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Eduardo Pérez, Lewis Ntaimo, Eunshin Byon and Yu Ding

Department of Industrial and Systems Engineering
Texas A&M University

3131 TAMU, College Station, TX 77843, USA.
eduardopr@tamu.edu and ntaimo@tamu.edu

Keywords: Wind farm, wind turbine, DEVS,
STDEVS

Abstract

Wind farms use several wind turbines to generate
electricity and provide a renewable source of energy.
However, due to large forces as a result of hourly
and seasonal variations in wind speed and direction,
wind turbines experience stochastic loading that of-
ten lead to failures of wind turbine components such
as the gearbox and generator. Wind turbine fail-
ures result in costly repairs and loss in revenue, while
stochastic loading makes it difficult to predict the ac-
tual condition of a wind turbine. Consequently, it is
challenging to schedule maintenance actions to avoid
wind turbine component failures. In this paper, we
present a stochastic discrete event system specifica-
tion (STDEVS) model of a wind turbine component.
In particular, we consider the wind turbine gearbox,
which is one of the components that is often prone
to failure, and model its stochastic degradation pro-
cess. We implement a wind farm simulation with the
STDEVS gearbox model and report on the impact of
gearbox failures and maintenance scheduling on the
performance of a wind farm over a 20-year period.

1 INTRODUCTION

Wind farms use a collection of wind turbines to gen-
erate renewable electricity using wind. Therefore,
wind farms are usually located in parts of the world
with high speed winds throughout the year. Due
to harsh weather conditions and hourly and seasonal
variations in wind speed and direction, wind turbines

experience large stochastic forces that often lead to
component failures. Wind turbine components in-
clude blades, gearbox, generator, electrical system
and control system. Component failures result in
costly component repairs and losses in revenue due
to unavailability of the wind turbine to generate elec-
tricity. Many wind farms are located in remote areas
or offshore and are therefore, less accessible. Further-
more, the stochastic nature of the forces experienced
by the wind turbine makes it difficult to predict the
actual condition of the turbine components. Conse-
quently, scheduling maintenance to avoid wind tur-
bine component failures is critical.

In this paper, we consider a stochastic discrete
event system specification (STDEVS) [1] model of a
wind turbine component. In particular, we model
the stochastic degradation process of a wind turbine
gearbox, which is one of the components that is of-
ten prone to failure. The STDEVS model we de-
vise is an extension of the Parallel DEVS [2] wind
turbine gearbox component model in [3]. We adopt
the simulation model in [3] and incorporate the
STDEVS wind turbine component model to simu-
late the stochastic degradation of the gearbox and
its impact on wind farm performance. We consider
two types of maintenance actions: scheduled mainte-
nance (SM) and condition-based monitoring mainte-
nance (CBM). Under SM, repair crews are dispatched
to the wind farm to perform maintenance based on a
fixed schedule as recommended by the turbine man-
ufacturer, while under CBM maintenance is done as
needed based on sensor information.

STDEVS is a formal framework for modeling and
simulation of generalized non-deterministic discrete
event systems. A formal specification of STDEVS is
given in [1]. The authors use the system theoretic ba-



sis of DEVS and probability spaces to the devise the
STDEVS formalism. STDEVS provides a suitable
framework for modeling and simulating the stochas-
tic degradation process of a wind turbine component.
Mathematically, an STDEVS model has the following
structure [1]:

MST = (X,Y, S,Gint,Gext,Pint,Pext, λ, ta)

where X is the set of input event values; Y is the set
of output event values; S is the set of state values;
λ is the output function; and ta is the time advance
function. These functions define the system dynam-
ics.

Gint : S → 2S is a function that assigns a collec-
tion of sets Gint(S) ⊆ 2S to every state s. Given a
state s,Gint(s) contains all the subsets of S that the
next state might belong to with a known probabil-
ity, calculated by a function Pint : S × 2S → [0, 1].
When the system is in state s the probability that
the internal transition takes it to a set s′ ∈ Gint(s) is
calculated by Pint(s, s′).

Gext : S ×<+
0 ×X → 2S , is a function that assigns

a collection of sets Gext(s, e, x) ⊆ 2S to each triplet
(s, e, x). Given a state s and an elapsed time e, if an
event with value x arrives, the next state belongs to
Gext(s, e, x) with a known probability calculated by
Pext : S × 2S → [0, 1].

We refer the reader to [4] for a study of CBM and
the physics of failure of wind turbine components.
Work on fault diagnosis for wind turbine based on
CBM is given in [5]. Other related work include Turb-
Sim, a reliability-based wind turbine simulator [6].
The work in [6] investigates the impact of reliabil-
ity in a life-cycle analysis simulation of a theoretical
wind farm based on information from the literature.
The study by [7] considers Monte Carlo simulation for
wind farm maintenance operations based on both SM
and CBM maintenance. Other work on wind farm
operations and maintenance include [8, 9, 10].

The rest of the paper is organized as follows. In
Section 2 we describe the overall wind farm simu-
lation model and present a formal description of the
STDEVS wind turbine gearbox degradation model in
Section 3. We report preliminary simulation results
based on an implementation of the simulation model
in DEVSJAVA [11] in Section 4. The simulation re-
sults are for a realistic wind farm located in Texas.
We end the paper with some concluding remarks in
Section 5.

2 THE WIND FARM SIMU-
LATION MODEL

A wind turbine at an abstract level produces a given
amount of power based on given wind speed. An em-
pirically verified power curve provided by the wind
turbine manufacturer relates wind speed to power
generated. The DEVS wind farm simulation we con-
sider comprises several basic components as shown in
Figure 1.

The wind turbine (WTURBINE) model is com-
posed of a component degradation (CMPDEG)
model and a power generation (PWRGEN) model.
CMPDEG models the degradation of a wind turbine
component of interest while PWRGEN models elec-
trical power generation based on wind speed. The
PWRGEN atomic model uses a power curve to cal-
culate the amount of power generated at any given
time based on the wind speed. WTURBINE is cou-
pled to an evaluation (EVAL) model for evaluating
the state/condition of WTURBINE based on sensor
(SENSR) and smart sensor (SMSENR) output. Also
coupled to WTURBINE is an operations and mainte-
nance (OPMNT) coupled model, which is comprised
of a maintenance scheduler (MSCHEDR) and a main-
tenance generator (MGENR).

External to the wind turbine model is the exper-
imental frame (EF), which is composed of a trans-
ducer (TRANSD) and a wind generator (WGENR).
TRANSD computes wind farm system performance
measures such as total power generated, turbine
availability, number of failures per turbine, mainte-
nance cost per turbine, and capacity factor. Capac-
ity factor is the ratio of the actual amount of power
produced over time to the power that would have
been produced at full capacity. WGENR generates
sequences of wind speeds at turbine locations using a
spatio-temporal wind model.

3 THE WIND TURBINE
COMPONENT STDEVS
ATOMIC MODEL

We consider a coupled wind turbine (WTUR-
BINE) model consisting of two atomic mod-
els, power generator (PWRGEN) and component
degradation (CMPDEG). We devise an STDEVS
atomic model for CMPDEG to model wind tur-
bine gearbox degradation over time as a stochas-
tic process. We consider CMPDEG with ten
probabilistic states; off normal, off normal waiting,
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Figure 1: The wind farm simulation model components
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Figure 2: CMPDEG atomic model

on normal, off alert, off alert waiting, on alert,
off alarm, off alarm waiting, on alarm, and failed.
Figure 2 depicts a block diagram of the CMPDEG
atomic model.

CMPDEG has three input ports, namely;
“wind on off”, “maint on off”, and “manual on off”.
The first input port is for receiving a message of
whether or not the wind speed is within turbine op-
erable range. The second input port is for receiving a
turbine on or off maintenance signal, while the third
input port is for switching on and off the turbine.
CMPDEG has two output ports, “deg out” and
“status out”. The first output port is for notifying
the PWRGEN atomic model that a change in the
state of the turbine component has occurred. The
second output port is for reporting the current state
of the component (gearbox) to the system sensors.

The operation of CMPDEG is depicted in the state
transition diagram in Figure 3. CMPDEG is initial-
ized in the off normal state. If an input is received

on the “manual on off” input port, the model transi-
tions to the on normal state. Once in the on normal
state six different things can happen. If a message
is received on the “manual on off” the model transi-
tions back to its initial state. However, if a message is
received on the “wind on off” input port, the model
transitions to the off normal waiting state. This hap-
pens when the wind turbine is turned off due to high
wind speeds that may cause damage to the turbine.
If no input is received, the model transitions from
the on normal to one of the following four states:
on normal, on alert, on alarm, and failed. This tran-
sition is probabilistic and depends on the stochas-
tic deterioration model used for the gearbox. In this
work we use a partially observed Markov deteriora-
tion model as in [3]. In general, we define a marginal
probability distribution P (s, s′) for computing the
probability of transition from state s to state s′. The
model is scheduled to stay in any of the four states s
a stochastic amount of time ta(s).

Figure 3 shows an example of the state transition
diagram where an empirical probability distribution
is used. The model transitions from the on normal
state to on alert with 0.05 probability, on alarm with
0.03, and failed with 0.02. The model remains in the
on normal state with probability 0.95. When the
model is in the on alert state, there are five pos-
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sible transitions. If a message is received on the
“manual on off” input port, the model transitions to
the off alert state. If a message is received on the
“wind on off” input port, the model transitions to
the off alert waiting state. If no input is received and
the delay in on alert elapses, the model transitions to
the on alarm state with probability 0.10; transitions
to the failed state with probability 0.05; or remains
in the off alert state with probability 0.85. If in the
alarm state, the model transitions to the off alarm
state if an input is received on the “manual on off”
input port, or transitions to the “off alarm waiting
state if an input is received on the “wind on off” in-
put port. If no input is received, there is 0.92 prob-
ability that the model will remain in the on alarm
state and a 0.08 probability that the model will tran-
sition to the failed state. If maintenance is performed
to the component when it is in the off alert state,
off alert state or the failed state, the model transi-
tions to the off normal state.

Next we provide a formal mathematical expression
of the CMPDEG atomic model in STDEVS. In what
follows, ∧ denotes the logic AND operation and p is
the name of the port receiving the input. A boolean
variable named cut off is used to define whether
the wind is within specified thresholds (true) or not
(false). The time remaining in the current state (σ)
follows a uniform distribution. Specifically, σn, σt

and σm follow a uniform distribution on the time
intervals (`n, un), (`t, ut) and (`m, um), respectively.
To describe Pint we used three marginal distributions
(Pnormal,Palert, and Palarm) for state transitions.
For instance, Pnormal(s, s′) is the probability distri-
bution for transitioning from the “on normal”:
(“on normal”, “on normal”), (“on normal”,
“on alert”), (“on normal”, “on alarm”), and
(“on normal”, “failed”). To allow for probabilistic
state transitions, we need to invert Pnormal and then
use a pseudo random number generator to get a
value u to determine the next state s′. Therefore, we
define the following intervals within (0, 1): (0, IN1),
[IN1, IN2), [IN2, IN3), and [IN3, 1) that correspond
to the above four state transitions. Palert and Palarm

are defined in a similar way. Palert involves the state
transitions (“on alert”, “on alert”), (“on alert”,
“on alarm”) and (“on alert”, “fail”), with the
following corresponding intervals on (0,1): (0, IT1),
[IT1, IT2) and [IT2, 1). Similarly, Palarm involves
the state transitions (“on alarm”, “on alarm”) and
(“on alarm”, “fail”) with the following corresponding
intervals on (0,1): (0, IM1) and [IM1, 1).

MCMPDEG = (X,Y, S, δext,Gint,Pint, λ, ta)

X = { (on, “manual on off”), (off, “man-
ual on off”), (out cut off, “win on off”),
(in cut off, “win on off”), (maintenance,
“maint on off)}

Y = {(stats, “status out”), (msg, “deg out”)}

S = { “off normal”, “off normal waiting”,
“on normal”, “off alert”, “off alert waiting”,
“on alert”, “off alarm”, “off alarm waiting”,
“on alarm”, “failed”}

δext(phase, σ)

= (“off normal”, ∞), if

phase = “off alert”
∧ p =“maint on off”;

phase = “off alarm”
∧ p =“maint on off”;

phase = “failed”
∧ p =“maint on off”;

phase = “on normal”
∧ p = “manual on off”.

= (“off normal waiting”, ∞), if{
phase = “on normal”
∧ p = “wind on off”∧ cut off = false.

= (“on normal”, σn), if

phase = “off normal”
∧ p =“manual on off”
∧ cut off = true;
with σn = unif(`n, un);

phase = “off normal waiting”
∧ p = “wind on off”
∧ cut off = true;
with σn = unif(`n, un).

= (“off alert”, ∞), if{
phase = “on alert”

∧ p = “manual on off”.

= (“off alert waiting”, ∞), if phase =“on alert”
∧ p = “wind on off”
∧ cut off = false.

= (“on alert”, σt), if

4



off_normal 

waiting

off_normalon_normal,     

ta(on_normal)

off_alert 

waiting

on_alert, 

ta(on_alert)

off_alert

off_alarm 

waiting

on_alarm,  

ta(on_alarm)

off_alarm

failed

on

in cut off

on

maintenance

in cut off

on

maintenance

maintenance

out cut off

off

off

out cut off

in cut off

0.9
out cut off

off

0.05

0.03

0.02

0.85

0.1

0.05

0.92

0.08

Figure 3: State transition diagram for CMPDEG



phase = “off alert”
∧ p = “manual on off”
∧ cut off = true;
with σt = unif(`t, ut);

phase = “off alert waiting”
∧ p = “wind on off”
∧ cut off = true;
with σt = unif(`t, ut).

= (“off alarm”, ∞), if{
phase = “on alarm”

∧ p = “manual on off”.

= (“off alarm waiting”, ∞), if phase = “on alarm”
∧ p = “wind on off”
∧ cut off = false.

= (“on alarm”, σm), if

phase = “off alarm”
∧ p =“manual on off”
∧ cut off = true;
with σm = unif(`m, um);

phase = “off alarm waiting”
∧ p = “wind on off”
∧ cut off = true;
with σm = unif(`m, um).

Gint

= (“on normal”, σn), if


phase = “on normal”

∧ if (0 ≤ u < IN1),
with u = unif (0,1);

and σn = unif(`n, un)

= (“on alert”, σt), if

phase = “on alert”
∧ if (0 ≤ u < IT1),
with u = unif (0,1);

and σt = unif(`t, ut)
phase = “on normal”

∧ if (IN1 ≤ u < IN2),
with u = unif (0,1);

and σt = unif(`t, ut)

= (“on alarm”,σm), if

phase = “on alarm”
∧ if (0 ≤ u ≤ IM1),
with u = unif (0,1);

and σm = unif(`m, um);
phase = “on normal”

∧ if (IN2 ≤ u < IN3),
with u = unif (0,1);

and σm = unif(`m, um);
phase = “on alert”

∧ if (IT1 ≤ u < IT2),
with u = unif (0,1);

and σm = unif(`m, um)

= (“failed”,∞), if
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phase = “on normal”
∧ if (IN3 ≤ u ≤ 1),
with u = unif (0,1);

phase = “on alert”
∧ if (IT2 ≤ u ≤ 1),
with u = unif (0,1);

phase = “on alarm”
∧ if (IM1 ≤ u ≤ 1),
with u = unif (0,1).

Pint : Joint distribution of P (s, s′).

λS = {(stats, “status out”), (msg, “deg out”)}.

ta(s) = {σ}.

4 APPLICATION

We implemented the simulation model in DEVS-
JAVA and simulated a 100-unit wind farm located
in West Texas. We assumed the wind farm oper-
ates 24 hours 7 days a week. The parameters used
to model the wind behavior were obtained from the
West Texas Mesonet [12].

The wind farm operations were simulated using
two strategies: scheduled maintenance (SM) and
conditioned-based monitoring (CBM). Under SM,
maintenance actions are performed twice a year re-
gardless the deterioration status of the turbine. The
CBM strategy consist in performing preventive main-
tenance actions only when sensors in condition mon-
itoring equipment produce alarm signals.

Computational experiments were performed to
gain management insights from the operational
strategies. For each operational strategy twenty repli-
cations were run using a time horizon of twenty years.
Twenty years is the average lifespan of a wind tur-
bine.

Table 1 reports the simulation results for the av-
erage total power generation and the capacity factor
under SM and CBM, respectively. For each perfor-
mance measure we provide the mean, standard devi-
ation (Std. Dev.), and the lower (L) and upper (U)
bound for a 95% confidence interval (CI). The results
show that CBM provides on average 10.76% higher
power generation and 10.75% capacity factor for the
20-year period compared to SM. The simulation runs
for both strategies lasted about 1.7 hours due to the
length of the planning horizon (20 hours) and the
large number of turbines in the system.

The average power generated per year for each
operational policy are report in Figure 4. The fig-
ure shows that under CBM, the wind farm generates
12.05% more power for all the years on average. Fig-
ure 5 shows the average number of failures for the
20-year period. The number of failures for CBM is
on average 14.13% lower than for SM over the 20-year
period. We compared our results to those reported
in the literature in Table 2. All the results are within
the industry figures except for capacity factor. Our
average values of 0.45 and 0.51 are well above the in-
dustry range of 0.25-0.4. We believe this is due to
the fact that we only consider one component (the
gearbox).

5 CONCLUSION

Wind farms use several wind turbines to generate
electricity and provide a renewable source of clean en-
ergy. However, wind turbines experience large forces
as a result of hourly and seasonal variations in wind
speed and direction. This results in stochastic loading
that often lead to failures of wind turbine components
such as the gearbox. Wind turbine failures costly due
to repairs and loss in revenue during turbine down
time. Stochastic loading makes it difficult to predict
the actual condition of a wind turbine. Consequently,
scheduling maintenance actions to avoid wind turbine
component failures is critical, especially if the wind
farm is not easily accessible.

In this paper, we present a stochastic discrete event
system specification (STDEVS) model of a wind tur-
bine component. In particular, we consider the wind
turbine gearbox, which is one of the components that
is often prone to failure, and model its stochastic
degradation process. We implement a wind farm
simulation with the STDEVS gearbox model and re-
port on the impact of gearbox failures and repairs
on the performance of a wind farm over time. We
consider scheduled maintenance (SM) and condition-
based monitoring maintenance (CBM). The results
show that CBM provides on average 10.76% higher
power generation and 10.75% capacity factor over a
20-year period compared to SM. Furthermore, CBM
provides 14.13% less number of failures on average
than SM. Overall, the simulation results suggest that
CBM has potential to provide significant benefits for
wind power generation. Future work include devising
and implementing degradation component models for
all critical components of a wind turbine.
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Table 1: Simulation time, power generated and capacity factor for wind farm (20 years)
Power Capacity CPU

Statistic (MW) Factor Time (secs)
Mean 12,856,466.74 0.4516 6142.07

SM Std. Dev. 8,931.50 0.0003 225.53
CI L 12,852,286.67 0.4514 6036.52
CI U 12,860,646.81 0.4517 6247.62
Mean 14,406,757.14 0.5060 6251.143

CBM Std. Dev. 9,264.47 0.0003 177.760
CI L 14,402,421.23 0.5059 6167.949
CI U 14,411,093.05 0.5062 6334.337
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Figure 4: Average power generated by the wind farm annually
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Figure 5: Average number of failures per turbine in each year

Table 2: Figures in industry
Figures SM SM

Criteria in industry Mean Std. Dev. CI L CI U Mean Std. Dev. CI L CI U
Capacity Factor 0.25-0.4 0.4516 0.0003 0.4514 0.4517 0.5060 0.0003 0.5059 0.5062
Availability 0.98 0.927 0.004 0.925 0.929 0.944 0.002 0.943 0.946
Number of failures 0.05-2.29 1.267 0.010 1.262 1.272 1.092 0.010 1.087 1.097
per year
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