statistical
quality control [44], to flag the unusually long edges. Here,
μ represents the average of the edge weight and σ represents
their standard deviation. The choice of q depends on the
data set and the distribution of edge lengths. Following the
practice in statistical quality control, we suggest plotting the
empirical distribution of the edges in the MST and then
selecting q corresponding to an α probability, such that an
edge is considered unusually long only if it is longer than
(1 − α)100% of all edges. Fig. 3 presents an example of
the empirically estimated density curve of the MST edges.
In practice, the distribution does not always follow exactly
the normal distribution, and the edge length distribution is
different for different applications. For this reason, using
the edge length distribution specifically estimated for each
application to set the corresponding q adapts the selection
of parameters to individual circumstances and is thus more
robust. In the application cases we experiment with, we find
that q = 3 works reasonably well for most of the data sets.
In the example shown in Fig. 3, q = 3 is corresponding
roughly to α = 0.27%. This edge deletion procedure will
be iterated on the larger remaining group and see if there is
another, less dominating anomalous cluster, until there is no
anomalous long edge detected. This procedure is equivalent to
a Phase I analysis in the statistical quality control [44].

Once the clustering decomposition stops in the first stage,
we then move on to the second stage of identifying pointwise
anomalies, which is also the main contribution of our work.
In the second stage, we go into the neighborhood level for
each data point to determine its possibility as an anomaly.
The neighborhood is determined by the number of NNs and
parameterized by k. We will come back later to discuss the
procedure of selecting the value of k, but for now, let us
assume we have a predetermined value for k.

Denote by R the rest of data points after the anomalous
clusters are removed in Stage 1. For any given data point
in R, first isolate its k-NNs and treat them as this data point’s
neighborhood. Then, build an MST in this neighborhood.

Fig. 4. Local MST and LoMST score. The total edge weight of the local MST
for N0 is its LoMST score, i.e., WN0 = E01 + E12 + E23 + E04 + E45 + E36.

Considering the nature of these neighborhood MSTs, they are
referred to as local MSTs (LoMST). The total edge length of
the LoMST associated with the original data point is called the
LoMST score for this data point and is considered the metric
measuring its connectedness with the rest of the points in the
neighborhood, as well as how far away it is from its neighbors.
For this reason, the LoMST is used as the differentiating metric
to signal the possibility that the said data point may be an
anomaly.

Consider the illustrating example in Fig. 4. Suppose that we
have chosen k = 6 and start with data point N0. Then, we can
locate its neighbors as N1, N2, N3, N4, N5, and N6. The
MST construction algorithm connects N0 to its neighbors in
the way as shown in Fig. 4. For N0, the total edge weight is
WN0 = E01 + E12 + E23 + E04 + E45 + E36, which is deemed
the LoMST score for N0. This procedure will be repeated for
other data points. Fig. 4 shows another MST, which is for N5
in the dotted edges.

The LoMST score for a selected observation will be com-
pared with its neighbor’s score. Comparison can be done
in two ways. We can either compare W with the mean of
the neighbor’s scores or with the mean-to-standard devia-
tion ratio of the neighbor’s scores. Our analysis suggests
that both comparison approaches have their own advantages
depending on the structure of the data set. When there are
numerous anomalies, almost forming an anomalous cluster
within a neighborhood, it would be better to use the mean-to-
standard deviation ratio, as the mean of the neighbor’s LoMST
scores are severely contaminated by other anomalies. However,
when the anomalies are very few, pointwise scattered around,
the mean of the LoMST score works just fine. Considering
that we have a first stage to remove some of the anomalous
clusters, in this second stage, we then use the mean comparison
of LoMST scores as our default approach.

The step of comparison will be repeated |R| times covering
all the nodes in R. Then, the comparison score will be
scaled between 0 and 1 using the maximum and minimum
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Fig. 5. Flowchart of the proposed method.

value of the scores. From now on, we call the normalized
scores as the LoMST scores. After that, these LoMST scores
will be sorted in decreasing sequence, where a greater score
implies a higher possibility to be an anomaly. To compile
a list of anomalies, we follow the common approach in the
unsupervised learning setting, which is to select a prescribed
cutoff value n and flag the top n instances on our rank
list as anomalies. One main reason behind such a detection
procedure is that unsupervised detection methods tend to
have a lower detection capability and higher false alarm rate,
as compared to general supervised learning algorithms. As a
result, unsupervised detection methods are typically used as
a screening tool, flagging potential anomalies to be further
analyzed by either a human operator or some more expensive
procedure. A cutoff is therefore used to ensure the subsequent,
more expensive, or time-consuming step practical and feasible.

For better technical understanding, the algorithm steps are
summarized in Algorithm 1. In addition, a flowchart of the
proposed method separated into two stages is also highlighted
in Fig. 5.

Now, let us get back to the issue of selecting a suitable value
for k. The difficulty in choosing k in an unsupervised setting
is that methods like cross validation that work for supervised
learning do not apply here. Our approach is then based on the
following observations, illustrated in Fig. 6. When we plot the
average LoMST scores for a broad range of k (here 1–100),
we observe that at small k values, the average LoMST score
tends to fluctuate, but as we keep increasing k, the average
LoMST score will become stable at certain point. Our under-
standing is that when a proper k is chosen, the structure of
the data is revealed and the label of the instances will become

Algorithm 1 MST-Based Method
Input: Data set (rows represent observations and columns

represent attributes), number of NNs, k, coverage probabil-
ity, α, and cut-off level for identifying anomalies, n.

Output: anomaly index set, T O
Stage 1: Steps for identifying distant anomalous

observations
1. Develop set of vertices V , where each vertex represent

a separate observation from the data set
2. Construct edges by calculating Euclidean distance

between each pair of vertices using their attribute
values from the data set and store them in E

3. Construct a global MST using V and E , let S be the
set of edges of the resulting MST, where S ⊆ E

4. Calculate the mean, μ, and the standard deviation, σ ,
of the edges in S

5. Calculate the longest edge from S and store
its length in Lo

6. IF Lo ≥ μ + q · σ THEN remove this edge from
the global MST

7. From the two disconnected trees, let O1= {vertices
contained in the smaller tree} and R= {vertices
contained in the larger tree}

8. REPEAT steps 4-7 in R until no such anomalous edge
exists

Stage 2: Steps for identifying local anomalous obser-
vations

1. For each vertex ri ∈ R
2. Determine its k-NNs and save them in Ni

3. Construct a local MST using edges contained in Euv ,
where u, v ∈ Ni and Euv ⊆ E

4. Set T = �, O2 = �
5. For each vertex ri ∈ R
6. Calculate the total length of ri ’s LoMST, Wri

7. Calculate the mean (W Ni ) of the total length of the
LoMSTs associated with all vertices in Ni

8. Calculate the LoMST score for ri as Ti = Wri - W Ni

9. Normalize the scores stored in T to be between 0
and 1

10. Rank the normalized scores in T in decreasing order
11. Identify the top n scores and store the corresponding

observations as point anomalies in O2
12. T O= O1 U O2

almost fixed, thus reflected in a less fluctuating LoMST score.
If one keeps increasing k, there is the possibility that the
data structure becomes mismatch with the assigned number
of clusters and the the current assignments of anomalies and
normal instances become destabilized again. Consequently,
the average LoMST score could fluctuate once again. Based on
this observation, our policy in choosing k is to select a range
of k where the average LoMST scores are stable. If there are
more than one stable ranges, we will then select the first one.

Let us look at the examples in Fig. 6. For the Cardiotocog-
raphy data set, we can choose a k range from 27–47, and
for the Glass data set, we can choose a k range from 70–95.
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Fig. 6. Select the range of k values for Cardioctography and Glass data sets.

Within the identified stable range, choosing the appropriate k
value matters but matters less. What we suggest to select is
the k value that returns the maximum standard deviation of the
LoMST scores, because by maximizing the standard deviation
among the LoMST scores, it increases the separation between
the normal instances and anomaly instances and facilitates the
detection mission. For the Glass data set, it takes slightly more
than 1 min to select the k value and for the Cardiotocography
data set, it takes about 10 min, both on a typical desktop
computer.

IV. PERFORMANCE COMPARISONS

In this section, we wish to evaluate the performance of
the MST-based method on a set of benchmark testing data
sets compared to an array of well-established methods in
the literature. Our comparative study is entirely based on the
data sets and methods used in a comprehensive survey [45],
as this survey established the benchmark for all subsequent
anomaly detection research, and it is also timely and up to
date.

There are 20 test data sets in [45] for performance evalua-
tion. Several versions of these data sets are stored in the online
repository of [45]. These versions mainly differ in terms of the
preprocessing steps used. We use in this comparative study the
normalized version of the data sets in which all the missing
values are removed and categorical variables are converted
into numerical format. We do not perform any preprocessing
by ourselves, and instead, we use the same form as stored in
the repository. Table I summarizes the basic characteristics of
the 20 data sets used in our study. Note that for these 20 test
sets, the anomalies are known.

TABLE I

DATA SETS USED IN THE PERFORMANCE EVALUATION STUDY

As our method is dependent on the parameter k, we mainly
focus on the nearest neighborhood-based approaches for a fair
assessment. Campos et al. [45] provided detailed experimen-
tation on 12 popular nearest neighborhood approaches based
on the 20 aforementioned data sets. These 12 methods are
connectivity-based outlier factor (COF), local density factor
(LDF), k-NN, outlier detection using indegree number (ODIN),
LOF, k-NN weight (KNNW), simplified LOF, local outlier
probabilities (LoOP), influenced outlierness (INFLO), local
distance-based outlier factor (LDOF), fast angle-based outlier
detection (FABOD), and kernel density estimation outlier score
(KDEOS). Traditional statistical process control (SPC)-based
approach could also be applied in the anomaly detection
setting. We implemented one of the popular methods in SPC,
the Hotelling T 2 control chart [46]. We tested two versions
while using the Hotelling T 2 control chart: one with PCA that
reduces the data dimension first and the other without PCA.
It turned out that the T 2 control chart without PCA performs
slightly better than the PCA version. Hence, we only include
the T 2 result without PCA in the comparison tables to save
space. In summary, we compare our MST-based approach with
a total of 13 competing methods.

We chose the same performance metric, called precision
at n (P@n), as used in [45]. It is defined as the proportion
of correct anomalies identified in the top n ranks. Just like
in [45], we chose the number of anomalies as our value of n.
For a database DB of size N , consisting of anomaly set
O ⊂ DB and normal point sets I ⊆ DB , such that
DB = O ∪ I , P@n can be formalized as

P@n = {o ∈ O | rank(o) ≤ n}
n

, where n = |O|. (1)

Admittedly, this P@n metric focuses on the detection capa-
bility, which is critical for anomaly detection applications.
We would like to add that following the top n rank detection
procedure, the false alarm rate is implied by the P@n metric,
as the number of false positives or false alarms is simply
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TABLE II

PERFORMANCE COMPARISON BASED ON THE BEST k VALUE

TABLE III

PERFORMANCE COMPARISON BASED ON THE PRACTICAL k CHOSEN ACCORDING TO OUR SELECTION POLICY

n −n × P@n. Suppose that we set n = 10 and if we have 8 of
them identified correctly as the anomalies, then n× P@n = 8,
and the number of false alarms is 10 − 8 = 2. For this reason,
we do not present the false alarm rate explicitly.

There is no guideline in the literature for how best to
select k. Campos et al. [45] simply tried a range of k values
(from 1 to 100) to obtain all the results and then choose
the best k value for each method. In the first comparison,
we follow the same approach, labeled as the “best k” com-
parison. The results are presented in Table II. To better
reflect the detection capability as they are compared to one
another, we break down the comparative performance into
four major categories, namely Better, Equal, Close, and Worse,
as explained in the table. Please note that the “best” k value
in Table II may be different for respective methods.

LoMST shows a superior performance and clearly outper-
forms other methods. In 13 of the 20 data sets, LoMST either
exhibits a uniquely best detection performance or is tied with
some other methods to achieve the best detection capability.
In only two data sets, LoMST performs in the Worse category,
meaning that its detection capability is 20% lower than the
best alternative. If we rank each of the 14 methods in a scale
of 1 to 14 according to its actual performance in relative to
others, then the average rank for the LoMST method is 2.2,
while some of the closest competitors are COF(3.3), LDF(3.8),
KNNW(4.5), KNN(5.0), and LOF(5.1).

Understandably, the “best k” is not practical, as in reality,
people do not know the anomalies while selecting k. Since we
have come up with a strategy to select a practical value of k,
we use the same practical k in the other 12 alternative methods
that need this value (SPC does not need to know k). The
performance comparison based on the practical k is presented
in Table III. We use the same performance breakdown as
in Table II. Our LoMST method continues to exhibit a superior
performance for being uniquely best in five of the 20 data sets,
and tieing for the best in another five data sets. The number
of cases in the Worse category is three. The average rank
of the LoMST method is 2.8, slightly lower than that under

the best k condition, while some of the closest competitors
are COF(4.2), KNNW(4.3), FABOD (4.9), KNN(5.3), and
LDF(5.7). Table IV provides the number of true positive
detections of 14 methods under the best k setting, in which
the best performance in every row is highlighted in boldface.
To save space, we omit the same table under the practical k
setting as it conveys the same message.

In Section III, we mentioned both the mean-based and
the mean-to-standard deviation-based comparison statistics.
Tables II and III present the comparison results using the
mean-based statistic, which is our recommended default
option. We also explore what if we use the mean-to-standard
deviation ratio as the comparison statistic, and the results are
presented in Tables V and VI, respectively, depending on how
k is selected. This time we included a smaller number of
alternative methods in the comparison to save space, because
the performance of other methods lags too far behind the
LoMST and the few top competitors. Our comparison still
shows that the LoMST performs the best among the alterna-
tives but its relative performance is slightly worse when using
the mean-to-standard deviation ratio. This is not surprising.
As explained in Section III, our MST-based approach has a
first stage of operation that removes the anomalous clusters,
so it generally performs well when using the mean-based
comparison statistic.

We further conduct some statistical test and see if the
performance difference between the proposed method and
its competitors is significant. For this purpose, we use a
nonparametric method, the Friedman test [47]. Let na be the
number of anomaly detection methods and nd be the number
of data sets. We define a matrix Ra whose entries in each row
represent the detection method’s rank for that specific data
set. If there are tied values, we assign to each tied value the
average of the ranks that would have been assigned without
ties. For example, suppose we have two tied methods both
with rank 7. If there had been no tie, then one should have
been assigned rank 7 and the other rank 8. The Friedman
test then uses the average of the two ranks, which is 7.5,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AHMED et al.: UNSUPERVISED ANOMALY DETECTION 9

TABLE IV

NUMBER OF TRUE POSITIVE DETECTIONS OF THE 14 METHODS IN THE BEST k SETTING

TABLE V

PERFORMANCE COMPARISON BASED ON BEST k FOR ALTERNATIVE

NEIGHBORHOOD COMPARISON STATISTIC

TABLE VI

PERFORMANCE COMPARISON BASED ON PRACTICAL k FOR

ALTERNATIVE NEIGHBORHOOD COMPARISON STATISTIC

as the rank value for both of these methods. Under the null
hypothesis that all methods perform the same, the Friedman
statistic

χ2
F = 12nd

na(na + 1)

( na∑
l=1

Ra2
l − na(na + 1)2

4

)
(2)

follows a chi-squared distribution with na − 1 degrees of
freedom, where Ral is the average value of column l =
1, 2, . . . , na . We have done the tests for both best k and
practical k settings and found the p-values (1.27 × 10−12 and
1.07×10−10, respectively) significant enough to reject the null
hypothesis.

To find out whether our method is significantly different
from other methods, we also conducted some post hoc analy-
sis. Fig. 7 presents the post hoc analysis on the ranking
data for the practical k setting, showing that the LoMST’s

TABLE VII

P-VALUES OF PAIRWISE COMPARISON OF LOMST
METHOD WITH THE COMPETING METHODS

ranking is significantly higher (lower in numeric sense) than
other competing algorithms. The detailed pairwise compar-
isons using respective p-values for both best k and practical k
settings are presented in Table VII. The p-values are calculated
using Conover post hoc test [48]. We have used the false
discovery rate approach [49] to adjust the p-values for multiple
comparisons. Other than between COF and LoMST, which
shows a marginal significance, all other pairwise comparisons
have shown a sufficiently significant difference, suggesting that
the LoMST is superior and produces a better performance.

We summarize LoMST’s performance with respect to the
data size in Table VIII. It is evident that LoMST performs
well and comes out as the best method in a wide range
of scenarios. Looking at the two extremes, the case of the
highest number of observations (N = 60, 632, KDDcup99
data), which is also the one having the second highest N/p
ratio, versus the case of the highest number of attributes
(p = 259, Arrhythmia data), which is also the one having
the lowest N/p ratio, LoMST performs on top in both cases.
It is reassuring that LoMST delivers this level of success if not
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Fig. 7. Post hoc analysis on the ranking data obtained by the Friedman test.
This analysis is under the practical k setting.

TABLE VIII

PERFORMANCE OF THE LOMST UNDER DIFFERENT N/p RATIOS.
THE RATIOS ARE ROUNDED UP TO THE NEXT INTEGER

beyond. We do notice that on two of the data sets, when the
number of anomalies are too numerous (over a few hundreds
to more than one thousand), LoMST did not do well enough.
In hindsight, it makes intuitive sense, as LoMST is designed
to find the local, pointwise anomalies, which, when existing,
should be of a relatively small amount. This shortcoming does
not appear to diminish the practicality of LoMST, because for
engineering or industrial applications, it is very unlikely that
operators will wait to accumulate hundreds or over a thousand
of anomalies before applying an anomaly detection method.

We want to note that in practice, one does not know the
number of the true anomalies to set the cutoff n. As explained
earlier, n is usually chosen to be larger than the perceived
number of anomalies but small enough to make the subsequent
identification operations feasible. For anomaly detection prob-
lems, the false alarm rate is generally high, in order to boost
the detection capability. This is a common phenomenon in all
anomaly detection methods. To see this point, consider the
following example. In the WBC data set, there are 10 true
anomalies and 213 normal instances. When using n = 20 as
the cutoff, meaning that the LoMST method flags 20 instances
as anomalies, 10 of the 20 are truly anomalies and 10 are
falsely tagged as anomalies. As such, the detection rate is
10/10 (100%), whereas the false alarms are 10/20 (50% of
all alarms, but 4.7% relative to the total number of normal
instances). We would argue that despite the relatively high
proportion of the false alarms, the anomaly detection method
is still practically useful, particularly as a prescreening tool.
By narrowing down the candidate anomalies from the whole
set to 20, which is an order of magnitude decrease in data
amount, it helps human experts a great deal to follow up with
each circumstance and decide how to improve their processes.
We believe that a fully automated anomaly detection is not yet
realistic in the near future, due to the challenging nature of the
problem and the relatively lack of advancement in the state of
the art. Therefore, a useful prescreening tool, as the current
anomaly detection offers, would be valuable in filling the void,
while the researchers strive for the ultimate, full automation
goal.

Another note is about the computational complexity of
LoMST, which comes from two major sources. First, we need
to conduct the k-NN search based on the chosen k. Then,
for each observation, we need to build a local MST using
its k-NNs. For the first step, we use the fast approximate
NN searching approach [50], [51] with time complexity
O(pN log N)+ O(kp log N). The first time complexity com-
ponent, O(pN log N), represents the time to build the tree
structure, whereas the second component, O(kp log N), repre-
sents the k-neighborhood query time for a single observation.
In the second step, building the local MST has the time
complexity of O(|V | log |E |) where |V | is the number of
vertices and |E | is the number of edges. The |V | and |E |
depend on k but usually remain small. The neighborhood
search and the local MST step will be repeated N times,
while the tree structure building is a one-time action. As such,
the total complexity of the LoMST algorithm is approximately
O(pN log N) + O(N[kp log N + |V | log |E |]). In case of
the ALOI data set which has the largest N/p (= 1852)
ratio and the second largest N (= 50 000), LoMST takes
approximately 2 min to finish anomaly detection on a typical
desktop computer. Being a local MST method, our method’s
MST construction can stay local and thus be computationally
efficient.

V. APPLICATION TO THE HYDRO TURBINE DATA

The hydropower data initially received was time stamped
(a total of 7 months’ worth of data) and divided into different
functional areas (turbines, generators, bearings, etc.). The data
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was collected at 10-min intervals each day. But it was not
always continuous and some days from each of these seven
months were missing. After combining all data across all
functional areas, there are 9508 observations (rows in a table)
and 222 attribute variables (columns in a table). Each row has
a time stamp assigned to it. Attribute variables are primarily
temperatures, vibrations, pressure, harmonic values, active
power, and so on. Before applying the anomaly detection
method, we conducted some basic preprocessing and statistical
analysis in order to clean the data. To maintain the similarity
with the 20 benchmark data sets, we normalized the data and
removed the duplicate rows as well as the rows with missing
values. In addition, we also did correlation analysis and plotted
histogram, density, and box plots. The data preprocessing did
yield a small number of data records that are so far off from
other data records. When checking with the domain expert who
provided the data, it was confirmed that those records were due
to a recording mistake. After removing them, the total number
of observations comes down to 9219. This hydropower data
set was studied in a preliminary effort [52], which presents
additional details of the data preprocessing step.

Now, the data is ready for applying an anomaly detection
algorithm. Besides LoMST, we have also applied two other
popular anomaly detection methods on the same hydropower
data. The two other methods are: LOF [19] and SOD [36]
methods, and both of them were previously applied to the
hydropower data set in our preliminary study [52]. LOF
represents the 12 neighborhood-based methods considered for
comparison in Section IV and is arguably the most popular
method in the anomaly detection literature. SOD is a represen-
tative of the subspace methods, and we are curious to see how
a subspace method could do to the real application data. How-
ever, we want to mention here that finding the right subspace
is usually even harder than finding the candidate anomalies,
and for this reason, the neighborhood based methods often
outperform the subspace based methods. For instance, if we
compare SOD based on the practical k approach with LoMST
and the other 13 methods in Section IV, its ranking in the four
categories would be 0, 0, 8, and 12 and its average ranking
would be 6.7, much worse than the top competitors.

For all three methods, we need to specify the value of
the k-NN. In this case, we were lucky enough to get a
suggestion from the domain expert about the possible size of
an anomaly cluster. Based on the domain expert’s suggestion,
we decide to consider the value of k in a range of 10–20
and find the anomaly scores for each k in the range. Then,
we took the average of these scores as the final anomaly
score for each of the instances. We followed this principle
for both the LOF method and our LoMST method. For SOD,
we need to select two parameters instead of one: one is k,
while the other one is the number of reference points for
forming the subspace. To maintain the comparability with
LoMST and LOF, we choose k = 15 for SOD, which is
the middle point of the above-suggested range. Concerning
the number of reference points, it should be smaller than k
but not too small a value that may render instability in SOD.
We explore a few options and finally settle on 10. Below 10,
the SOD method becomes unstable.

TABLE IX

SUMMARY OF THE TOP 100 ANOMALIES RETURNED BY THE THREE
METHODS. EVENTS FOLLOWED BY ASTERISK (*) ARE THE

COMMON ONES IDENTIFIED BY ALL THREE METHODS

IN THE TOP 30 TIMESTAMPS

By applying the three methods, the top 100 anomalies that
are identified by them are shown in Table IX. We noticed
that after the top 30 time stamps, no new anomaly prone day
emerged and similar data patterns keep repeating themselves
with slight differences in the time stamps. To save space,
we skip some rows after the top 30 stamps.

The performance of the three methods are reasonably con-
sistent as 14 out of the top 30 probable anomalies identified
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TABLE X

MOST ANOMALY PRONE DAYS IDENTIFIED BY ALL THREE METHODS

by these methods are common, represented by an asterisk (*)
in Table IX. This similarity continues even if we go beyond
30 time stamps. By closely looking at these top 100 time
stamps, we find that there are some particular days and certain
time chunks in these days which are more prone to anomaly.
These more anomaly prone days are listed in Table X.

As we move out from the range of top 30 time stamps, there
are slight differences in the time stamps returned by individual
methods, but they are very close time wise (within 10–50 mins
range) in the same day. The most possible explanation behind
this phenomenon is anomalies appeared in a small cluster.

These three methods work differently, especially that
SOD is from another family of methods and completely
different from LOF and LoMST. In spite of their differences,
they have returned similar results for the hydropower data
set. This serves as a way to cross validate the detecting
outcomes, as the true anomalies are unknown. We reported the
top 100 time stamps as anomalies to the data provider. The
domain expert checked the physical system and agreed that
these present valid concerns and the method provides valuable
tips for trouble shooting.

The three methods do have differences in their detection
outcomes. LOF method completely missed the July 4th time
stamps, although almost half of the 100 top anomaly prone
timestamps returned by both SOD and LoMST method belong
to this day. We investigate the issue and find that most of the
timestamps in July corresponds to low active power, whereas
the timestamps from July 4th are marked with abnormally high
active power. The rest of the attributes behaves identically
as other days of July. We know that when the number of
attributes increases, nearest neighborhood methods usually fall
short of detecting anomalies if abnormal values only happen
to one or few dimensions. This is where the subspaces method
can do better (assuming that the abnormal value subspace
is successfully identified). It is therefore not surprising to
see that the SOD method detects these anomalies correctly,
but it is truly encouraging to see that LoMST is capable
of detecting these anomalies as well, even though LoMST
is a neighborhood-based method. It supports our claim that
MST approximates the intrinsic distance among observations
in a structured data space. On the other hand, LOF and
LoMST, being a local method, successfully identified point
anomalies on the April 16th, while SOD method failed to
identify them. In a nutshell, LoMST method attains the merit
of subspace-based methods without losing the benefits of local
neighborhood-based methods.

Fig. 8. Decision tree based on the anomalies identified by LoMST method.

Anomaly detection does not immediately reveal the root
causes causing the anomalies. Finding out which variables
contribute to the anomalies provides a nice interpretability of
each anomaly and helps the domain expert to verify the root
causes and then fix them (if genuine). Given that the anomalies
are identified now, the original unsupervised learning problem
is translated into a supervised learning problem, and for
that, we build a classification and regression tree [53] using
the R package rpart with the package’s default parameter
values. We at first discard the July 4th time stamps from
the top 100 timestamps, as the reason for their happening is
straightforward. We proceed with the remaining of the top
100 timestamps and assign them a response value of 1, and
all other data records (outside the top 100 timestamps) in the
data set a response value of 0 (meaning normal condition).
The resulting tree is shown in Fig. 8.

From this decision tree, we can see that the variable Oil
Temperature of Bearing 4, Air Pressure, Turbine Vertical
Vibration, and Delta Oil temp–Air Temp of Bearing 1 can
correctly classify 25 anomalies based on the right combination
of their conditions. One such condition is when the oil
temperature of bearing 4 is less than 27.216 °C, the turbine
generator almost surely behaves strangely, and this condition
consistently leads to 11 anomalous observations. When we
report this finding to the domain expert, he deems this a key
finding. During the subsequent preventive maintenance opera-
tion of the said turbine, it is confirmed that bearing 4 indeed
needs repair to avoid future damage or costly interruption of
the turbine operation.

VI. CONCLUSION

We proposed a new dissimilarity metric based on the
concept of MST for isolating local, pointwise anomalies from
the normal observations in a structured data space. Rather
than applying MST to the entire data set, we choose to
follow a two-stage procedure. At first, a global MST is used
to separate the distant anomalous clusters from the rest of
the data set. Then, we build local MSTs for the remain-
ing instances to detect pointwise anomalies. The proposed
MST-based method is effective and registers the best perfor-
mance when it is compared with a wide array of methods
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on 20 benchmark data sets. The superiority of the proposed
method inspires us to apply it to a real life hydropower data
set. The MST-based method is successful in detecting different
families of anomalies, achieving the merit of subspace-based
methods without losing the benefits of local neighborhood-
based methods. The validity of the anomalies detected is
cross validated by two other anomaly detection methods and
confirmed by the domain experts and maintenance operators
who provided us the hydropower data in the first place. Root
causes and threshold values for key attributes that contribute
to the anomalies are determined in the form of a decision
tree. The knowledge generated from the anomaly detection
analyses helps service engineers continuously monitor the
turbine operation and potentially diagnose and predict the
malfunctions of turbines in time.
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