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Abstract: Recent studies show that many of the extreme events in hydrology can be modeled more realistically by means of a nonsta-
tionary generalized extreme value (GEV) distribution. However, existing approaches for estimating the parameters can mistake a positive
trend in the data to be negative. This can lead to underdesigning in engineering projects. To address this issue, this work devises a sign
constrained Bayesian inference method for nonstationary GEV distributions. This new approach ensures that the final GEV model em-
bodies a trend consistent with the physical understanding of the underlying phenomenon and design requirements. The advantage of
using the sign constrained Bayesian approach is twofold: first, it produces a probability distribution instead of a point estimate of the
model parameters; and second, it affords a natural method of uncertainty quantification, thus giving greater confidence to engineers in
selecting design parameter values for civil and mechanical structures to withstand extreme events. The merit of the proposed Bayesian
approach is illustrated using two water level datasets pertaining to tidal rivers in New Jersey. The results show that the new method is
capable of appropriately handling datasets for which traditional methods return a positive or negative slope in the location parameters,
and produces the posterior distribution of the parameters based on the observed data and not point estimates. Further, the availability
of a probability distribution for the return event gives engineering designers and planners additional information and perspective on
the risks involved. DOI: 10.1061/(ASCE)WW.1943-5460.0000589. © 2020 American Society of Civil Engineers.

Introduction

Probabilistic modeling of extreme events is often performed using the
generalized extreme value (GEV) distribution or other distributions.
such as the Gumbel distribution, the Weibull distribution, etc. Engi-
neers are often interested in understanding the behavior of extreme
events to develop a basis for designing civil engineering structures
such as floodwalls and bridges. The reliability of these structures is
paramount to public safety. For instance, about 40% of the land
area in the Netherlands is below sea level (Haan and Ferreira
2006). This portion of land is protected against flooding by construc-
tion of storm-surge barriers, which should withstand extreme water
levels. These barriers are undergoing renovations, which should be
able to withstand oceanic conditions corresponding to a probability
of occurrence of 10−4 in a given year. Then the question that becomes
relevant is the following: How should this probability be translated
into a design quantile for the height of the dyke? In statistics, extreme
value theory provides techniques for answering this type of question.

The standard form of the GEV distribution is a stationary model,
which means that the parameters of the distribution (i.e., the

location, scale, and shape parameters) are time invariant. However,
hydrological maxima often show time-dependent trends (Potter
1991; Olsen et al. 1999; Lins and Slack 1999; Douglas et al.
2000; Strupczewski et al. 2001b), thus creating a need for probabi-
listic modeling to incorporate the trends observed in the data. This
can be handled by using a nonstationary GEV distribution whose
parameters are a function of time (Coles 2001), so that the probabil-
ity distribution changes over the time. A nonstationary GEV distri-
bution is generally based on prespecified trends in the parameters,
enabling one to capture the change in the probability of occurrence
of the underlying events over time.

The commonly used technique to estimate the parameters for a
nonstationary GEV distribution is the maximum likelihood estimation
(MLE) method. Examples include the work of Caires et al. (2006) in
the context of significant wave heights; of the studies of Salas and
Obeysekera (2014) of peak discharges in the Aberjona River and
Sugar Creek Basin; and of the work of Masina and Lamberti
(2013) in the context of extreme sea levels in the northern Adriatic
(see also Strupczewski et al. 2001a). Conversely, Mudersbach and
Jensen (2010) have used the L-moments method (Gado and Nguyen
2016) to estimate the 100 year extreme water levels for the North
Sea coast. Although the L-moments method is valid for stationary dis-
tribution, it can be applied to a nonstationary distribution by first
detrending the time-series data and then applying the method. The re-
sults of Gado and Nguyen (2016) based on simulated datasets suggest
that this method can perform as well as or better than theMLEmethod
in most cases. In another related work, the moments method is used to
estimate intensity–duration–frequency (IDF) rainfall curves in some
African cities (De Paola et al. 2014).

An alternative to the MLE and L-moments approaches is the
Bayesian inference approach. The Bayesian approach considers
the parameters of the GEV distribution as random variables. There-
fore, it employs the concept of priors, which reflects the prior belief
for any parameter before observing the data and computes a poste-
rior distribution of the parameters based on the given data. The pri-
ors can act as a layer of information if some properties of the
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parameters are known, while having a posterior distribution of the
parameters offers the benefit of uncertainty quantification. This ap-
proach has been taken, for example, to analyze trend-related peak
flow attributes of the Wainganga river basin in India (Das and
Umamahesh 2017). The work by De Paola et al. (2018) compares
the Bayesian method and the MLE method for parameter estimation
using both stationary and nonstationary models for extreme rainfall
in some African cities.

In spite of the widespread use of these methods, a potential
problem appears to have gone unnoticed. Certain datasets of ex-
treme events often exhibit an increasing trend; but, while applying
a nonstationary model, these methods produce a negative slope for
the location parameter. The problem with this phenomenon is that a
negative slope for the location parameter could lead to the underde-
sign of a structure (since the data points themselves possess an in-
creasing trend). This is illustrated by means of an analysis of data
for the Hackensack River in New Jersey. The purpose of this work
is to alert the practitioner to this problem and to suggest a remedy.
The problem may be solved by using a constrained optimization of
the likelihood function but the solution for this optimization prob-
lem invariably yields a zero slope for the location parameter, thus
rendering the process stationary.

The contribution of this work to nonstationary GEV modeling
applications is the development of a sign constrained Bayesian
method for parameter estimation problems involving nonstationary
phenomenon. The motivation for this work stems from the need to
incorporate a physical understanding of the phenomenon in the
GEV model to improve estimation. The use of appropriate priors
in a Bayesian framework allows such understanding to be added
to the model in a natural manner. A further benefit of this Bayesian
work is its ability to inherently account for the uncertainty in the
model, something that is pressingly needed in extreme value anal-
ysis but often remains ignored in the research (Coles 2001).

To demonstrate the problem and the solution, we include two case
studies involving hydrological data for extreme flows in two tidal riv-
ers. These data have different structures, as explained in the subse-
quent sections. The two case studies provide an illustration of how
to apply the proposed Bayesian method with practitioners in mind,
and demonstrate that this unified framework can handle problems
with different data structures. The rest of the paper is organized as fol-
lows. The next section describes the fundamentals of nonstationary
modeling in relation to the GEV distribution. After this, the details
of the proposed Bayesian method for parameter estimation are pro-
vided and results are reported of the traditional MLE, the constrained
MLE, the traditional Bayesian, and the proposed sign constrained
Bayesian methods applied to two hydrological datasets. The dis-
course ends with a summary and concluding remarks.

GEV Distribution for Nonstationary Models

The stationary GEV distribution uses three parameters, namely, the
location parameter μ, the scale parameter σ, and the shape param-
eter ξ. The cumulative distribution function (CDF) for a GEV dis-
tribution can be expressed as

F(z) = exp − 1+ ξ
z− μ

σ

[ ]{ }1/ξ( )
(1)

where z = variable associated with the underlying random process,
say the value of the water level. The GEV distribution can be mod-
ified to incorporate the nonstationarity present in the data by ex-
pressing the parameters as functions of time (Coles 2001). The
structure of the time dependence can be assumed based on the

pattern of the trends in the data. If, for example, it is assumed
that the parameters vary linearly with time, we can write each pa-
rameter as a linear function of time t in the following manner:

μ(t) = μ0 + μ1t, σ(t) = σ0 + σ1t, ξ(t) = ξ0 + ξ1t (2)

where μ(t) = linear function for the location parameter, with intercept
μ0 and slope μ1; σ(t) = function for the scale parameter, with intercept
σ0 and slope σ1; and ξ(t) = function for the shape parameter, with ξ0
and ξ1 as intercept and slope, respectively. It is evident that the num-
ber of parameters for a nonstationary model has doubled to six. This
makes the resulting model more complicated, and sometimes unnec-
essarily flexible, creating identifiability issues in parameter estimates.
Intuitively, these issues arise when there is an excessive number of
parameters in a model and various combinations of the parameters
may have the same effect, making it difficult to estimate the param-
eters uniquely. For this reason, often only the location parameter is
regarded as a function of time, while keeping the scale and shape pa-
rameters as time-independent constants (e.g., Obeysekera et al. 2013).
Such a model, with a linear trend in the location parameter, means
that the distribution is shifting linearly with time without changing
the overall structure of the distribution, as illustrated in Fig. 1.

Considering the location parameter as a linear function of time,
the CDF can be written as

F(z, t) = exp − 1+ ξ
z− (μ0 + μ1t)

σ

[ ]{ }1/ξ
( )

(3)

Hence, four parameters {μ0, μ1, σ, ξ} are to be estimated, where
μ0 = intercept of the location parameter; and μ1 = slope of the lo-
cation parameter. To estimate these parameters using the method of
maximum likelihood, let the likelihood function be written as

L(θ) =
∏n
i=1

f (zi:μ(t), σ, ξ) (4)

where f = the probability density function (PDF) of the distribution;
θ = the parameter set {μ0, μ1, σ, ξ}; zi = the ith data point; and
n = the total number of data points. Then the parameters
{μ0, μ1, σ, ξ} can be estimated by maximizing the logarithm of
the likelihood function.

Fig. 1. Example of linear shift in the GEV distribution over time.
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For a nonstationary GEV distribution, the time t in the likeli-
hood function is a variable and its value depends on the “reference”
year selected. If the first data point is considered the reference for
constructing the time index, t= 0, 1, 2, …, n. Choosing the first
available data point as the reference (t= 0), however, is just one
way to construct the time index (Coles 2001). Any year can, in
fact, be taken as the reference. The data points preceding the refer-
ence would then be modeled as t=−1,− 2,− 3…, while the years
succeeding the reference year would be modeled as t= 1, 2, 3…
For example, Obeysekera and Salas (2016) advocated centering
the time variable around the mean of the extreme values and
using the mean year as the reference year. The impact of a different
reference is that the estimate of the intercept, μ0, will be affected,
but the other parameters will not.

To ensure that the final model is independent of the choice of the
reference year, the location intercept must be shifted to reflect the first
year of the design life of a structure. Let us call the first year of the
design life of a structure the “design” year, yd. We denote by yr the
reference year for constructing the time index. If the location param-
eter is defined as a linear function of time, as in Eq. (2), the value of
the location intercept for the design year can be recalculated as

μ0d = μ0 + μ1(yd − yr) (5)

where μ0 is the location intercept corresponding to the reference
year and μ0d is the location intercept corresponding to the design
year. For extrapolation into the future, the number of years
is counted from the design year and, as such, μ0d should accord-
ingly be used in the nonstationary GEV model, as expressed
in Eq. (3).

Let us suppose that the parameter values have been estimated.
The next step is to calculate a design quantile. In the example
noted earlier, the Dutch government has stipulated that the height
of the dykes should be sufficient to withstand water levels with a
probability of occurrence of as low as 10−4 (exceedance probabil-
ity) in any given year. If we use a nonstationary model, this ex-
ceedance probability is a function of time. Let the exceedance
probability for an event z at time t be denoted by pt(z). Then it
can be calculated using the CDF of the GEV distribution, as

pt(z) = 1− F(z; t)

= 1− exp − 1+ ξ
z− (μ0 + μ1t)

σ

[ ]{ }1/ξ
( )

(6)

Alternatively, the return period, defined as the expected waiting
time for an event z, is used in the design. We denote the waiting
time for an event z by a random variable X. If the realization of
this random variable is X= x, i.e., the event z occurs at time x,
the PDF of this random variable can be expressed as

f (x; z) =
∏x−1

i=1

(1− pi(z))

( )
px(z) (7)

where pi(z) = the time-varying exceedance probability of event z
until time x− 1; and px(z) = the exceedance probability at time x.
Specifically, the waiting time follows a geometric distribution. If
the GEV distribution is stationary, i.e., the exceedance probability
for any event does not change with time, the expected value of the
waiting time becomes (Mood et al. 1974)

E(X ) = Tstat = 1

p
(8)

where p is the constant exceedance probability for any event z and
Tstat is the return period for a stationary model.

The formulation for the return period for a nonstationary model
is different from that for the stationary one because the exceedance
probability is no longer a constant. The concept of return period has
been extended by Salas and Obeysekera (2014) for nonstationary
hydrologic extreme events. If pt(z) is the time-varying exceedance
probability of event z for time t= 1, 2, 3…, the return period for
event z can be given as

Tnstat = 1+
∑xmax

x=1

∏x
t=1

(1− pt(z)) (9)

where Tnstat = the return period for the nonstationary model; and
xmax = a time point such that pxmax (z) = 1.

From Eq. (6), it can be seen that the exceedance probability
pt(z) is a function of time and keeps on increasing for a given
value of event z if there is a positive trend in the location param-
eter. Hence, xmax is the time when the exceedance probability of a
given event, pxmax (z), reaches one. However, if the location param-
eter has a negative trend, pt(z) will keep on decreasing, pxmax (z)
will never reach one, and xmax can be considered as ∞ (Salas
and Obeysekera 2014). Numerical calculations using xmax as ∞
would give Tnstat=∞, which means that, in practice, if the loca-
tion parameter has a negative trend, the nonstationary return pe-
riod calculation becomes meaningless.

One way to approach this problem could be to resort a stationary
model whenever the parameter estimate returns a negative slope.
The implication is that the structures are designed at least for the
current level of extremes. Apparently, this approach leads to an un-
derestimate of the design quantile if there is indeed a positive trend
in the occurrence probability of the underlying events. Since this
approach does not produce satisfactory outcomes, we propose a
“sign constrained” Bayesian approach for parameter estimation,
which we describe next.

Fig. 2. Location map of the sites used for the case studies. (Map data
Ⓒ2019 Google.)
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Sign Constrained Bayesian Method

Let θ be a vector of the parameters of any distribution such that θ∈
Θ, where Θ is the set of all the possible values of the parameters.
Let p(θ) be the prior and p(θ | z) be the posterior distribution of
the parameter θ after observing the data z. Bayesian inference al-
lows for learning the posterior from the prior via Bayes’ rule
(Cox 1946, 1961; Savage 1972):

p(θ | z) = p(z|θ)p(θ)�
Θp(z|θ)p(θ) d θ

(10)

where p(z|θ) is the likelihood that the data comes from a distribu-
tion with given parameter θ. Eq. (10) does not state what a rational
person’s belief should be; it only states how the belief should
change in light of the observed data. Hence, the posterior distribu-
tion would depend on the prior belief and different priors could re-
sult in different posteriors, thus making the analysis dependent on
the personal choice of priors. Nevertheless, using priors offers an
opportunity to steer the parameter estimation process to be in line
with the underlying physical trend.

In Eq. (10), the denominator involves an integration over the pa-
rameter space and can become very difficult (or sometimes impossi-
ble) to compute as the number of parameters in the model increases.
Therefore, approximation schemes for computing the posterior distri-
bution are often availed of; here we resort to the commonly used
Markov chain Monte Carlo (MCMC) method. The idea behind the
MCMC method is to simulate the posterior distribution by taking a
large number of samples from the posterior distribution. We use
the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings
1970; Hoff 2009) to sample from the posterior distribution. This
sampling algorithm constructs a sequence {θ(1), θ(2), …, θ(s)} such
that θ∼ p(θ | z).

Suppose that a working sequence {θ (1), θ(2), …, θ(s)} has
been constructed and the next value θ (s+1) must be added. The
Metropolis-Hastings algorithm proceeds by sampling a proposed
value θ* close to the current value θ(s). A proposal distribution
J(θ* | θ(s)) is used to obtain θ*. Generally, a symmetric proposal dis-
tribution is used. Common examples include uniform(θ(s)− δ, θ(s)+ δ)
and normal(θ(s), δ2), where δ is known as the proposal width.

(a) (b)

0.438 m3/(s year)
 

0.627 m3/(s year)
 

m
3
/

s

m
3
/

s

Fig. 3. Annual peak flow data with best linear fit for (a) Hackensack River; and (b) Assunpink Creek.

Table 1. Specifications for the MCMC algorithm

Specification Assunpink Creek Hackensack River

Location intercept μ0 prior Uniform (0, 200) Uniform (0, 200)
Location slope μ1 prior

SC-BM Uniform (0, 5) Uniform (0, 5)
UC-BM Uniform (−5, 5) Uniform (−5, 5)

Scale σ prior Uniform (0, 50) Uniform (0, 50)
Shape ξ prior Uniform (−1, 1) Uniform (−1, 1)
Initial values {μ0, μ1, σ, ξ} {50, 1, 20, 0.8} {50, 1, 20, 0.8}
Proposal distributions

μ0 Normal (., 1) Normal (., 2)
μ1 Normal (., 0.1) Normal (., 0.15)
σ Normal (., 1) Normal (., 1)
ξ Normal (., 0.05) Normal (., 0.05)

Table 2. Results for Hackensack River

Method μ0 μ1 σ ξ
100 year

flow (m3/s) NLLH

SC-BM (MAP) 51.66 0.000 30.72 0.0870 235.7 471.83
SC-BM (expected) 53.11 0.093 31.44 0.0977 246.2 471.72
UC-BM (MAP) 45.54 −0.042 29.76 0.1189 — 471.05
UC-BM (expected) 44.71 −0.048 30.66 0.1385 — 471.28
MLE 45.59 −0.034 29.19 0.1184 — 471.02
C-MLE 47.51 0.000 29.39 0.1093 223.2 471.06

Note: No 100-year return event estimate when slope parameter μ1 is
negative.

Table 3. Results for Assunpink Creek

Method μ0 μ1 σ ξ
100 year

flow (m3/s) NLLH

SC-BM (MAP) 56.20 0.281 15.33 0.2115 195.2 404.36
SC-BM (expected) 56.55 0.282 15.62 0.2244 214.3 404.32
UC-BM (MAP) 55.53 0.277 14.99 0.1873 194.9 404.40
UC-BM (expected) 56.95 0.286 15.58 0.2047 205.6 404.23
MLE 56.96 0.289 14.86 0.2027 195.1 404.07
C-MLE 56.96 0.289 14.86 0.2027 195.1 404.07
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Once the value of θ* is obtained, the acceptance ratio r is calcu-
lated as

r = p(z|θ*)p(θ*)J (θ(s)|θ*)
p(z|θ(s))p(θ(s))J (θ*|θ(s)) (11)

For a symmetric proposal distribution, J(θ(s)|θ*) = J(θ*|θ(s)),
which simplifies Eq. (11). The intuition behind computing the ac-
ceptance ratio is that if the ratio is greater than one, it is more likely
that the given data came from a sampling distribution whose pa-
rameter is θ*. Thus, θ* should be included in the set of samples,
θ(s+1)= θ*. If the ratio is less than one, the parameter value θ*
should only be included in the set of samples with probability r.
If the proposed sample θ* is rejected, θ(s+1)= θ(s).

The algorithm can be summarized as follows.
1. Choose the prior distribution for the parameter and select the ini-

tial value of the parameter.
2. Choose the proposal distribution for the parameter.
3. Sample the next value of parameter θ* based on the current

value θ(s) of the parameter and proposal distribution.
4. Compute the acceptance ratio (r).
5. Accept the proposed sample with probability min (r, 1) and up-

date θ(s+1)= θ*; otherwise reject the proposed sample and up-
date θ(s+1)= θ(s).
The algorithm converges to the target posterior distribution after

the Markov chain or the sequence {θ(1), θ(2), …, θ(s)} reaches a

steady state. Hence, the samples collected before reaching the
steady state or during the transient state of the Markov chain
(burn-in samples) are discarded as they do not represent the target
posterior distribution. The number of burn-in samples would vary
based on the convergence rate of the algorithm. The convergence
rate depends on the nature of the dataset, the initial values of the
parameters, the proposal distribution, and the selection of priors.
The algorithm can be stopped after a sufficient number of samples
from the distribution p(θ | z) has been collected.

The use of informative priors to compute the posterior enables us
to constrain some parameters as needed. In this work, if we know
that some of the parameters should not take negative values, we im-
pose a nonnegativity constraint when accepting samples using an ap-
propriate prior. We impose a uniform prior with a nonnegative
support on the location parameter and the scale parameter (because
it is the variance). We refer to the resulting Bayesian method as a
sign-constrained Bayesian method (SC-BM). We applied the
SC-BM to two case studies involving the return level for peak
flow of water streams and report the findings in the next section.

Case Studies

We consider two case studies involving data for annual peak flow
in rivers and perform a comparative computational study of the pro-
posed Bayesian method and the standard frequentist methods.

(a) (b)

(c) (d)

m s

m s m s

m s

Fig. 4. Posterior distribution for parameters: (a) location intercept parameter for Hackensack River; (b) location intercept parameter for Assunpink
Creek; (c) location slope parameter for Hackensack River; and (d) location slope parameter for Assunpink Creek.
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In some parts of the USA, these flows show an increasing trend
with time. Data for the Hackensack River at New Milford and
for the Assunpink Creek watershed at Trenton [shown in Fig. 2
(Google 2019)] are two such examples in the state of New Jersey.
The Assunpink Creek data have also been examined by Obeysekera
and Salas (2014, 2016).

The annual peak flow data for the period 1924–2015 for these
locations (Hackensack River station ID 01378500 and Assunpink
Creek station ID 01464000) were obtained from the US Geological
Survey website (USGS 2017). The extreme flow is plotted as a
function of time for both datasets in Fig. 3, along with the line of
best fit. The values of p for the slope of these lines are significantly
less than 5%, as shown in the figure, suggesting the use of a non-
stationary model for analysis. We used a nonstationary GEV model
with a linear trend in the location parameter. We arbitrarily set the
design year to be 2018 in both cases, since it is the year when this
computational study was performed.

We applied the SC-BM method to both datasets. In all, 10,000
samples were collected for each of the parameters. For comparison,
we also implemented the alternative methods: the traditional (i.e., un-
constrained) maximum likelihood technique (MLE), a constrained
maximum likelihood technique (C-MLE), and the traditional (i.e., un-
constrained) Bayesian method (UC-BM) with no nonnegativity con-
straint on the location slope. Here, the unconstrained MLE is the
typical estimate we reviewed earlier. In the C- MLE, the likelihood
function (Eq. (4)) is solved while subjecting the slope parameter to

the nonnegative constraint. The inclusion of UC-BM in the compar-
ison is to highlight the impact of the prior and the sign constraint. All
the methods were implemented in R software (version 3.4.3).

We used uniform priors for both case studies. The advantage of
using uniform priors is that they are uninformative, i.e., they allo-
cate equal probabilities to all the values within the selected domain
for the uniform distribution and thus do not favor any particular
value of the parameter over others. However, if some information
is available about the parameters, we can use some other prior dis-
tribution that assigns unequal probabilities to different values of the
parameters, e.g., the normal distribution. Apart from allocating a
uniform prior, we also need to constrain the sign of some of the pa-
rameters. We know that the flow volume of a river and its variance
cannot be negative; thus, the location intercept parameter and the
scale parameter must be restricted to positive values. This is
done by setting the lower bound of the uniform prior to zero. If
we wanted to use a normal prior, this sign constraint could have
been applied by using the truncated normal distribution to discard
all the negative values. Unlike the location intercept and the scale
parameter, there is no reason to assume that the location slope pa-
rameter will always be positive. However, a negative location slope
parameter does not have any significance from a design perspec-
tive. As explained previously, a negative value of the location
slope parameter will drive the return period to ∞, which is not
meaningful. If the location slope parameter for extreme flow for
a river is negative, we would still design any structure at the current

(a) (b)

(c) (d)

m s
m s

Fig. 5. Posterior distribution for parameters: (a) scale parameter for Hackensack River; (b) scale parameter for Assunpink Creek; (c) shape parameter
for Hackensack River; and (d) shape parameter for Assunpink Creek.
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level of extreme flows. Moreover, uncertainty is involved in the pa-
rameter estimation. This implies that even when the most probable
estimate of the location slope parameter is negative, there can still
be a reasonable probability for the parameter to be positive. Thus,
to get meaningful estimates for the design quantile, we propose the
SC-BM, in which we also constrain the location slope parameter to
be positive by setting the lower bound for its prior to zero. If the
location slope parameter were most likely to take a negative
value, this nonnegativity constraint in the SC-BM would ensure
that the posterior distribution has its peak at zero.

The Metropolis-Hastings algorithm was used to draw samples
from the posterior distribution of the parameters. Table 1 gives
the specifications that were used in the MCMC algorithm. The pro-
posal widths for the parameters were selected through experimenta-
tion to ensure a reasonable convergence rate for both datasets.

We report the estimated parameters, the 100 year return value,
and the negative log-likelihood (NLLH) value for the alternative
methods in Tables 2 and 3. (We only calculated the return event
for the methods that gave nonnegative values of the location
slope. We include the NLLH values in the tables as an indicator
of goodness of fit between the resulting model and the data.) In
spite of the peak flows showing an increasing trend in both cases
(Fig. 3), the MLE of the location parameter of the nonstationary
GEV model indicates a negative trend (i.e., negative μ1) for the
Hackensack River, but a positive trend for Assunpink Creek. It is

this issue that is the crux of this paper. The remainder of Tables 2
and 3 are discussed later.

The posterior distributions of the location intercept (μ0) and slope
(μ1) parameters for the nonstationary GEVmodel are shown in Fig. 4.
Even though a weak prior (uniform distribution over a large
range) was used for the learning process, the posterior distribu-
tions of the parameters converged to reasonably concentrated dis-
tributions with low variance. Instead of simply having a point
estimate, as in the MLE method, the Bayesian approach provides
a distribution of the estimates. Figs. 4(a and b) show standard dis-
tributions for the location intercept parameter for the Hackensack
River and Assunpink Creek, respectively. In Figs. 4(c and d),
however, it is interesting to see how the distributions for the lo-
cation slope parameter for the two streams are different. Owing to
the use of the nonnegativity sign constraint, the shape of the dis-
tribution for the Hackensack data set looks like a truncated nor-
mal distribution instead of taking a standard shape. Indeed, this
constrains the expected value of the slope parameter to be posi-
tive, as desired.

(a) (b)

(c) (d)

m

m s sm

m ss

Fig. 6. Results for the 100 year return event: (a) posterior distribution for Hackensack River; (b) posterior distribution for Assunpink Creek; (c) CDF
for Hackensack River; and (d) CDF for Assunpink Creek.

Table 4. Point estimates and confidence intervals

Dataset Expected value MAP value 95% CI

Assunpink Creek 214.3 195.2 [156.8, 322.1]
Hackensack River 246.2 235.7 [194.1, 316.9]
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The posterior distributions for the scale (σ) and shape (ξ) param-
eters are shown in Fig. 5. Again, even though a weak prior was used
for the learning process, the posterior distributions of these parame-
ters also converged to a reasonably concentrated distributions with
low variance. Both Figs. 5(a and b) and Figs. 5(c and d) show stan-
dard distributions for the scale and shape parameters for both streams.

Plots of the posterior distribution of a 100 year return event in-
cluding the corresponding CDF for each dataset are shown in
Fig. 6. The peak of the posterior distribution is known as the maxi-
mum a posteriori (MAP) estimate, which is the same as the expected
value of an estimated parameter if the resulting distribution is sym-
metric. We can see that, in both datasets, the distribution of the 100
year return event is skewed and, therefore, the MAP estimate can be
different from the expected estimate.

Returning to Tables 2 and 3, we can nominally use the NLLH to
compare models; the smaller it is, the better is the model fit. In
Table 2, we can see that the slope parameter estimates of all methods
have comparable NLLH values. The unconstrained MLE is usually
the model of the best fit, although with only a slightly lower NLLH
value. However, in Table 2, it can be seen that it trades this superi-
ority for a negative slope parameter. What this reveals is that a
purely data-driven method does not always produce reasonable re-
sults, if not guided by domain knowledge of the underlying phe-
nomenon. When a constraint is imposed on the slope parameter,
as in the case of C-MLE, the resulting estimate of μ1 is zero. This
means that using this set of parameters for design yields the same
result as using a stationary GEV distribution, and will therefore
overlook the trend in the underlying events.

When the Bayesian method is applied without the sign constraint,
it behaves in a manner similar to the MLE (a negative slope param-
eter in Table 2), demonstrating that reliance on the Bayesian method
itself is not sufficient; imposing a nonnegativity restriction on the pa-
rameter via the prior is necessary. Further analysis of the results
shows that when MLE returns a positive slope estimate (Table 3),
the SC-BM produces estimates similar to those of the other methods.
However, whenMLE returns a negative slope estimate (Table 2), the
SC-BM provides the best estimate, compared with the unconstrained
methods (MLE and UC-BM) as well as compared with the alterna-
tive constrained method (C-MLE).

A further benefit of using the Bayesian method is that uncer-
tainty quantification is a natural outcome of using the resulting pos-
terior distribution. The histograms for the 100 year return events for
both datasets show a highly peaked mode and are right skewed; this
suggests that the expected value would be greater than the MAP
value. The expected value, the MAP value, and the 95% confidence
interval (CI) for the 100 year return event are reported in Table 4. It
can be seen that expected values are indeed greater than MAP val-
ues. If the aim is to design a structure, one might prefer the expected
value over the MAP value of the return event. These distributions
can be used by a designer to understand the uncertainty involved in
the design quantile and quantify the risk.

Summary and Conclusions

Hydrological extreme events are often the major cause of failure of
many civil engineering structures. Hence, quantifying the extreme
events in terms of design quantiles becomes a crucial task. Probabi-
listic models are used to analyze these extreme events. This work
considers a sign constrained Bayesian method for performing pa-
rameter estimation in a nonstationary GEV model. We show that
one can encounter a negative slope in the location parameter even
though the trend in the data may be positive. The modification of
the traditional Bayesian method is capable of handling such datasets

and produces the posterior distribution of the parameters based on
the observed data and not point estimates. Thus, this provides a
needed basis for uncertainty quantification. Further, the availability
of a probability distribution for the return event gives the engineer-
ing designers and planners additional information and perspective
on the risks involved with a given design quantile.

The results based on two case studies demonstrate that the
SC-BM works as a unified framework to handle different classes
of problem. When the MLE technique produces a positive location
slope parameter value, the SC-BM produces results comparable to
MLE. However, when MLE returns a negative estimate of the lo-
cation slope parameter in spite of an increasing trend in the data,
the SC-BM corrects this estimation problem and produces a trend
estimate consistent with data. It is hoped that the sign constrained
Bayesian method will assist practitioners in incorporating
climate-related trends to estimate design conditions.

Data Availability Statement

• Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
funder data retention policies (USGS 2017).

• Some or all data, models, or code generated or used during the
study are available from the corresponding author by request: R
software codes for SC-BM and UC-BM algorithms.
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