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SPATIO-TEMPORAL SHORT-TERM WIND FORECAST:
A CALIBRATED REGIME-SWITCHING METHOD1

BY AHMED AZIZ EZZAT, MIKYOUNG JUN AND YU DING

Texas A&M University

Accurate short-term forecasts are indispensable for the integration of
wind energy in power grids. On a wind farm, local wind conditions exhibit
sizeable variations at a fine temporal resolution. Existing statistical models
may capture the in-sample variations in wind behavior, but are often short-
sighted to those occurring in the near future, that is, in the forecast horizon.
The calibrated regime-switching method proposed in this paper introduces
an action of regime dependent calibration on the predictand (here the wind
speed variable), which helps correct the bias resulting from out-of-sample
variations in wind behavior. This is achieved by modeling the calibration as a
function of two elements: the wind regime at the time of the forecast (and the
calibration is therefore regime dependent), and the runlength, which is the
time elapsed since the last observed regime change. In addition to regime-
switching dynamics, the proposed model also accounts for other features of
wind fields: spatio-temporal dependencies, transport effect of wind and non-
stationarity. Using one year of turbine-specific wind data, we show that the
calibrated regime-switching method can offer a wide margin of improvement
over existing forecasting methods in terms of both wind speed and power.

1. Introduction. With the global aspiration towards a more sustainable en-
vironment, wind power presents itself as one of the most appealing sources of
clean energy (DOE (2015)). Despite the promising potential, serious challenges
still hinder its large scale exploitation, including the intermittency and limited pre-
dictability of the wind resource. Hence, improving the accuracy of short-term wind
forecasts is essential for integrating wind energy in power grid systems (Pinson
(2013)).

There is a rich body of literature on short-term wind forecasting (Giebel et al.
(2011)), from time series methods (Brown, Katz and Murphy (1984), Erdem and
Shi (2011)), machine learning techniques (Mohandes et al. (2004), Sideratos and
Hatziargyriou (2012)), to spatio-temporal models (Dowell and Pinson (2016),
Pourhabib, Huang and Ding (2016)). In the past decade, there has been a grow-
ing recognition for regime-switching methods for short-term forecast (Gneiting
et al. (2006)). The essence of these regime-switching approaches is to fit statistical
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models that are conditioned on a finite set of wind regimes or states, and produce
regime-dependent forecasts.

Our review of the literature suggests that a wide array of regime-switching
methods assume that the wind regime observed at the time of forecast (or shortly
prior to that) will persist during the forecast horizon, and hence, use the model
whose parameters are fit specifically to the observed regime to make forecasts.
One such approach is the regime-switching autoregressive method of Zwiers and
Von Storch (1990). Several regime-switching models have been proposed in the
past decade, mostly sharing the same concept, but with key differences in how
regimes are defined, whether using lagged values of wind speed, power, direction,
precipitation, temperature, or other exogenous variables (Gneiting et al. (2006),
Hering and Genton (2010), Reikard (2008), Zhu et al. (2014), Browell, Drew and
Philippopoulos (2018)).

Let us refer to the observed regime as the in-sample regime, and the regime in
the forecast horizon as the out-of-sample regime. The aforementioned methods can
be perceived as “reacting” to the in-sample regime without anticipating potential
changes between the in- and out-of-sample regimes. We hereinafter label them
collectively as “reactive” regime-switching approaches. A drawback of the reactive
approaches is that they are shortsighted to the changes in wind behavior that are
yet to occur in the forecast horizon. If the wind behavior in the near future departs
from the observed in-sample attributes, then a considerable discrepancy between
the forecasts and the true underlying process can be expected.

In light of that, this paper proposes a calibrated regime-switching (CRS)
method. The CRS approach starts by constructing a reactive regime-switching
model, which by design, suffers from an inherent bias while extrapolating the in-
sample attributes in the form of forecasts. The CRS approach then corrects this
bias by introducing a regime-specific calibration to capture potential out-of-sample
variations in the predictand (here the wind speed). This is achieved by modeling
the forecast calibration as a parametric function of two elements that are shown to
be able indicators of out-of-sample changes: the observed regime at the time of the
forecast, and the runlength, which is the time elapsed since the most recent regime
change.

A parallel line of research in the regime-switching literature concerning the
in-sample/out-of-sample regime difference is the Markov-switching (MS) mod-
els (Ailliot, Monbet and Prevosto (2006), Ailliot et al. (2015), Hering, Kazor and
Kleiber (2015), Pinson et al. (2008), Bessac et al. (2016)), which use a transition
matrix to connect, probabilistically, the in-sample regimes with possible regimes
in the forecast horizon. The forecast under an MS model is either the one made by
the most probable regime (the hard thresholding approach) or a weighted average
of all possible regime-specific forecasts (the soft thresholding approach).

We perceive both the CRS approach and MS approach as a transition step
from the “reactive” regime-switching approaches to the next-generation “proac-
tive” regime-switching models; the latter would ideally predict the out-of-sample
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regimes directly and then issue forecasts based on the regime predictions. CRS
and MS do not involve a direct prediction of the out-of-sample regimes but both
nonetheless account for in-sample/out-of-sample changes in wind behavior. In the
MS approach, one estimates the transition probabilities from the current regime to
other regimes based on the regime change data historically observed, and assumes
that such change patterns remain the same in the next forecasting period. On the
other hand, CRS employs the runlength variable to sense how likely the base reac-
tive model is going to be biased, due to possible changes in wind behavior, and then
uses the training data to estimate the amount of bias to be corrected as a function of
both the runlength and the current regime. We show in our case study that the CRS
approach has an advantage over MS methods in terms of short-term forecasting,
primarily because of the use of runlength, which provides a more specific anticipa-
tion of out-of-sample variations in the predictand. The comparison between CRS
and MS conveys the message that an improvement in change anticipation can lead
to appreciable gains in wind forecasting accuracy. Further discussion is provided
in Section 4.

Finally, it is important to highlight that we are specifically interested in turbine-
specific, rather than the farm-level aggregated, short-term wind forecasts. Re-
cently, several research studies hinted to the need for the former to replace the latter
(He et al. (2014), Kusiak and Li (2010), Pourhabib, Huang and Ding (2016)). This
is due to the fact that many wind farm operations are carried out at the turbine level
and would naturally require turbine-specific forecasts, such as predictive turbine
control (Santos (2007)), turbine-specific power estimation (Bessa et al. (2012), Lee
et al. (2015)), wake propagation prediction (Hwangbo, Johnson and Ding (2018),
You et al. (2017)) and repair decisions for wind turbines (Byon and Ding (2010),
Byon, Ntaimo and Ding (2010)). Understandably, turbine-specific forecasts can
be easily transformed to the farm-level estimates either by spatial averaging (for
wind speed) or by aggregation (for wind power), while the converse is generally
not true.

The remainder of this paper is organized as follows. Section 2 comprises the
data description and preliminary data analysis. Section 3 elucidates the building
blocks of the CRS approach and outlines its implementation procedure. Section 4
presents a case study using actual wind farm data and the corresponding results.
Lastly, we conclude this article in Section 5 and highlight future research directions
beyond this work.

2. Data structure and preliminary analysis. The data in this study were
collected at an onshore wind farm in the United States, located on a relatively flat
terrain over approximately 25 × 17 square kilometers (km2). Several treatments
were carried out to preserve the data provider’s confidentiality, such as shifting
the geographic coordinates of the turbines, randomly selecting 200 turbines for
analysis, and normalizing wind power outputs to the range of [0,1]. Starting from
September 2010, one year of turbine-specific hourly wind speed and power values



CALIBRATION IN REGIME-SWITCHING 1487

FIG. 1. Spatial map of the wind farm (coordinates shifted to maintain confidentiality). M: meteo-
rological masts located in the Northwest (NW), South (S) and Northeast (NE). T: Turbines grouped
according to their proximity to the nearest mast, whether NW, S or NE.

are measured at the hub height of 80 meters on each of the 200 turbines. Addition-
ally, hourly wind speed and direction values are measured at three spatially distant
meteorological masts. The spatial map of the wind farm is presented in Figure 1.

Preliminary analysis suggests that the wind farm data exhibit dependencies
across space and time. The first five panels of Figure 2 show the partial autocorre-
lation functions (PACF) of the wind speeds at five different wind turbines for lags
ranging from one hour up to 12 hours. Short lags (less than four hours) appear to
be of high relevance to the current observed wind speeds at each of the five tur-
bines. Similar trends were observed in multiple research studies (Erdem and Shi
(2011), Kazor and Hering (2015a), Pourhabib, Huang and Ding (2016)). The quick
decay of temporal correlation hints to the irrelevance of longer-memory effects to
short-term prediction.

The last panel of Figure 2 plots the correlation coefficients between the wind
speeds at an arbitrarily chosen turbine and those at the remaining 199 turbines
at zero-hour lag against the separating distances between them. The plot suggests
that strong spatial correlations exist in the wind farm, ranging from 0.88 to 0.97. A
decreasing trend in the coefficients is notable as the separating distance increases.
Even at the near maximal distances, spatial correlations appear to sustain a rela-
tively strong effect and do not vanish. The strong spatial dependence can be ex-
plained by wind propagation across a dense grid of spatial locations in the rela-
tively small area of a wind farm. The observations made above advocate modeling
both temporal and spatial dependencies when performing short-term wind fore-
casting.

Similar to previously reported works (Alexiadis et al. (1998), Reikard (2008),
Ezzat, Jun and Ding (2018)), we note that local wind conditions (i.e. wind speed
and direction) exhibit changes of sizeable magnitude in short periods of time, sug-
gesting that the wind field under study is highly dynamic. For exploratory pur-
poses, we conduct two univariate change point tests on the first 30 days of spatially
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FIG. 2. Panels (1)–(5): PACFs of the wind speeds at five wind turbines. The x-axis is the time lag
in hours. Panel (6): Correlations between wind speeds at an arbitrarily chosen turbine and those at
the remaining 199 turbines at zero-hour lag against the separating distances.

averaged data of wind speed and wind direction. For the wind speed variable, we
implement a change point detection with binary segmentation using the package
changepoint in R (Killick and Eckley (2014)). For the wind direction, which
is a circular variable, we implement a binary segmentation version of the circular
change point detection (Jammalamadaka and SenGupta (2001)), using the pack-
age circular (Agostinelli and Lund (2013)). Figure 3 illustrates the results of
the change point detections. The minimum-time-to-change and the median-time-
to-change in wind speed are 5 hours and 15 hours, respectively, whereas those in
wind direction are 11 hours and 37 hours, respectively. On average, a change in
wind speed or wind direction takes place every 10 hours.

From a physical interpretation standpoint, Pinson (2013) explains that the varia-
tion in local wind conditions can be observed on multiple frequency ranges, among
which slow fluctuations (i.e., days) are driven by synoptic-scale weather variables,
whereas higher frequency variations (i.e., minutes to hours) occur due to a combi-
nation of interacting physical processes that are difficult to individually pinpoint,
yet their collective effect is often notable. The system’s short memory noted in the
PACFs of Figure 2 is perhaps an implication of this dynamic behavior.

3. The calibrated regime-switching method. Let Yi(j) represent the wind
speed recorded at turbine i at time j , where i = 1, . . . ,N turbines and j = 1, . . . , T

hours. Furthermore, let Ȳ (j) and d(j) be the spatially averaged wind speed and
direction at time j , in m/s and degrees, respectively. Hereinafter, the time index, t ,
is reserved to denote the present time, whereas j denotes an arbitrary time index.



CALIBRATION IN REGIME-SWITCHING 1489

FIG. 3. Top panel: change points in one month of spatially averaged wind speed data. Bottom
panel: change points in one month of spatially averaged wind direction data. The span of the x-axis
is a month or 720 hours.

A wind speed forecast is to be made at t + h for h = 1,2, . . . ,H , that is, the
forecast horizon could be as far as H hours ahead of the present time.

3.1. Regime identification. There are several ways to define regimes in the
wind simulation and forecasting literature (Kazor and Hering (2015a, 2015b)).
Clustering-based methods can be run on prespecified meteorologic variables
to identify regimes corresponding to physically interpretable weather patterns
(Browell, Drew and Philippopoulos (2018)). In other instances, regimes can be de-
fined implicitly through latent variables such as in hidden Markov models (Ailliot,
Monbet and Prevosto (2006)). An alternative approach is to divide the space of
some prescribed variables into a finite number of partitions by imposing a set of
thresholds that are often selected through expert knowledge or data-driven mea-
sures. For example, Gneiting et al. (2006) postulated two regimes based on wind
direction to reflect the alternation of westerly and easterly winds in the U.S. Pacific
Northwest.

In this paper, we follow an approach similar to Gneiting et al. (2006), but we use
both the wind speed and direction variables as regime identifiers. This is motivated
by our explicit interest in capturing fluctuations of local wind conditions. The wind
speed variable is the predictand of interest, and capturing its fluctuations would
greatly benefit any data-driven method to forecast it, whereas wind direction is
also known to affect wind flow patterns, power production and spatial correlations
of wind speed between wind turbines. So both factors are used in defining our wind
regimes.

For our regime definition scheme, we assume there exists a finite number, R, of
wind regimes, such that the observed regime at time j , denoted by r(j), takes on
values in {1, . . . ,R} depending on the observed values of Ȳ (j) and d(j). Suppose
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FIG. 4. Normalized power versus speed values, histograms of wind speed and power, for one of the
turbines on the wind farm. Vci: cut-in speed, Vin: inflection point, Vr : rated speed and Vco: cut-out
speed.

that there are R1 disjoint wind speed partitions and R2 disjoint wind direction
partitions, then R = R1 × R2. Collectively, the regimes are defined by a set of
bivariate thresholds, {r1, r2, . . . , rR−1}, where rk = {rv

k , rd
k } comprises the wind

speed and wind direction thresholds that separate two adjacent wind speed or wind
direction partitions.

Our regime identification starts by selecting the number of regimes R and a set
of tentative thresholds {rk}R−1

k=1 . Our approach for deciding the tentative thresholds
is based on the understanding of wind power production. Later, in Section 4.2, we
use a small subset of training data to fine-tune the tentatively selected thresholds
in order to boost the forecast performance.

We guide the selection of wind speed thresholds, rv
1 , . . . , rv

R−1, in light of the
regions associated with a wind power curve. Figure 4 plots one year of wind speed
versus the normalized wind power values recorded at one of the turbines, as well as
the histograms of wind speed and power shown, respectively, in the above and side
subfigures. The power curve in Figure 4 is estimated by using the binning method
(IEC (2005)), a common industrial practice. The binning estimates are shown in
Figure 4 as the red triangles.

Four physically meaningful wind speed values define a power curve, namely:
the cut-in-speed, Vci, the inflection point, Vin, the rated speed, Vr , and the cut-out
speed, Vco. The cut-in speed Vci is the minimal speed at which turbines start to
generate power. The rated speed Vr defines the minimal speed at which the maxi-
mum permissible power is produced. This maximum level is maintained until the
speed reaches Vco, beyond which the turbine is halted for its safety. Between Vci
and Vr , the power curve follows a nonlinear relationship, with an inflection point
separating the convex and concave regions. This inflection point, corresponding to
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FIG. 5. Left panel: Rose plot of spatially averaged wind speeds and directions. Right panel: His-
togram of wind speeds for westerly versus easterly winds.

Vin, marks the point at which the turbine control mechanism is used to regulate
the power production. For our data, Vci, Vr and Vco, as provided by the manufac-
turer, are around 3.5, 13.5 and 20 m/s, respectively, whereas Vin is estimated by
Hwangbo, Johnson and Ding (2017) for modern turbines to be around 9.5 m/s.

These physically meaningful values can be used to set the wind speed thresholds
at Vci, Vin and Vr , which partitions wind speed into four ranges. However, we
notice that only around 3% of wind speed data in our dataset are higher than Vr .
We then decide to have a total of three speed partitions after merging the last two
partitions and eliminating the threshold at Vr . Please also note that while Vco is at
20 m/s for our data, Vco most commonly takes the value of 25 m/s in commercial
turbines. Extending Vco from 20 m/s to 25 m/s, however, does not affect our wind
regime definition.

With respect to wind direction, Figure 5(a) shows the roseplot of the spatially
averaged wind speed and direction data. We note that wind direction is dominantly
westerly, and the year-long spatio-temporal average wind direction is 257◦ (270◦
is due west). Figure 5(b) shows the histograms of the turbine-specific wind speeds
for westerly versus easterly partitions, which shows a notable distinction between
the behavior of the wind associated with each direction partition. This suggests two
wind direction partitions with thresholds set at 0◦ and 180◦, resulting in a westerly
regime and an easterly regime. The differences in wind speed histograms are not
nearly as striking for northerly versus southerly partitions.

The above analysis motivates us to define a total of R = 6 wind regimes corre-
sponding to the combination of three wind speed partitions and two wind direction
partitions, as shown in (3.1). Figure 6 shows the time series of the first 30 days of
Ȳ (j), d(j) and r(j). In Section 4, the values of these tentative thresholds will be
refined. That fine-tuning step is intended to further enhance the regime identifica-
tion procedure in light of the forecasting performance. Our regime identification
procedure is not purely data-driven nor solely dictated by physics; rather it borrows
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FIG. 6. Top panel: Spatially averaged wind speed data (solid line), along with the wind speed
regime thresholds at 3.5 and 9.5 m/s (dashed line). Middle panel: spatially averaged wind direction
data (solid line), along with the wind direction regime threshold value at 180◦ (dashed line). Bottom
panel: Evolution of the regime variable r(j) ∈ {1, . . . ,6}. The span of the x-axis is a month or 720
hours.

the strength of both. While the physical understanding of how wind dynamics af-
fects wind power generation guides our high level decision, like the choice of the
number of regimes and the tentative regime thresholds, the farm-specific data in-
forms the subsequent fine-tuning of the regime thresholds.

(3.1) r(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Ȳ (j) ∈ [0,3.5)

& d(j) ∈ [0◦,180◦) ⇒ Low speed, easterly wind,

2, Ȳ (j) ∈ [0,3.5)

& d(j) ∈ [180◦,360◦) ⇒ Low speed, westerly wind,

3, Ȳ (j) ∈ [3.5,9.5)

& d(j) ∈ [0◦,180◦) ⇒ Moderate speed, easterly wind,

4, Ȳ (j) ∈ [3.5,9.5)

& d(j) ∈ [180◦,360◦) ⇒ Moderate speed, westerly wind,

5, Ȳ (j) ∈ [9.5,20 or 25)

& d(j) ∈ [0◦,180◦) ⇒ High speed, easterly wind,

6, Ȳ (j) ∈ [9.5,20 or 25)

& d(j) ∈ [180◦,360◦) ⇒ High speed, westerly wind.

3.2. The CRS method. We assume that we have at hand a statistical model,
denoted by M. In this paper, M is a reactive regime-switching model, which, con-
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ditioned on r(t), can produce regime-dependent spatio-temporal forecasts, where
f

r(t)
i (t + h) represents a forecast at location i and time t + h, given the current

regime of r(t). Its specific choice in the context of our application is to be dis-
cussed in Section 4, but our method is generic to different selections of M.

As a reactive regime-switching model, M suffers from an inherent bias while
extrapolating the observed in-sample attributes in the form of short-term fore-
casts. The aim of the CRS approach is to correct this inherent bias through
adding a regime-dependent term, ci(t + h|r(t)) ∈ R, to the regime-specific fore-
cast f

r(t)
i (t + h). Hereinafter, we refer to ci(t + h|r(t)) as the regime-dependent

forecast calibration, and the quantity f̂i(t + h) = f
r(t)
i (t + h) + ci(t + h|r(t)) as

the calibrated forecast.
We assume that the forecast calibration, ci(t + h|r(t)), can be informed by the

observed data up to time t , denoted by Dt . The dependence on Dt is signified by
the notation ci(t + h|Dt , r(t)). For simplicity, we assume that ci(t + h|Dt , r(t))

only varies over time and is fixed across space, that is, ci(t + h|Dt , r(t)) =
c(t + h|Dt , r(t)), for i = 1, . . . ,N , but future research can look into the benefit
of varying that quantity over space as well. A general calibration formulation to
infer c(·|Dt , r(t)) can be expressed as

(3.2) min
c∈C L

(
f

r(t)
i (t + h) + c

(
t + h|Dt , r(t)

)
, Yi(t + h)

)
,

where C is some class of functions to which c(·|Dt , r(t)) belongs, and L(·, ·) is a
loss function that defines a discrepancy measure.

We would like to select a parametric form for c(·|Dt , r(t)) that enables our
model to specifically capture the out-of-sample variations in wind speed. We sug-
gest that c can be informed by means of two elements that are shown to be able
indicators of out-of-sample change: the observed wind regime at the time of the
forecast, r(t), and the runlength, denoted by x(t + h). The runlength, x(t + h), is
defined as the time elapsed since the most recent regime change. The value of the
runlength at any arbitrary time index j is defined as x(j) = j − j∗, where j∗ is the
time at which the most recent change was observed such that j∗ < min(j, t). For a
time point in the forecast horizon, that is, j = t + h, we define the runlength in the
forecast horizon as x(t +h) = t +h−j∗. The runlength has been recently proposed
as an indicator of upcoming changes in the emerging online change detection lit-
erature (Adams and MacKay (2007), Saatçi, Turner and Rasmussen (2010)), but
has not been used in the regime-switching modeling or wind forecasting literature
in general.

As such, we let the function c(·) depend on two inputs: {r(t), x(t + h)}. We
further propose to use the functional form of a log-normal cumulative distribution
function (cdf) to characterize c(·)’s relationship with the two inputs. We model c(·)
individually in each wind regime, so that r(t) is implicitly incorporated into the
relationship with c(·) through a set of regime-specific parameters. Consequently,
c(·) is manifested with the runlength, x(t + h), as the single explicit input.
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For the kth regime, we denote the regime-specific parameters by �k =
{ψk

1 ,ψk
2 ,ψk

3 }, and the calibration function by c(x(t +h)|r(t) = k). The functional
form of the log-normal cdf is expressed as in (3.3):

(3.3) c
(
x(t + h)|r(t) = k

) = ψk
1 �

(
ln(x(t + h)) − ψk

2

ψk
3

)
,

where �(·) is the normal cdf. The choice of the lognormal cdf as a calibration func-
tion is motivated by its flexibility to model a wide spectrum of change behavior,
ranging from abrupt shifts to gradual drifts, depending on the values of parameters
in �k . The parameters in �k are estimated from the data and continuously updated
in a rolling forward forecasting scheme. Other selections of calibration functions
are discussed in Section 4.

The estimation procedure of parameters in �k goes as follows. We assume that
in a training dataset, we have at hand a sequence of forecasts and their respec-
tive true observations. These forecasts were obtained via the model M in a rolling
fashion, such that for the �th roll, the data observed up to time t� are used to obtain
forecasts from t� + 1 till t� + H . Suppose that we have L forecasting rolls in the
training set. For the �th forecasting roll, � = 1, . . . ,L, we store the following infor-
mation: the observed wind regime at the time of forecasting, r�(t), the associated

runlengths, x�(t +h), the raw forecast via M at t +h, f
r�(t)
i (t +h), and the actual

observation at t + h, Y �
i (t + h), for h = 1, . . . ,H and i = 1, . . . ,N . By employing

a squared error loss function, (3.2) can be rewritten as in (3.4),

min
�k

1

Lk × N × H

Lk∑
�=1

N∑
i=1

H∑
h=1

[
f

r�(t)
i (t + h)

+ c
(
x�(t + h)|r�(t) = k

) − Y �
i (t + h)

]2
,

(3.4)

where Lk denotes the number of forecasting rolls relevant to regime k. Solving
(3.4) for each regime individually, that is, for k = 1, . . . ,R, gives the least-squares
estimate of the parameters in {�k}Rk=1.

3.3. Proposed implementation procedure. We next propose an implementa-
tion procedure for the CRS approach, which comprises three sequential phases:
(1) Phase I: generating the raw forecasts (via the model M) in the initialization
period, (2) Phase II: estimating the forecast calibration function based on the raw
forecasts and the actual observations solicited during Phase I, (3) Phase III: making
continuously rolling-forward forecasts and updates. Phases I and II use a subset of
the data, say, a one-month initialization period to set up the CRS machinery. In
Phase III, the actual forecasting and testing are carried out for the remaining 11
months.

We assume that the model, M, used for issuing the raw forecasts, can be pa-
rameterized by a set of parameters in �k , and is thus denoted as M(�k), where
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the superscript k refers to the dependence of the model parameters on the current
observed regime, r(t) = k. At each forecasting roll, we estimate �k using a sub-
set of historical data and obtain raw forecasts from t + 1 till t + H . As such, the
parameters in �k are regime-specific and time-varying.

Using a sliding interval of six hours, this rolling mechanism is continued until
we exhaust the initialization period, resulting in L rolls. Once Phase I is finished,
the goal of Phase II is to estimate the function c using the information attained in
Phase I, where (3.4) is solved for each regime independently in order to estimate
the regime-specific parameters �k .

Afterwards, we proceed to Phase III, where the same rolling mechanism is
performed. Specifically, at the present time t , we estimate �k and obtain short-
term forecasts from t + 1 till t + H . We then compute the runlength values
x(t +h) for h = 1, . . . ,H . Using r(t), x(t +h), and �k , we calculate the values of
c(x(t + h)|r(t) = k) for h = {1, . . . ,H } and use the resulting c(x(t + h)|r(t) = k)

to calibrate the raw forecasts. The window is then slid by six hours. At each fore-
casting roll, the last 30-day of data are used to update �k by resolving (3.4), given
the newly revealed observations. As such, similar to �k , the parameters �k are
also regime-specific and time-varying. The cycle is repeated until the forecasts for
the remaining 11 months are produced.

4. Case study: Application to data from an onshore wind farm. In this
section, we conduct a case study of the CRS method using the wind farm data
explained in Section 2. Our interest is to make one-hour ahead to 12-hour ahead
wind speed and power forecasts, that is, H = 12 and h = 1, . . . ,12. We note that
in the literature, there are no precise thresholds between short, medium or long-
term forecasting, but the convention is that short-term forecasting is concerned
with the prediction for a few hours ahead, a horizon that is critical to subsequent
power system operations such as economic dispatch, electricity market operation
and reserve quantification (Pinson (2013), Xie et al. (2014)).

4.1. Choice of M. We choose M as a reactive regime-switching model, for
which the parameters are regime-specific, leading to regime-dependent wind speed
forecasts. Specifically, we use a Gaussian random field (GRF) in a spatio-temporal
domain which makes use of information from recent wind conditions observed
at the ith turbine as well as those from its neighborhood. The model has the fol-
lowing form: Y = Mq + e, where M is a prespecified NT × p design matrix,
q = [q1, . . . , qp]T is a vector of regression coefficients and Y is the NT × 1 vector
of spatio-temporal data points such that

Y = [
Y1(1), . . . , YN(1), Y1(2), . . . , YN(2), . . . , YN(T ), . . . , YN(T )

]T
.

Moreover, e ∼ N (0,�), where � is a positive-definite covariance matrix, for
which the entries are modeled by a stationary covariance function, denoted by
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K(u,w), such that u = (u1, u2)
T comprises the longitudinal and latitudinal lags,

respectively, and w is the temporal lag.
Defining K(·, ·) is a key aspect in a GRF since it dictates the spatio-temporal de-

pendence structure. One particular aspect to consider when defining K(·, ·) is the
transport effect of dominant winds, related to what is known in the geostatistical
literature as the spatio-temporal “asymmetry” (Gneiting (2002), Gneiting, Gen-
ton and Guttorp (2007), Stein (2005), Jun and Stein (2007)). Asymmetry implies
that a dominant wind direction causes a discrepancy between a stronger, along-
wind spatio-temporal correlation and a weaker, span-wind correlation. Ezzat, Jun
and Ding (2018) numerically show that spatio-temporal asymmetry in local wind
fields exist and is flow dependent. To account for possible flow dependent asym-
metries and following Gneiting, Genton and Guttorp (2007) and Ezzat, Jun and
Ding (2018), we model K(·, ·) as a convex combination of two components: a
fully symmetric nonseparable model, denoted by C1, and an asymmetric model,
denoted by C2, as in (4.1).

(4.1) K(u,w) = σ 2[
(1 − λ)C1(u,w) + λC2(u,w)

] + η1{‖u‖=|w|=0},

where ‖ · ‖ is the Euclidean norm, 1{·} is an indicator function, η ≥ 0 is the spatio-
temporal nugget effect and σ 2 > 0 is the spatio-temporal variance. The convex
combination coefficient, λ ∈ [0,1], assigns the weight given to the asymmetric
model C2. For C1, we use the nonseparable model proposed by Gneiting (2002):

(4.2) C1(u,w) = 1 − δ

1 + α|w|2
[
exp

(
− c‖u‖

(1 + α|w|2) β
2

)
+ δ

1 − δ
1{‖u‖=0}

]
,

where 0 ≤ δ < 1. The parameters α, c ≥ 0 determine the inverse of the temporal
and spatial ranges, respectively. The parameter, β ∈ [0,1], is the nonseparability
parameter indicating the strength of interaction between the spatial and temporal
components.

The asymmetric model C2 characterizes asymmetry possibly existing in a local
wind field. Conceptually, one way to define an asymmetric spatio-temporal covari-
ance function is through the following form:

(4.3) C2(u,w) = EVζ
(‖u − Vw‖)

,

where V is a random vector in R
2 and ζ(·) is a valid spatial covariance function

(Gneiting (2002), Gneiting, Genton and Guttorp (2007)).
Appropriate specifications of V and ζ(·) can yield different explicit represen-

tations of C2. The stochastic nature of local wind fields motivate us to use the
asymmetric model proposed by Schlather (2010), which lets ζ(x) = exp(−x2) and
V ∼ N (μμμ, D

2 ), rather than defining V as constant representing a fixed prevailing
flow as suggested by Gneiting, Genton and Guttorp (2007). As such, the model in



CALIBRATION IN REGIME-SWITCHING 1497

(4.3) is rewritten as in (4.4):

C2(u,w) = 1√
|12×2 + w2D|

× exp
[−(u − wμμμ)T

(
12×2 + w2D

)−1
(u − wμμμ)

]
,

(4.4)

where | · | in (4.4) denotes the matrix determinant.
To produce regime-dependent forecasts, we estimate the parameters in (4.1) us-

ing only the spatio-temporal data since the most recent regime change. In other
words, conditional on r(t), we only use training data that pertains to the most
recently observed wind regime. By continuously updating these regime-specific
parameters through the rolling mechanism described in Section 3.3, we naturally
overcome temporal nonstationarity (de Luna and Genton (2005), Fuentes (2001),
Pourhabib, Huang and Ding (2016)), which is expected to exist in local wind fields
due to atmospheric boundary layer effects resulting in turbulence and wake effect
constantly perturbing the wind propagation across the farm. As such, the param-
eters in (4.1) are both regime-specific, and time-varying. In practice, we only use
temporal lags that are smaller than or equal to 4 hours for model training, as dic-
tated by the PACFs of Figure 2. We also impose a minimum of 2 time lags in his-
tory to ensure a reliable estimation of the parameters in (4.1). With 200 turbines,
this truncation gives between 400 = (200 × 2) to 800 = (200 × 4) data points,
which are sufficient for parameter estimation.

We further account for nonstationarity across space by assuming local station-
arity within subregions of the spatial domain (Fuentes (2001)). We define three
subregions of wind turbines based on their proximity to the three masts, as shown
in Figure 1. Within each subregion, we fit the stationary spatio-temporal model of
(4.1) and obtain region-specific model parameters.

Maximum likelihood estimation (MLE) is used to estimate all model parame-
ters, and is implemented using the routine nlm in R, except for μμμ and D, which are
specified based on the region-specific wind velocity information. For each subre-
gion, we use the most recent history of wind speed and direction data as recorded
at the mast to compute a time series of two-dimensional wind velocity vectors.
Our estimate for μμμ = (μ1,μ2)

T is the sample average of the longitudinal and lati-
tudinal wind velocities of the time series vectors, whereas our estimate for D

2 is the
sample covariance matrix. Using the model of (4.1), we can obtain spatio-temporal
ordinary kriging-based predictions.

4.2. Practical considerations. Before we present the case study results, we
would like to stress a few practical considerations. Regarding the choice of the
calibration function c, we have tried various choices including the exponential
function, polynomial function and log-normal cdf. Our analysis indicates that the
log-normal cdf achieves the best performance, that is, the lowest mean squared
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FIG. 7. Estimated calibration functions using Phase I data for the six regimes.

discrepancy between calibrated forecasts and actual observations, as measured by
(3.4). We note, however, that differences in performance between different calibra-
tion functions are not that pronounced, suggesting that other appropriate selections
of c are equally acceptable.

Regarding the identification of wind regimes, we were interested in refining the
tentative thresholds of (3.1) to boost the performance of the CRS approach. Using
the first month of data, we tried 112 different combinations of regime thresholds,
chosen as follows: we vary rv

1 from Vci to Vci + 1.5 with increments of 0.5 m/s, rv
2

from Vin −1.5 to Vin with increments of 0.5 m/s, rd
2 from 180◦ −45◦ to 180◦ +45◦

with 15◦ increment, and set rd
1 = 360◦ − rd

2 . Our analysis indicates that, in terms
of calibration performance as measured by (3.4), the best regime thresholds are at
{0,4.5,9.0,20.0} m/s for wind speed, and {45◦,225◦} for wind direction, resulting
in R = 6 regimes.

Figure 7 illustrates the estimated calibration functions for the six regimes. It ap-
pears that the wind speed variable is the main determinant of the calibration sign
and magnitude. For instance, the first two regimes (top row), which share the same
wind speed profile (low wind speeds), both transit to regimes with higher wind
speeds. Same finding applies to regimes with moderate wind speeds (regimes 3
and 4), and regimes with high wind speeds (regimes 5 and 6). The wind direction,
however, appears to have a secondary, yet still important effect on the magnitude
of the calibration. For instance, it appears that the magnitude of change is larger
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in regime 2 (westerly) than in regime 1 (easterly), and larger in regime 4 (west-
erly) than in regime 3 (easterly). The opposite happens in regimes 5 (easterly)
and 6 (westerly). The switching behavior difference between gradual shifts like in
regimes 1, 2, 3 and 6 and abrupt shifts like in regimes 4 and 5 also implies certain
degree of interaction between the two factors. As mentioned in Section 3.3, we al-
low these functions to change with time by continuously re-estimating �k at every
roll in Phase III.

With respect to the implementation of the CRS approach in Phase III, we decide
to impose bounds on the forecast calibration to avoid over-calibrating the forecasts
when extrapolating. Our experiments indicate that bounding the calibration quan-
tities in the range [−3,3] m/s yielded satisfactory performance. Our analysis also
suggests that, on average, calibrating forecasts does not offer much benefit in the
very short-term horizons, so we decide to only calibrate the forecasts for more than
two hours ahead forecasting, which means that CRS reduces to the model M for
h = 1,2.

4.3. Forecasting results. The rolling mechanism described in Section 3.3 is
implemented on the remaining 11-month data, resulting in a total of 200 tur-
bines × 12 hours × 1339 rolls = 3,213,600 forecasts. Using this massive test
set, we compare the performance of the CRS method to the following approaches:
asymmetric model (ASYM), separable model (SEP), persistence forecast (PER),
regime-switching autoregressive model (RSAR), Markov-switch autoregressive
model (MSAR) and Markov-switch vector autoregressive model (MSVAR).

ASYM is in fact the reactive regime-switching base model, M, used in the CRS
approach, with its covariance function as specified in (4.1). Similar to ASYM is
SEP, except that for that model, we set β = λ = 0 in (4.1) and freely estimate the
rest of the parameters, yielding a separable spatio-temporal model. The persistence
model is commonly used as a benchmark in forecasting studies and assumes that
the current wind speeds will persist for the entire forecasting horizon.

RSAR is a reactive regime-switching approach, where the model parameters
are dependent on r(t), and r(t) is assumed to persist in the forecast horizon. The
autoregressive models used in RSAR are low-order autoregressive models like
AR(1). Low-order AR models are common choices in the wind forecasting litera-
ture (Huang and Chalabi (1995), Pourhabib, Huang and Ding (2016)). To produce
turbine-specific forecasts, we fit an RSAR model for each turbine.

For the MSAR model, we use Phase I data to estimate a transition probability
matrix, �R×R , of which each entry is πkk′ = Pr(r(t + 1) = k′|r(t) = k). Then,
we fit six AR(1) models using the historical data classified to each regime. The
final forecast at t + h will be the convex combination of the forecasts from the
six models, where the combination coefficients correspond to the probability of
reaching each regime at t +h, that is, f̂i(t +h) = ∑R

k=1 f k
i (t +h)Pr(r(t +h) = k),

where f k
i (t + h) is the forecast at the ith turbine at t + h obtained by fitting an
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FIG. 8. Top panel: 6-hour ahead forecasts of wind speeds at the chosen turbine for five days starting
on November 23, 2010. Point forecasts shown by the solid red line, along with ±1 standard deviation
as the dashed blue lines. Actual observations shown as black circles. Similarly, the bottom panel
shows the corresponding power forecasts and the actual observations.

AR(1) model to the data belonging to regime k, and Pr(r(t +h) = k), k = 1, . . . ,R,
denotes the probability of reaching regime k at t + h. At each forecasting roll, the
transition matrix is re-estimated using the newly revealed observations.

Generalizing on MSAR is the MSVAR model which further accounts for the
spatial dependence. Attempting to use all 200 turbines in a VAR model would
require the estimation of a large number of parameters. Therefore, we follow an
approach similar to Pourhabib, Huang and Ding (2016), where for each turbine,
we fit six VAR(1) models corresponding to each regime using the historical ob-
servations from the turbine itself and its nearest five neighbors, and obtain a final
weighted prediction. We tested increasing the informative neighborhood up to ten
turbines and the change in prediction performance was almost negligible.

We compare all the aforementioned competing models in both wind speed and
power domains. For wind power forecasting, we first make a wind speed forecast
and then convert it to the corresponding wind power forecast using the turbine-
specific power curve. Figure 8 shows, at one of the randomly selected turbines, the
6-hour ahead (i.e., one sliding interval) forecasts of wind speed and power, made
by using CRS, versus the actual observations for five days starting on November
23, 2010.

We evaluate the overall forecast accuracy over all testing instances using the
Mean Absolute Error (MAE), as expressed in (4.5):

(4.5) MAE(h) = 1

L × N

L∑
�=1

N∑
i=1

∣∣f̂ �
i (t + h) − Y �

i (t + h)
∣∣,
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TABLE 1
MAE for wind speed and power forecasting for h-hour ahead, h = 1,2, . . . ,12. Bold-faced values

indicate best performance

Method 1 2 3 4 5 6 7 8 9 10 11 12

MAE for wind speed forecasts issued at h = 1,2, . . . ,12
ASYM 1.12 1.45 1.72 1.96 2.15 2.27 2.39 2.51 2.68 2.77 2.83 2.87
SEP 1.15 1.47 1.74 1.97 2.15 2.27 2.40 2.52 2.68 2.77 2.84 2.87
PER 1.11 1.46 1.73 1.97 2.16 2.31 2.44 2.57 2.74 2.84 2.92 2.96
RSAR 1.16 1.53 1.79 2.03 2.21 2.36 2.46 2.56 2.73 2.82 2.89 2.93
MSAR 1.23 1.64 1.92 2.14 2.28 2.38 2.45 2.48 2.54 2.59 2.62 2.63
MSVAR 1.21 1.60 1.87 2.09 2.23 2.33 2.40 2.45 2.52 2.57 2.60 2.61
CRS 1.12 1.45 1.71 1.89 2.06 2.15 2.25 2.29 2.37 2.44 2.52 2.56

MAE for wind power forecasts issued at h = 1,2, . . . ,12
ASYM 0.121 0.156 0.184 0.212 0.227 0.236 0.247 0.261 0.280 0.291 0.294 0.296
SEP 0.123 0.158 0.185 0.212 0.227 0.236 0.247 0.261 0.280 0.292 0.295 0.296
PER 0.125 0.161 0.189 0.215 0.230 0.241 0.253 0.268 0.286 0.299 0.303 0.304
RSAR 0.129 0.169 0.199 0.226 0.241 0.253 0.264 0.278 0.297 0.309 0.314 0.314
MSAR 0.132 0.171 0.200 0.220 0.233 0.242 0.249 0.258 0.263 0.267 0.268 0.269
MSVAR 0.131 0.170 0.198 0.217 0.228 0.238 0.245 0.256 0.262 0.266 0.267 0.267
CRS 0.121 0.156 0.186 0.207 0.220 0.229 0.239 0.244 0.254 0.263 0.268 0.271

where Y �
i (t +h) and f̂ �

i (t +h) are, respectively, the observation and point forecast
(from any of the competing models) at the ith location and the hth horizon during
the �th forecasting roll. For each forecasting horizon h = 1, . . . ,12, the associated
MAE is computed over all turbines and forecasting rolls using the 11-month of test
data. The resulting MAE values are presented in Table 1.

We note that MAE as a loss measure suggests the use of the medians of the
predictive distributions as optimal point forecasts (Gneiting (2011a)). Since the
mean and median coincide under a Gaussian predictive distribution, the point fore-
casts used in (4.5) for ASYM and CRS are the raw and calibrated kriging-based
predictions, respectively. Similarly, RSAR, MSAR and MSVAR are all based on
Gaussian (vector) autoregressive models, and as such, the means of the result-
ing predictive distributions (in case of RSAR), or the convex combination of
the means (in case of MSAR and MSVAR), are used as the point forecasts in
(4.5).

In addition to MAE, Pinson, Chevallier and Kariniotakis (2007) note that, in
deregulated electricity markets, under-estimating power is often a more costly sit-
uation than over-estimating it. To reflect this cost trade-off, Hering and Genton
(2010) propose the power curve error (PCE), as expressed in (4.6) to evaluate the
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TABLE 2
Average PCE values across all horizons. Bold-faced values indicate best performance. * indicates

the value suggested by Pinson, Chevallier and Kariniotakis (2007)

Method g = 0.5 g = 0.6 g = 0.7 g = 0.73∗ g = 0.8

ASYM 0.116 0.117 0.114 0.111 0.104
SEP 0.116 0.118 0.114 0.112 0.105
PER 0.118 0.121 0.124 0.125 0.127
RSAR 0.123 0.123 0.120 0.117 0.110
MSAR 0.113 0.123 0.127 0.124 0.126
MSVAR 0.112 0.118 0.122 0.118 0.119
CRS 0.109 0.110 0.107 0.105 0.097

power forecast:

(4.6) PCE(P, P̂ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g
[
Pi(t + h) − P̂i(t + h)

]
if fi(t + h) ≤ Yi(t + h),

(1 − g)
[
P̂i(t + h) − Pi(t + h)

]
if fi(t + h) > Yi(t + h),

where Pi(t +h) and P̂i(t +h) are the normalized power observations and forecasts
at t + h and the ith location, and g is the weight given to under-estimates, which
is usually set at values higher than 0.5 to penalize under-estimates more than over-
estimates. Pinson, Chevallier and Kariniotakis (2007) suggest a value of g = 0.73.
Under the loss function of (4.6), Gneiting (2011b) shows that the gth quantile of
the predictive distribution is an optimal point forecast. For ASYM, SEP, CRS and
RSAR, the gth quantile is directly computed from the resulting Gaussian predictive
distribution and is used as the input point forecast to the PCE loss function in
(4.6). For MSAR and MSVAR, however, the predictive distribution is a mixture of
Gaussians, for which the quantiles do not have closed form expressions. Therefore,
we numerically compute the gth quantile of the predictive distribution and use it
as a point forecast for the PCE loss function in (4.6). In Table 2, we present the
average PCE values across all horizons for values of g ranging between 0.5 and
0.8 with 0.1 increment, as well as g = 0.73. We stress that when computing MAE
in (4.5) and PCE in (4.6) for the CRS approach, f̂i(t +h) is the calibrated forecast.

Table 1 demonstrates that the CRS approach outperforms the competing mod-
els in terms of wind speed forecasting for h > 1. We believe that this is mainly
the result of better capturing the out-of-sample variations in the wind speed vari-
able using c(x(t + h)|r(t)). Additional benefits over temporal-only and separa-
ble spatio-temporal models come from the incorporation of comprehensive spatio-
temporal correlations and flow dependent asymmetries. For the very short-term
horizon, h = 1, PER offers the best performance, with CRS slightly behind, but
still enjoying a competitive performance.
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FIG. 9. Percentage improvements in MAE of CRS over competing approaches in wind speed (left
panel) and wind power (right panel).

Figure 9(a) presents the percentage improvements, in terms of MAE of wind
speed forecast, that CRS achieves over the competing models at different forecast
horizons. The percentage improvement over reactive methods such as ASYM, SEP,
RSAR and PER is more substantial as the look-ahead horizon increases. This does
not come as a surprise since the farther the look-ahead horizon is, the more likely a
change to take place in wind speed, and hence, the benefit of capturing the out-of-
sample variations by means of the runlength variable becomes more appreciated.

The trend of the improvement of CRS over the Markov-switching approaches,
that is, MSAR and MSVAR, is opposite. For short-term horizons, the performance
of CRS is remarkably better than the MS approaches. As the look-ahead horizon
increases, the advantage of CRS over MS models reaches a peak around h = 4
hours, and after that, the performance of the MS approaches gradually catches up
with that of CRS. This trend suggests that CRS anticipates out-of-sample wind
speed variations in the early portion of the forecast horizon better than the MS
approaches. We believe that this is rooted in the mechanisms each approach re-
lies on: CRS uses the runlength, whereas MSAR and MSVAR use the transition
probabilities.

The analysis presented in Figure 10 helps explain the advantage of CRS over
MSVAR. We evaluate how each method (CRS versus MSVAR) handles out-of-
sample variations in wind speed. We define an out-of-sample change in wind speed
as crossing a wind speed regime threshold set at either 4.5 or 9.0 in the forecast
horizon. For a given h between 3-hour ahead and 12-hour ahead, if both the actual
observation Yi(t +h) and its corresponding forecast f̂i(t +h) cross the same speed
threshold, we label that as a true positive; while on the other hand, when neither
Yi(t + h) nor f̂i(t + h) crosses any speed threshold, we label it as a true negative.
In the left panel of Figure 10, we plot the true positive rate (TPR) of CRS versus
MSVAR for h = 3,4, . . . ,12. Similarly, the right panel of Figure 10 plots the true
negative rate (TNR). This analysis is performed on all 1339 forecasting rolls in the
11 months of test data and provides an empirical estimation of the TPR and TNR.



1504 A. AZIZ EZZAT, M. JUN AND Y. DING

FIG. 10. Left panel: the true positive rate (TPR). Right panel: the true negative rate (TNR). Com-
parisons are between CRS (blue triangles) and MSVAR (red circles) for h = 3, . . . ,12.

Apparently, CRS does better than MSVAR in terms of both measures in the middle
range of the forecast horizon, between 4-hour ahead and 10-hour ahead. This is
consistent with the difference between the two methods observed in Figure 9. In
terms of the true positive rate, which is the proportion of correct anticipation of
a change, CRS performs better than MSVAR for smaller h’s, while MSVAR is
more conservative in signaling changes under those circumstances, suggesting that
the use of runlength offers a higher degree of change anticipation in the shorter
horizons.

Similar findings can be extended to the power forecasting results in Table 1; the
CRS approach outperforms the competing models for power prediction for most
forecasting horizons. Its improvement over the reactive methods is higher as the
look-ahead horizon increases, whereas its improvement over the MS approaches
is better in the shorter forecast horizons. In the case of wind power forecast, the
performance of MS approaches in the end surpass that of CRS at h = 11. The
percentage improvements shown in Figure 9(b) are somewhat different from their
counterparts in Figure 9(a); the difference is mainly due to the nonlinear speed-to-
power conversion.

In Table 2, it appears that the improvement of CRS over the competing models
is also realizable in terms of PCE. The CRS approach performs well compared to
the competing approaches, especially when the under-estimation is penalized more
severely than over-estimation (namely g > 0.5), which describes the more realistic
cost trade-off in power systems.

The improvements presented above are indeed significant from a practical point
of view. With sometimes double digit percentage improvements in wind speed
forecasts, using the proposed method can lead to major benefits in a wide set of
operational analytics on the wind farm such as predictive turbine control, power
estimation and economic dispatch, among others.
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FIG. 11. Boxplots of p-values generated from conducting the one-sided test of Diebold and Mari-
ano (1995) to compare the turbine-specific CRS forecasts against those from the competing models
at different horizons.

It is still important, however, to test if these improvements are significant from
a statistical point of view. Similar to Hering and Genton (2010), we implement
the large sample test introduced by Diebold and Mariano (1995) for compar-
ing the forecasting accuracy of two models at a specific forecasting horizon. For
h = 1, . . . ,12, and i = 1, . . . ,200, we implement a one-sided version of the test,
corresponding to a sample size of 1339 forecasts per turbine per horizon. Figure 11
shows the boxplots of the 200 p-values of the pairwise comparisons for the CRS
approach against the competing models at each horizon. Again, the improvements
from the CRS approach are mostly significant against the reactive methods in
larger forecast horizons (h > 3), while the difference between the MS approaches
and CRS is significant at the small and moderate time lags. Recall that CRS adds
the forecast calibration only when h ≥ 3, which means that CRS is the same as
ASYM for h = 1 and h = 2. For this reason, the first two p-values, corresponding
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FIG. 12. Left panel: CRS versus ASYM predictions for one turbine from an arbitrarily selected
forecasting roll. Calibrated predictions shown without imposing the bounds discussed in Section 4.2.
Right panel: Predictive distributions for the point forecast at h = 4. Absolute errors of point predic-
tions at h = 4 are, respectively, 0.20 and 1.33 for CRS and ASYM.

to h = 1 and h = 2 in the top-left panel of Figure 11, are supposed to be one; these
p-values are trivial and thus not shown.

4.4. Adaptation to and impact on probabilistic forecasting. Probabilistic fore-
casting stems from the importance of characterizing distributions associated with
point forecasts to subsequent optimal decision makings (Pinson (2013), Gneiting
and Katzfuss (2014)). While our discussion so far primarily focuses on the h-hour
ahead point forecasting, the resulting method can be placed in the framework of
a probabilistic forecasting because the essence of the CRS approach is to make
an adjustment to the mean prediction of a statistical model that can be used for
making probabilistic forecasts.

To elaborate, our choice of M is ASYM, which is one type of Gaussian random
field model, for which the point forecast is the mean of a predictive normal distri-
bution. In other instances, the point forecast can be the mean of a truncated normal
distribution as in Gneiting et al. (2006) and Pourhabib, Huang and Ding (2016).
In all cases, the CRS approach inherits the uncertainty from M, but offers an en-
hancement to reduce bias in the point forecasting. In other words, having started
with a probabilistic forecasting using the base model, CRS aims at reducing the
bias of the original forecasting without affecting its predictive variance.

To illustrate this point, we show in Figure 12 the forecast at one of the turbines
from an arbitrarily selected forecasting roll. In the left panel, it shows that the
calibrated forecasts are able to pick up an out-of-sample change in wind speed,
in contrast to the reactive ASYM model, which fails to do so, as it solely relies
on extrapolating the observed in-sample wind regime. The right panel depicts the
predictive distributions associated with the point forecasts of CRS and ASYM at
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TABLE 3
CRPS values of wind speed prediction for h-hour ahead, h = 3, . . . ,12. Bold-faced values indicate

best performance

Method 3 4 5 6 7 8 9 10 11 12

ASYM 1.34 1.55 1.71 1.82 1.94 2.05 2.20 2.28 2.35 2.38
CRS 1.32 1.47 1.62 1.70 1.79 1.83 1.91 1.97 2.05 2.08

h = 4. The benefit of the CRS approach is to correct the inherent bias in the fore-
casts of the reactive ASYM model by shifting the mean of the resulting distribution
towards the true value, while preserving the variance of the original model.

To summarize, the CRS method is a bias correction approach, rather than a vari-
ance reduction endeavor. The uncertainty in the resulting forecasts depends largely
on the selection of M. Since the CRS approach is generic to different selections
of M, the decision-maker then has the luxury to select or tune M accordingly to
achieve a bias-variance trade-off as dictated by the application under study.

A standard evaluation measure in probabilistic forecasting is the continuous
ranked probability score (CRPS). In Table 3, we compare the calibrated forecasts
(CRS) versus the uncalibrated, reactive forecasts (ASYM) in terms of CRPS using
the 11-month worth of test data. Note that the essential difference between CRS
and ASYM is the calibration part. For all h ≥ 3 cases, CRS outperforms ASYM,
as much as 13.6% for some h’s. This comparison empirically supports the bene-
fit of bias reduction rendered by CRS and highlights the impact of CRS under a
probabilistic forecasting framework.

5. Conclusions and future directions. This paper proposes the calibrated
regime-switching method for short-term wind forecasting. The essence of the CRS
approach is to calibrate raw forecasts from a reactive regime-switching statistical
model to capture the out-of-sample variations in the wind speed variable taking
place in the forecast horizon. Extensive testing using one year, 200-turbine wind
farm data suggests that the CRS approach can offer substantial benefit that en-
hances the forecast accuracy over a wide spectrum of existing methods in both
wind speed and wind power domains.

One important message conveyed in this paper is that an improvement in change
anticipation can lead to appreciable improvements in forecasting quality. The CRS
approach is an important step towards steering the focus of the literature and
practice from the reactive “regime detection” models towards the next-generation
proactive “regime anticipation” models. A fully proactive regime-switching model
would of course not confine itself to solely calibrating reactive regime-switching
forecasts, but would, instead, address the more general and challenging problem
of predicting directly the out-of-sample wind regimes, thus naturally producing
predictions that are adjusted to future regime changes. Albeit not fully proactive
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yet, we hope that the CRS approach paves one of the pathways and makes a solid
step forward towards attaining that goal.

Some future research directions related to the CRS approach include, but are not
limited to, looking into nonparametric modeling of the calibration function, using
different indicators to inform the calibration action, and reducing both bias and
variance in a probabilistic forecasting framework. Varying the calibration function
over space, in addition to time, as mentioned in Section 3.2, is also a matter of
promising future research.
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