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APPENDIX A: GAUSSIAN APPROXIMATION OF POISSON DISTRIBUTION

The Poisson distributed observation equation can be written as

(A.1) Yit ∼ Poisson{(exp[Bαt])i}, i = 1, . . . ,m,

and we would like to find a Gaussian distribution

(A.2) Yt ∼ normal(Bαt + µt,Ht),

to approximate it. Durbin and Koopman (1997) proposed that if the probability distribution
functions (pdfs) in Equation (A.1) and (A.2) have the same first and second derivatives w.r.t the
state αt, then Equation (A.2) can serve as a good approximation of Equation (A.1) in updating
the state space model. We can use this idea to calculate µt and Ht in Equation (A.2). To simplify
the derivation, we use Bαt instead of αt as the variable to calculate those derivatives.

The logarithm of the pdfs in Equation (A.1) and Equation (A.2), as a function of Bαt, can be
expressed, respectively, as

(A.3) log ppoi([Bαt]i) = Yit[Bαt]i − exp[Bαt]i, i = 1, . . . ,m,

and

(A.4) log pnor(Bαt) = −1

2
(Yt −Bαt − µt)

TH−1t (Yt −Bαt − µt) + const,

where ‘const’ is a term unrelated to αt.
In Equation (A.3), the pdf of each coordinate of Bαt is independent to each other, Equation

(A.4) should have the same property, meaning that Ht should be a diagonal matrix. We can then
rewrite Equation (A.4) as:

(A.5) log pnor([Bαt]i) = − 1

2[Ht]ii
(Yit − [Bαt]i − [µt]i)

2 + const,

Then calculating the first and second derivatives of Equation (A.3) and (A.5) w.r.t [Bαt]i and
equating them at the estimated α̂t, we get the following two equations:

(A.6) Yit − exp[Bα̂t]i =
1

[Ht]ii
(Yit − [Bα̂t]i − [µt]i),

and

(A.7) exp[Bα̂t]i =
1

[Ht]ii
.
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The two equations further yield:

(A.8) [Ht]ii =
1

exp[Bα̂t]i
= exp[−Bα̂t]i,

and

(A.9) [µt]i = Yit − [Bα̂t]i − exp[−Bα̂t]i(Yit − exp[Bα̂t]i).

Rewriting Equation (A.8) and (A.9) in a matrix form, we finally obtain µt and H as:

(A.10)
µt = Y −Bα̂t − exp(−Bα̂t)[Y − exp(Bα̂t)],
H = diag[exp(−Bα̂t)].

APPENDIX B: DETAILED STEPS OF KALMAN FILTER

Given a linear Gaussian state space model

(B.1)
Yt ∼ normal(Bαt + µt,Ht),
αt+1 = αt + wt, wt ∼ normal(0,Q),

the Kalman filter can estimate the state αt in a recursive way from t = 1 to time T . First we
need to predict αt and its covariance according to the estimation of the previous step as

(B.2)
α̂−t = α̂t−1,
P−t = Pt−1 + Q,

where α̂−t is called the prior estimator and P−t is the prior covariance matrix. The two equations
above can be derived from the distribution of p(αt|Y1, · · · ,Yt−1) (Durbin and Koopman, 2012).

When a new Yt is coming, we calculate the innovation νt and its covariance matrix according
to the previous prediction α̂−t and the new input Yt as

(B.3)
νt = Yt −Bα̂−t − µt;
Ft = BP−t B

T + Ht.

Then the Kalman gain will be calculated as:

(B.4) Kt = P−t B
TF−1t .

At last we update the estimator of state αt and its covariance matrix as:

(B.5)
α̂t = α̂−t + Ktνt,
Pt = P−t (I−KtB)T ,

where α̂t is called the posterior estimator and P−t is the posterior covariance matrix. Those
equations can be derived from the distribution of p(αt|Y1, · · · ,Yt) (Durbin and Koopman, 2012).

APPENDIX C: POSTERIOR DISTRIBUTION OF σ2α AND σ2ε

Here we want to show the derivation of the posterior distribution of σ2α and σ2ε in our Bayesian
model:

(C.1)

Yit ∼ Poisson{(exp[BCγt])i},
γt+1 − γt = wt ∼ normal(0,Q), Q = diag(σ2α, σ

2
α, σ

2
ε , · · · , σ2ε ),

σ2α ∼ inverse-gamma(a1, b1), σ
2
ε ∼ inverse-gamma(a2, b2).
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Since Q is a covariance matrix, we can rewrite the second layer of the model (C.1) as:

(C.2) γjt − γj(t−1) ∼ normal(0, σ2α), j = 1, 2, t = 2, · · · , T,

and

(C.3) γjt − γj(t−1) ∼ normal(0, σ2ε ), j = 3, · · · , n, t = 2, · · · , T.

For j = 1, 2, γjt− γj(t−1) are regarded as 2(T − 1) i.i.d variables following normal(0, σ2α). Since
we choose the conjugate prior σ2α ∼ inverse-gamma(a1, b1), its posterior distribution has the same
formation as inverse-gamma(apost1 , bpost1 ). As derived in Bolstad and Curran (2016), apost1 and bpost1

are calculated as:

(C.4) apost1 = a1 +
1

2
2(T − 1) = a1 + (T − 1),

and

(C.5) bpost1 = b1 +
1

2

2∑
j=1

T∑
t=2

[γjt − γj(t−1)]2.

For j = 3, · · · , n, γjt−γj(t−1) are regarded as (n−2)(T−1) i.i.d variables following normal(0, σ2ε ).

Following the same derivation, the posterior distribution of σ2ε is written as inverse-gamma(apost2 , bpost2 )
with

(C.6) apost2 = a2 +
1

2
(n− 2)(T − 1),

and

(C.7) bpost2 = b2 +
1

2

n∑
j=3

T∑
t=2

[γjt − γj(t−1)]2.
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