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Abstract— When we consider the limited power of wireless
sensors, it is necessary to reduce the dimension of data conveyed
between sensors, because high dimensional data transmission
requires much power consumption of sensors. For data reduc-
tion in a network, in-network data aggregation methods and
collaborative compression methods were reported. However, the
in-network data aggregation methods typically lead to time-
delay while performing data aggregation and compression,
whereas the current collaborative methods primarily consider
data redundancy between two sensors, not among multiple
sensors. This paper proposes a new collaborative data reduction
method to remove the redundancy existing in the data coming
from mutiple sensors as well as from a single sensor. Our
method uses a tree-based data propagation model to charac-
terize the collaboration structure among multiple sensors. Our
method also seperates the data aggregation process from the
collaboration process in order to relieve the time-delay problem
during aggregation processes. Thus, the time-delay is occured
only during the periodic collaboration phase but not during
the real-time data transmission. Our experimental results show
that our method can reduce data transmission more effectively
than the in-network aggregation without losing important
information and without causing delay in aggregation.

I. INTRODUCTION

Wireless sensor nodes are distributed over the area of
interest and they form an autonomous network to gather
important information. In many applications, the network
shoud be able to operate for a long period of time without
human’s intervention. However, the power resource available
on wireless sensors limits the operation time. Frequent power
outages of sensors cause significant maintenance cost of
battery replacement and increase down-time of the sensors.
Therefore, implementing a power efficient sensor network
is very important. According to an analysis on power
consumption of wireless sensors [1], the sensors consume
power mainly for transmitting data via ZigBee or Bluetooth
and for processing data on their micro-CPUs. Especially,
consumption per unit data transmission is about ten times as
much as consumption per unit processing. Therefore, if we
can reduce the dimension of data gathered by a sensing unit
on a sensor’s CPU, we can reduce much power consumption
for data transmission at the expense of less power required
for data processing on the CPU. For this reason, on-sensor
data reduction is generally considered a good practice to
increase the power efficiency.

However, if we mean to address data reduction in the entire
network, doing solely the on-sensor reduction may not be

sufficient. In a wireless network, sensors do not work only as
information collectors, but also as intermediate nodes routing
data from different sensors to a central repository. In this
configuration, anchor nodes, functioning as hubs, receive a
lot of routing packets from other sensors. Therefore, even
though the size of the packet is reduced on each sensor,
the anchor nodes may still need to transmit a lot of data
accumulated from many sensors. Consequently, the anchor
nodes consume their power fast and the whole network could
lose its function.

A simple idea to relieve the problem is to apply data
reduction on intermediate nodes before transmission. This
technique is referred to as in-network data aggregation, also
known as data fusion. The data aggregation techniques define
a tree model of sensor nodes describing the hierarchical
structure for data transmission. A central repository is mod-
eled as a root node and the techniques aggregate data from
leaf nodes to the root node; data reduction is applied to
each node in the tree model. The techniques commonly
involve a timing model, which decides how much time the
intermediate nodes wait for to aggregate data from their
child nodes. Arici et. al. [2] proposed PINCO (Pipelined In-
Network COmpression) algorithm, in which an intermediate
node stores data from different sensors for a specific time
delay and reduces all the data accumulated for the delay
of period. The timing model using such a predefined delay
as PINCO is called Periodic Simple. Directed Diffusion [3]
and LEACH [4] fall in the same category. Another type of
the timing model is Periodic Per Hop. In this model, the
intermediate nodes reduce and transmit data just after all
data from child nodes arrive. TAG [5] and Convergecasting
[6] are in this category.

In-network data aggregation reduces data transmission
on all sensors in a network, but the time delay required
for data aggregation causes latency of transmission. If the
latency is large, urgent data would not be avaliable by time
for use. Another problem is its inefficiency in terms of
data reduction capability on a leaf sensor node. Data from
leaf nodes are collected to an intermediate node and the
intermediate node further reduces the data, which means
there are still redundancy among the data from the leaf nodes.
This redundancy is the between-sensor redundancy, which is
difficult to be removed on individual sensors.

Between-sensor redundancy is mainly caused by spatial

4th IEEE Conference on Automation Science and Engineering
Key Bridge Marriott, Washington DC, USA
August 23-26, 2008

978-1-4244-2023-0/08/$25.00 ©2008 IEEE. 442



Local
Data reduction

Global
Data reduction

Data aggregation

Phase 1: Collaboration Phase 2: Data reduction

Intermediate node

Leaf 1

5 6 7 8

Leaf 2 Leaf 3

Intermediate node

Leaf 1 Leaf 2 Leaf 3

{1,4,6} {9,15} {22,23}

Intermediate node

1 2 3 4

5 6
1 3 4

13 14 15 16
9 10 11 12

15
9 11 12

21 22 23 24
17 18 19 20

22 23
17 19 20

5 6
1 3 4

15
9 11 12

22 23
17 19 20

6
1 4

15
9

22 23

Leaf 1

5 6 7 8

Leaf 2 Leaf 3

1 2 3 4

6
1 4

13 14 15 16
9 10 11 12

15
9

21 22 23 24
17 18 19 20

22 23

Fig. 1. Overall process of our method

proximity; sensors at proximity generates highly correlated
data. If we can remove the between-sensor redundancy at leaf
nodes, we get two benefits: 1) leaf nodes can reduce more
dimension and transmit less data, 2) intermediate nodes just
receive data from child nodes without performing another
data reduction. The second benefit leads to saving the power
consumption at the intermediate nodes as well as alleviating
data latency. Our research is looking for a new method
that can reduce both between-sensor redundancy and within-
sensor redundancy on leaf nodes.

To remove between-sensor redundancy, each leaf node
should know about data from the other sensors. In this
context, collaborative compression algorithms are proposed
to remove both types of the redundancies on leaf nodes.
Collaboration involves communication between sensors and
it consumes energy. Thus, collaborative compression meth-
ods need to strike a balance between power consumption
by collaboration and data reduction performance. Hoang et
al. [7] developed collaborative compression algorithm using
a broadcating feature of wireless communication. When a
sensor transmits data to a target sensor, the sensor broadcasts
the data, not sending it only to the target sensor. Thus, all
neighboring nodes within the radio connectivity of the sender
can receive the data. However, the sensors except the target
sensor usually discard the data. Hoang et al. [7] utilized the
broadcasting feature to share data among neighboring nodes.
Therefore, a sensor can identify the correlation of its data
with its neighboring sensors’ data without any additional
collaboration efforts. Its limitation is that only the data
redundancy within a single-hop distance can be removed.

Pradhan [8] proposed a distributed coding algorithm on
the framework of Slepian.Wolf source coding theorem. By
the theorem, a sensor can obtain as high compression rate
as it knows of the data from its neighbors, even if the
sensors cannot communicate with each other. As such, the
method ideally does not require any collaboration. However,
the coding algorithm was applied only to binary relations
involving two sensors. Additional research is necessary to
extend the sensor collaboration to multiple-sensor environ-

ments. In addition, the algorithm assumes that a codebook
needed to compress data is known for every sensor in a
network, but making a good codebook requires collaboration
between sensors and may not be easy to create.

In this paper, we propose a method to reduce the between-
sensor redundancy as well as the within-sensor redundancy
through collaboration between an intermediate node and
its child sensor nodes. Our method is a general data re-
duction that removes redundancy among multiple sensors,
not necessarily limited to binary relations as the previous
distributed compression algorithms did. It is also different
from the in-network aggregation method in the sense that it
removes both the between-sensor redundancy and the within-
sensor redundancy on leaf nodes. The main idea and our
contribution are as follows:

- Collaborative data reduction: our method is essen-
tially a collaborative data reduction method. Different
from in-network aggregation, each sensor can reduce
both between-sensor redundancy and within-sensor re-
dundancy on itself through collaboration with other
sensors. There were two collaboration models: a peer-
to-peer(P2P) model like collaborative compression and
a tree-based model. A P2P model consists of pair-wise
collaboration, so the number of pairs increases expo-
nentially as the number of sensors increases. Thus, we
choose a tree-based collaboration model where sensors
cooperate through their common parent nodes to reduce
data transmission.

- Separating collaboration from data reduction: For
the exisitng collaborative compressions, collaboration
among sensors occurs every time data reduction oc-
curs. It means that energy required for collaboration is
consumed frequently. Assuming that the between-sensor
redundancy due to spatial proximity does not change
very frequently, we seperate the collaboration processes
from the data reduction prcesses. In our method, the
data reduction processes are frequent events, while the
collaboration processes are periodic yet much less fre-
quent. Through the periodic collaboration, our method
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defines the minimally required data components to be
transmitted from each sensor. In the data reduction
processes, sensors just follow the pre-defined reduction
schemes to fulfill a real-time data reduction. Conse-
quently, data transmission required for collaboration
decreases. Moreover, there is no time-delay in the data
reduction processes.

We start with Section II by describing our methods. In
Section III, an experimental result will be provided to show
the overall performance of our method. Finally, we conclude
the paper in Section IV.

II. COLLABORATIVE DATA REDUCTION METHOD

Our method has two phases: a collaboration phase and a
data reduction phase as shown in Fig. 1. In the collaboration
phase, each sensor identifies which part of its data is essential
or non-redundant when it considers the other sensor’s data.
An intermediate node will take the data from the leaf nodes
and perform a global data reduction. The parts result in
the minimal set of data parts that need to be transmitted.
These data parts are labeled by a set of indices. A sensor
keeps the indices of the parts in their memory until the next
collaboration phase. In the data reduction phase, the sensors
simply send over the parts of their data, corresponding to
the indices. More details for both phases are described in
the subsequent sections.

A. Collaboration phase

Suppose that a sensor network has a tree model through
which sensors transmit data to a central repository, where
collaboration works between an intermediate node and its
child nodes to remove data redundancy. Now, we explain
our method in a simple network (Fig. 2), consisting of
one intermediate node and m sensors. Since the network
consists of multiple simple network-based collabrations in a
hierarchical structure, the case can be easily extended to a
general tree model.

For data reduction, suppose that we have n observations
from m sensors. We denote the ith observation of the jth
sensor by xij and let Xj be a set of all the observations of
the jth sensor as:

Xj = {x1j , x2j , . . . , xnj}, j = 1, 2, ..,m (1)

where xij = (xij1, . . . , xijpj
) is a 1× pj vector.

The collaboration phase consists of the two steps as Fig.
1. First, the jth sensor collects data Xj = {xij : i =
1, 2, . . . , n} and reduces it to Yj by certain data reduction
techniques. Next, the jth sensor sends Yj to the intermediate
node. The intermediate node finds the redundant columns
by analyzing {Yj , j = 1, 2, ..m} and removes them so that
it produces an index set of the non-redundant data. The
intermediate node will then notify the correspoding leaf
nodes about this index set.

1) Local data reduction: The objective of this step is
to reduce local data redundancy as much as possible under
the limitation of computational capability of each sensor. In
this step, each node has access to all the data it collects
but not the data from its neighbors. In our procedure, we
used the Principal Component Analysis (PCA) since it is a
very efficient reduction technique and simple enough to be
implemented on sensors with limited computing power. In
real practice, to reduce computational and memory burden,
we can use the incremental PCA [9]. The computational
complexity of PCA is known as O(p3) or O(p2) [10].

We start with the jth sensor data, Xj = {xij : i = 1, .., n}.
We would like to find a projection matrix Pj that projects
pj dimensional data onto qj dimensional space (qj < pj) as

y
ij

= xijPj (2)

We would like to make qj as small as possible, but
y

ij
should capture the pattern of the original dataset. The

pattern is described by the covariance matrix of Xj . Thus,
our objective is to reduce the dimension of the data while
retaining as much as possible variation present in the original
dataset.

Given the n observations in Xj , define a data matrix Xj

with xij as its ith row. Let Σj be the sample covariance
matrix of Xj . Let Yj be the projection of Xj by Pj . Then,
the sample covariance of Yj , ΣYj , is

ΣYj
=

1
n− qj

(Yj − Yj)′(Yj − Yj)

=
1

n− qj
P ′j(Xj −X j)′(Xj −X j)Pj

=
n− pj

n− qj
P ′jΣjPj (3)

Then, we would like to find P ∗j to maximize tr(ΣYj
) with

smaller dimensionality as:

P ∗j = arg max
all Pj

tr(P ′jΣjPj),

s.t. qj ≤ UBq

where qj is the number of the columns that Pj has and UBq

is the upper bound of qj . That is, we do not want the reduced
dimension, namely qj , to exceed UBq .

Since Pj is a projection matrix, tr(P ′jΣjPj) = tr(Σj),
and tr(Σj) is equivalent to the total sum of the eigen-values
of Σj . Thus, the problem is to find P ∗j so that the UBq

principal components of Σj forms its column vectors.

444



The appropriate UBq value is determined by a well known
simple rule [14]:

UBq = min{s :
s∑

k=1

λ(k) ≥ r}, (4)

where λ(k) is the kth biggest eigen-value of Σj and r
corresponds to the ratio of the variance explained by s
leading eigen-values and the total variance.

To sum up, the local projection matrix for the jth sensor,
P ∗j is formed by the UBq principal components of Σj . Xj

(n× pj) is reduced to Yj (n× qj) by P ∗ and the jth sensor
sends Yj to a central repository.

Yj = XjP
∗
j (5)

For better understanding, look at the example under the
local data reduction step of Fig. 1. The leaf 1 originally has
data {1, 2, 3, 4, 5, 6, 7, 8} that corresponds to Xj here. The
data is reduced to the parts {1, 3, 4, 5, 6} that corresponds to
Yj .

2) Between-sensor redundancy reduction: After the local
data reduction, a central repository has the reduced dataset
{Yj , j = 1, 2, ..,m} from m sensors. The objective of
this step is to drop some parts of {Yj , j = 1, 2, ..,m},
which may be highly redundant to the data from other
sensors. For that, we cannot use factorial data reduction
techniques or orthogonal transformation methods such as
PCA and wavelet shrinkage. That’s because those methods
use projection matrices described in the local reduction step
but data reduction using the projection matrices requires
availability of all the original variables. At the data reduction
phase after the collaboration phase, we do not have all the
original variables on an intermediate node. Thus, we need to
identify the parts of Y with less redundancy without using
any projections.

This become a subset selection problem. Regression meth-
ods such as ridge regression and LASSO regression can be
considered. However, in this case we have only a data matrix
without a dependent variable for regression. Cumming et al.
[11] proposed an iterative subset selection algorithm based
on partial correlation which requires a data matrix only. We
adopted his algorithm and modified its objective function
by adding a penalty term related to the data reduction
rate in order to achieve more aggressive data reduction.
The stopping rule for the algorithm was also modified in
accordance with the new objective function.

Let Y = [Y1,Y2, ..,Ym], which is a column-concatenated
matrix of the reduce datasets from the m sensors. Then, it
is an n × q matrix where q =

∑m
j=1 qj . Suppose that we

partition Y into S and T as:

Y = [T |S] (6)

where S is a subset of Y to be retained and T is a subset of
Y to be eliminated due to its high redundancy of S.

The sample partial covariance of T given S is a measure
of the covariance structure that cannot be captured by S [11].

Denote the partial covariance matrix by ΣT |S . The matrix is
defined as [12]:

ΣT |S = ΣTT − ΣTSΣ−1
SSΣST (7)

where ΣTT , ΣTS , ΣSS and ΣST are parts of the covariance
matrix generated by Y as

ΣY =
[

ΣTT ΣTS

ΣST ΣSS

]
(8)

We want to minimize the covariance structure not captured
by S. That is, the covariance structure remaining in ΣT |S
should be minimized. In the meantime, we would like to get
higher data reduction rate. Since the column size of S is
the number of the selected variables, the column size of S
should be small. Then, our objective is to find T and S to
minimize the covariance structure remaining in ΣT |S , while
the column size of S is kept small. The covariance structure
remaining in ΣT |S is measured by the total sum of its eigen
values, so the problem is formulated as:

(T ∗, S∗) = arg min
∀(T,S)

tr(Σ2
T |S) + α(q − t)

=
t∑

i=1

λ2
i + α(q − t) (9)

where α ≥ 0, t is the column size of ΣT |S , q − t is the
column size of S and λi is the ith eigen value of ΣT |S .
The formulation is constructed by adding a penalty, α(q −
t), to McCabe’s criteria [13] for attaining more aggressive
reduction.

A simple way to find (T ∗, S∗) is an exhaustive search to
evaluate equation (9) for every possible partition. It is very
computationally expensive. Considering the limitation of
power resource in sensors, we use a computationally efficient
greedy search (forward selection) [14] to find (T ∗, S∗) in
equation (9).

Start with T = Y and S = ∅ an empty matrix. The details
are as follows:

1. (Initialization) Calculate the initial objective function.
First, perform a singular value decomposition on ΣT |S .
The result is expressed as ΣT |S = ADA′ since ΣT |S is
symmetric, where D is a diagonal matrix with the eigen
values λi’s of ΣT |S as its diagonal elements. Then,

tr(Σ2
T |S) =

t∑
i=1

λ2
i =

t∑
i=1

λ2
i

t∑
j=1

a2
ji =

t∑
j=1

t∑
i=1

t2ij (10)

where aij is the (i, j)th element of A and tij is the
(i, j)th element of ΣT |S .

2. (Iteration) Evaluate the possible changes of [T |S].
For all j = 1, ...., t, we move the jth column, namely
tj , from T to S. Let the new partition be [T ′|S′]. Then,
the decrease of tr(Σ2

T |S) due to this change, hj is as
follows [13] :

hj = tr(Σ2
T |S)− tr(Σ2

T ′|S′) =
t∑

i=1

t2ij (11)
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Then, the improvement of the objective function due to
this change is

∆j = hj − α (12)

3. (Check optimality) Update [T |S] or stop the process.
Let k := arg maxj=1,..,t ∆j . If ∆k > 0, we update
T = T\tk, S = S ∨ tk, t = t − 1. Then, go to
Step 2. Otherwise, we stop at (T ∗, S∗) = (T, S). Note
that T\tk removes the kth column from T and S ∨ tk
appends the k column of T to S.

After determining (T ∗, S∗), we discard T ∗ from Y and use
only variables corresponding to S∗ for further investigation
or decision making processes. For that, a central repository
notifies the indices of data belonging to S∗ to each cor-
responding sensor. For the example in Fig. 1, {1, 4, 6} is
the index set sent back to leaf node 1 after the global data
reduction.

B. Reduction phase

After the collaboration phase, each sensor has the updated
indices from the central repository. In this phase, when new
data are collected, each sensor first reduces the new data by
its local reduction scheme as in equation (5). Next, the sensor
extracts the parts corresponding to the indices received from
the central repository and sends them over.

III. EVALUATION

An experiment is performed to evaluate the performance
of our method in comparison with the in-network data
aggregation method as well as with the case without in-
network data reduction on sensors.

A. Experimental setup

There are a number of sensors attached to a forging
machine. The sensors read vibration signals on the machine
during a fixed period. The vibration signals are used to
identify whether the forging process is normal or out of
control. In the experiment, we used the vibration signals
from a sensor and simulated the multi-sensor environment
by segmenting the signals. An original signal is a 224
dimensional vector. It is randomly divided into 14 segments
with the same size. Each segment is a 16-dimensional data
vector, which represents data from a single sensor. Using

the segments, we tested the following approaches. For better
understanding, some illustrations are presented at Fig. 3.

1) No in-network data reduction: There are 14 sensors.
Each sensor collects signals and sends it to a central
repository without any in-network data reduction. In
the central repository, we applied PCA to all the data
from the 14 sensors. In this case, the central repository
has all original data, so it can easily detect redundancy
among the data. Thus, it is expected to show the
highest data reduction than the other approaches.

2) In-network aggregation: There are 14 sensors. The jth
sensor applies the local data reduction (PCA) to its data
and sends the reduced data to the central repository.
Then, we applied again PCA to the reduced data from
the 14 sensors.

3) Our method: We use the proposed method with α = 1
in equation (9).

There are 528 signals collected under the normal process
and 378 signals collected under some process faults. We
randomly selected 350 signals out of the 528 ones from the
normal condition and 248 signals out of the 378 ones from
the abnormal condition. The selected ones were used as a
training dataset to build data reduction schemes for each of
the three approaches. The remaining signals were used as
the test dataset to estimate the fault detection errors.

B. Performance criteria

For all the three approaches, we would like to test the
following: the data reduction capability, the amount of data
transmission, and the information that the reduced data
preserves.

1) Data reduction (DR): This measure is defined as the di-
mension of the final reduced data. It shows how much
redundancy can be removed by each data reduction
approach.

2) Amount of data transmission (DT): This measure indi-
cates how many data should be transmitted from a leaf
node to the central repository. It reflects the degree of
communication intensity.

3) Fault detection error (FA,MD): Fault detection error
is used as an indirect measure for how much the
reduced dataset captures the information contained in
the original dataset. If the fault detection error is low, it
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means the reduced dataset represents the whole dataset
very well. Otherwise, it means the reduced dataset
loses some valuable information. This measure consists
of two sub-measures: the miss-detection (MD) and the
false-alarm (FA). MD is defined as the ratio of the
number of miss detections and the total number of
signals representing process faults. FA is defined as
the ratio of the number of detections among the signals
under the normal process.

C. Results

For each approach, the following procedure is repeated 50
times to obtain the performance measures:

1) Randomly select the training dataset Xt and the test
dataset Xv as described in Section III.A.

2) Find the optimal data reduction procedure, Rd(·) , given
the training dataset randomly selected. For the first
approach, the optimal data reduction is a projection
matrix generated by PCA on the whole training dataset.
For the second one, it consists 14 projection matrices
generated by PCA on each of the 14 segments. For the
last one, it consists of the same 14 projection matrices as
in the second approach, plus the 14 index sets generated
by the global data reduction step.

3) Apply Rd(·) to the training dataset and get the reduced
training dataset, Rd(Xt). Then, build the linear discrim-
inant analysis (LDA) boundaries based on Rd(Xt).

4) Apply Rd(·) to the test dataset and get the reduced test
dataset, Rd(Xv). Then, classify Rd(Xv) by the linear
boundaries established in 3).

5) Evaluate DR, DT, FA and MD.

Table I shows the average of DR, DT, FA and MD over
the 50 repetitions. For the first and second approaches, the
dimension of the reduced data (DR) after PCA at the central
repository became one. Nevertheless, the down side of the
first approach is that it needs to transmit all the original data
of 224 dimensions. That is a high communication burden.
The second approach improves the situation and it only
transmits, on average, 15.6 data. Our method achieves the
best data reduction in terms of the data transmission measure
(DT); it is only one-third of the DT of the second approach or
2.2% of the original data dimension. The final data reduction
rate of our approach is 5.1 (on average), higher than the other
approaches. However, this data dimension can be further
reduced. When we think of the central repository in the
simple network as an intermediate node in the entire network,
redundancy among the intermediate nodes is removed at the
higher level intermediate nodes. On the other hand, since
it does not achieve the highest possible data reduction rate,
there could be potentially more capable methods that may
make furthur improvements.

In terms of fault detection errors, all the three approaches
are similar. That means the data reduced by the three ap-
proaches kept similar important information from the original
data.

TABLE I
OVERALL PERFORMANCE

Configuration DR DT FA MD
No in-network data reduction 1 224 0.0534 0.0417
In-network data aggregation 1 15.6 0.0522 0.0440
Our method(collaborative reduction) 5.1 5.1 0.0343 0.0588

IV. CONCLUSION

We introduced a novel method for reducing within-sensor
and between-sensor data redundancy through a collaborative
approach. We demonstrated through the experimental results
that doing so could capture sufficient information for fault
detection while substantially reducing the data dimension.
There are a couple of extensions that may be worth consider-
ation. Our proposed method uses PCA and partial correlation
so that it can detect only linear data redundancy. To remove
non-linear data redundancy, one may need to apply our
method in a kernel space. Additionaly, in the experimental
study, we fixed α to 1 in equation (9). However, further
studies are much needed regarding how to decide the optimal
α.
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