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ABSTRACT
In the wind industry, it is important to assess a turbine sys-

tems response under different wind profiles. For instance, a
wind-to-power relationship is crucial for wind power forecast,
and a wind-to-stress relationship is important for selecting criti-
cal design parameters meeting the reliability requirement. Given
the complexity involved in a turbine system, it is impossible
to write a neat, analytical expression to underlie the above-
mentioned relationships. Almost invariably does the wind indus-
try resort to data driven methods for a solution, namely that wind
data and the corresponding turbine response data (bending mo-
ments or power outputs) are used together to fit empirically the
functional relationship of interest. This paper presents a couple
of nonparametric data analytic methods relevant to wind energy
applications with real life example for demonstration.

NOMENCLATURE
y: turbine response;
x: weather covariates or environmental variables;
x,xi,x j: elements in x;
q: number of elements in x;
p(·): probability density function;
p(·|·): conditional probability density function;
f (·): a generic function;
K(·, ·): kernel function;
w(·): weighting coefficients in kernel regression or density esti-

∗Address all correspondence to this author.

mation;
µ: location parameter of a GEV distribution;
σ : scale parameter of a GEV distribution;
ξ : shape parameter of a GEV distribution;
lT : extreme load level for a service of T years;
k1,k2: knots in a spline model;
N: number of (x,y) pairs in a dataset;
Q: number of additive terms in an AMK model;
λ : bandwidth of a kernel function;
B`(·): basis function in MARS models;
β`: coefficients of the basis functions in MARS models;
L: number of the basis functions in a MARS model;
Cm

n : the number of combinations when choosing m out of n.

INTRODUCTION

Wind energy plays an increasingly important role in energy
sustainability of the nation. According to [1], wind power ac-
counts for 4.31% of all generated electrical energy in the US by
July 2014. Albeit still a small percentage in the absolute sense,
the percentage was less than 0.5% a decade ago, translating to an
annualized growth of 29%. But wind energy’s further growth has
a lot to do with its operation efficiency or cost competitiveness
of wind power production.

There is a general class of data analytics problems that are
of interest to wind turbine’s operations. This class of problem is
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to attain the following distribution:

p(y) =
∫

p(y|x)p(x)dx, (1)

where y is a turbine response, including, for instance, a power
output response, or a load (stress) response, or anything that may
be of interest, and x is the vector of weather-related covariates
or environmental variables. Potential elements in x are: wind
speed, wind direction, air density, humidity, turbulence intensity,
wind shears, among others.

Being a variable energy source, controlling x is impractical
in wind power production. Then modeling the conditional den-
sity p(y|x) is of particular interest to engineers who design and
operate the wind energy systems, as it provides turbine-specific
insights concerning how a turbine reacts under a given weather
profile.

Our research team studied two types of applications in which
y takes different meanings. One is when y is the power output of
a turbine. Then p(y|x) is the probability density function (pdf)
of the power curve, or equivalently, the mean function of p(y|x)
is the power curve. The other is when y is the maximum edge-
wise or flap-wise bending moment measured at the root of tur-
bine blades. Then p(y|x) measures a reliability aspect of turbine
operations. Specifically p(y|x) is called the short-term distribu-
tion in the extreme load analysis [2].

Modeling the conditional density p(y|x) is beneficial to the
wind energy industry. For instance, in the case of extreme load
analysis (when y is the maximum bending moment), turbine
manufacturers usually test a small number of representative tur-
bines at their own testing site, producing p(y|x). When a turbine
is to be installed at a commercial wind farm, the weather profile
at the proposed installation site can be collected and substituted
into equation (1) as p(x), so that the site-specific load response
of the same type of turbine can be evaluated. In the case of power
curve analysis (when y is the power output), the conditional mod-
eling can control for the effect coming from the weather co-
variates or the environmental factors. Consequently, detecting
changes in p(y|x) can reveal a turbine’s intrinsic change in its
own aerodynamic properties and power production efficiency.
We believe that the importance of the conditional density model-
ing is evident.

In fact, our research team has undertaken substantial re-
search efforts and proposed sophisticated statistical methodolo-
gies in addressing the challenges in modeling the conditional
density p(y|x) in the context of wind energy applications [2–4].
However, these research reports, comprehensive in their under-
taking, may not connect well with the practitioners, as they are
written in statistical vernacular and immersed with statistical de-
tails and nicety. The purpose of this exposition is to provide an
understanding why the conditional density problem is not trivial

and then describe in engineers’ language the data analytic meth-
ods that are potentially useful. Examples from wind energy ap-
plications are also presented to illustrate the impact that a sophis-
ticated statistical method can make, as compared to the current
industry practice.

The paper unfolds as following. The next section describes
the technical challenges facing the conditional density modeling
task and explains the current industrial practices. The subsequent
section presents two data analytic methods commonly used in the
statistical community: the spline method and the kernel method.
The section following connects the generic data analytic method-
ologies with the wind energy applications, in which actual wind
turbine data are used to exemplify the impact of the newly devel-
oped modeling techniques. Finally we summarize the paper.

TECHNICAL CHALLENGES AND INDUSTRIAL PRAC-
TICE

There exists a number of technical challenges in modeling
the conditional density p(y|x). The first challenge is that the
response data exhibits different types of nonlinearity and het-
eroscedasticity. Figure (1) presents examples of load and power
output responses, plotted against wind speed. It is evident that
both the mean and variance of the responses vary as the wind
speed changes. Our past experiences allowed us to have observed
other shapes of the response functions, unlike either shown in
Figure (1), on turbines using different control mechanisms.

Stress-versus-wind data Power-versus-wind data 

FIGURE 1. Nonlinearity and heteroscedasticity exhibited in turbine
responses. In the wind-to-power data of the right panel, the power is
normalized, due to a confidentiality agreement with the data provider.

The second challenge is the existence of multivariate fac-
tors in affecting a turbine’s response. Although wind speed is
arguably the most important factor, the effect of other environ-
mental variables, such as wind direction or air density, cannot
be ignored. For both the load response and the power response,
there exists no analytical form of expression revealing how these
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factors affect the respective responses. It is known that certain
factor interactions, in addition to the factors themselves, are also
important but it is not yet fully understood of all the important
factor interactions, let alone in which form the interactions take
effect.

Due to these complexities and lack of simple parametric
methods in modeling a turbine’s response, the prevailing industry
practice is to use an approach known as the binning method [5,6].
The idea of the binning method is simple: it first discretizes the
domain of a weather vector, i.e., x, into a finite number of bins.
Within each bin, a stationary distribution is assumed for p(y|x)
with a parametric form. Then the parameters associated with this
localized conditional distribution are estimated using the data
falling into that bin. In the end, the p(y|x) over the whole do-
main of x is the collection of p(y|x)’s estimated for each indi-
vidual bin. Figure (2) illustrates the procedure of binning for
producing a power curve. In doing so, the mean of p(y|x) is es-
timated; but if needed, the data points in each bin can be used to
estimate the distribution as well, should a parametric form (e.g.,
a beta distribution) be specified a priori.

9.75          10.25 Cut-in speed  = 4 m/s 

Bin # 1 Bin # 2 

Center position 

of each bin 

zoom-in 
Averages of data 

within a bin 

FIGURE 2. Binning method to produce a power curve using observed
power output and wind speed data.

The use of the binning method is not without virtue. Its pop-
ularity is rooted in the fact that it provides a simple and easy-to-
understand way of modeling a non-stationary and heteroscedas-
tic probability distribution. It is nonparametric in nature and re-
lying on few assumptions, implying its robustness in practice. It
is capable of capturing local features in a turbine system’s re-
sponses, which could vary across a range of weather conditions.

The major limitation in the use of binning method lies in its
rigid compartmentalization of data and its separate use of data for
individual bins, rather than borrowing strength from other bins.
It becomes especially problematic when being extended to model
multiple environmental factors, under which circumstance, using
the binning method runs into the difficulty of “curse of dimen-
sionality.” Even a whole year worth of data could become scarce
once they are dispersed into numerous bins under a moderate size
of dimensions. We talk about up to ten dimensions here, which

are not really high. But with ten dimensions, if each input vari-
able is partitioned into 5 bins, the binning action produces nearly
10 million bins through variable combinations. Placing a single
data point into each bin would require a data set of 10 million
data records. The binning method is indeed a simple method,
but it does not mean that the method produces a simple model in
the end. In fact, a binning-based model can easily have several
hundreds of parameters, overly complicated in the data-driven
modeling practice and often suffering a poor performance due to
this unwanted model complexity.

DATA ANALYTIC METHODS
The struggle with modeling the nonlinear responses like

p(y|x) in the wind energy applications can be placed in a broader
context. Among the data-driven modeling approaches, the two
ends of the methodology spectrum are the local approaches and
the global approaches. Binning is a typical local method, as each
of its modeling elements only capture what happens within a bin
without worrying about anything else. Global methods refer to
those that assume a single function form over the entire domain
of the inputs, and the global function form can then be specified
by a handful of parameters. A typical global model is the family
of polynomial models.

Local and global models have their own pros and cons. Lo-
cal models uses a lot of parameters so that it can be adaptive to lo-
cal features, whereas the global models use far fewer parameters
so its flexibility is limited. On global models, when one makes
a change to the fitting outcome at one location, the fitting out-
come at other places will be affected, as the whole model is con-
strained by the underlying function chosen a priori. Unlike local
models, as we argue about the limitation of the binning method,
the global models, especially the so-called additive models [7],
are scalable, meaning that they can easily handle a large number
of inputs without necessarily requiring a humongous amount of
data. Figure (3) illustrates the spectrum of models.

In this section, we present two data analytic modeling ap-
proaches that fall in between the local and global approaches
and can take advantage of both modeling philosophies. We fo-
cus more on the generic modeling approaches in this section and
defer to the next section how they can be used in wind energy
applications.

Spline methods
Spline methods in fact injects the idea of binning into the ac-

tion of modeling a nonlinear response. Consider cubic splines [8]
as example and see Figure 4 for illustration. A cubic spline parti-
tions the input domain into a few segments (an action of binning)
and models each segment using a cubic polynomial. In order to
produce a smooth, coherent model for the whole domain, a cu-
bic spline imposes continuity and smoothness constraints at the
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Spectrum of models 

Local                                                                              Global 

Binning method Polynomial based 

regression.  

• Adaptive to non-stationary 
and local features. 

• Use a lot of parameters, and 
inefficient in using data; 

• Not scalable; 
• Discontinuity on boundaries. 

• Use fewer parameters; 
• Scalable; 
• Response surface smooth 

globally; 
 
 

• Not adaptive to local 
features and inflexible. 

Kernel, spline, tree-based 

methods, among others 

FIGURE 3. Struggle between local versus global approaches in data-
driven modeling.

partition points; in Figure 4, the partition points are k1 and k2,
known as knots. Knots do not have to be evenly spaced. Each
cubic polynomial is specified by four parameters, producing a
total of 12 parameters for the three piecewise cubic polynomials.
The constraints imposed at the partition points, however, reduce
the number of actual parameters that need to be estimated. For
the cubic spline in Figure 4, there are three constraints at each
partition point, requiring the equality of the function value, its
first-order derivative and second-order derivative at the partition
point. With the six constraints considered, the number of param-
eters for the cubic spline is six.

If only using the idea of binning without the boundary con-
straints, the response will look like the plot in the right-most
panel. The three unconstrained piecewise cubic polynomials
need a total of 12 parameters to specify. When a single global
cubic polynomial is used to model a response, it uses four pa-
rameters, but its modeling adaptivity to local feature is far worse
than the other two alternatives. With only a slight increase in
model complexity (measured by the number of parameters), the
cubic spline is endowed with the level of modeling adaptivity as
a binning method allows.

People may argue that the binning method can use a single
constant for each bin, so that the number of parameters for the
right-most example in Figure 4 can be three, instead of 12. The
problem of this argument is that when using a constant to model
a bin, the bin width needs to be much smaller, or equivalently,
the number of bins needs to be much greater, so that a piecewise
constant function can approximate a nonlinear response with suf-
ficient accuracy. It is not unusual that with one single input vari-
able such as wind speed, people needs to use 20 bins to model the
whole response. With 20 bins, the number of parameters cannot
be fewer than 20, already producing a model that is unnecessarily
complicated.

𝑘1 𝑘2 𝑘1 𝑘2 

Global cubic polynomial Cubic spline Local cubic polynomial 

FIGURE 4. Global cubic polynomial, cubic spline, and local cubic
polynomials.

As the number of inputs increases, the traditional spline
methods would still run into the “curse of dimensionality” prob-
lem. A contemporary spline method, known as MARS standing
for Multivariate Adaptive Regression Splines [9], was invented
and it injects the scalability into the traditional spline-based ap-
proach. For an individual element in x, say xi, and at a given knot
k, MARS uses two types of basis function: [xi−k]+ and [k−xi]+,
where [·]+ := max(·,0). These two basis functions can be alto-
gether denoted as ±[xi− k]+. For a pair of two elements in x,
say xi and x j, their interaction can be modeled by the product of
the individual basis functions, namely [±(xi− k)]+[±(x j− k)]+.
The final MARS model approximates a function, say f (x), by a
linear combination of the basis functions, i.e.,

f̂ (x) =
L

∑
`=1

β`B`(x), (2)

(3)

where B`(·), `= 1, . . . ,L, are the basis functions taking the afore-
mentioned forms, β`’s are the coefficients of the basis functions,
and L is the number of the basis functions. Fitting of the MARS
model is to estimate the coefficients β` using a set of observed
data pairs {x,y}’s. The non-zero values in the coefficients β` can
also inform practitioners about the important factors or factor in-
teractions in affecting the response.

In order to make sure a MARS model effective, cares need to
be exercised in deciding the number of knots used and their posi-
tions. As one can easily imagine, the choice of knots (both their
number and positions) is equivalent to an adaptive binning op-
eration. Understandably, the region where the response changes
rapidly should have more knots with close proximity, whereas
the region where the response changes slowly needs fewer knots
with greater distance in between. The fewer the number of knots,
the simpler the resulting model is, and the less pressure it places
on the amount of training data required to yield a decent estimate.
To this end, a Bayesian version of the MARS model was invented
in [10, 11], and the Bayesian MARS model can decide the num-
ber and locations of knots automatically according to the specific
dataset used. Recently, [2] uses a Bayesian MARS in their ex-
treme load analysis of wind turbine bending moment data.
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Kernel methods
The basic idea of a kernel method [12] is to make an es-

timation, ŷ, at xi using observed data points close to xi. This
localization is achieved by employing a weighting function sym-
metric with respect to xi, known as a kernel function and denoted
by K(x,xi). A kernel function is supposed to be integrable to 1,
so that the magnitude of ŷ is consistent with that of original data
y. The kernel function has a bandwidth parameter λ that controls
how fast the function decays from its peak towards zero and de-
termines the size of the local window. One of the popular kernel
functions is the Gaussian kernel function, taking the form of

Kλ (x,xi) =
1√

2πλ 2
exp
(
−||x− xi||2

2λ 2

)
. (4)

Consider the example in the left panel of Figure 5 in which we
see three data points. Points #1 and #2 have positive weights
associated with them, while Point# 3 has a virtually zero weight.
So the estimation of y at xi is the weighted average of y values at
points #1 and #2, respectively. Other data points that are farther
away from xi than #3 will not affect the estimation of y at xi.
In order to produce an estimate of y at a new location x j, we
simply move the kernel function to x j and use the set of data
points newly covered by the weighting function to make the new
estimate.

𝑥 

𝐾 

𝑥 

𝐾 

𝑥𝑖  𝑥𝑖  

(a) Gaussian kernel (b) Equal weighting 

#1 
 

#2 
 

#3 
 

#1 
 #2 

 
#3 
 

2𝜆 

FIGURE 5. Gaussian kernel function versus step function used in bin-
ning.

Comparing the kernel model with the two ends of model
spectrums, we can see their connections. The bandwidth param-
eter λ controls how locally a kernel model concentrates. Using
a large enough λ , one could end up with using a single Gaus-
sian density function to cover the whole input domain; this is
the global version of the kernel model. On the other hand, us-
ing a small enough λ , one can let the kernel model localize as
much as one wants. Comparing the kernel model with the bin-
ning method, one notices that the binning method can be consid-
ered as a special kernel model but uses a square pulse function

as the weighting function, giving equal weights to all data points
within the step function window, regardless how far away they
are from xi (points #2 and #3 in the right panel of Figure 5).
Once a data point is outside the step function window (point #
1), its weight is zero. The final estimate at xi is a simple aver-
age of all y’s associated with the data points within the window.
Of course, the binning method is not really a kernel model due
to another important reason: in the kernel regression, the kernel
function moves continuously along the x-axis, producing a con-
tinuous, smooth curve, while the step functions in the binning
method are disjoint, so that the resulting function response from
the binning method, if magnified enough, is discretized.

In the above narrative, when we use the “weighted average”
of y values of the data points falling under the kernel function, the
resulting outcome is the estimate of the mean of the conditional
density p(y|x) or simply E(y|x). In practice, this mean function
is useful enough, as it corresponds to the conventional power
curve, should y be the power output of a turbine. The kernel
methods, nonetheless, are capable of producing the estimate of
the conditional density p(y|x) also, through a formula like

p̂(y|x) =
N

∑
i=1

wi(x)Kλy(y− yi), (5)

where

wi(x) =
Kλx(||x− xi||)

∑
N
i=1 Kλx(||x− xi|)

, (6)

λy and λx are the bandwidth parameters associated with the re-
sponse and the input variable, respectively, and N is the size of
the data set used to estimate the conditional density.

Similar to the binning method and the plain version of spline
methods, when encountering a multivariate analysis of which the
number of inputs are more than one dimension, the kernel meth-
ods, if unmodified, will also run into the problem of “curse of
dimensionality.” We proposed in [3] an additive-multiplicative
kernel (AMK) structure that strikes a sensible balance between
scalability and the modeling ability in terms of capturing the fac-
tor interaction effects.

Suppose that one has q elements in the input vector x, i.e.,
x = (x1, · · · ,xq). The AMK forms a series multiplicative trivari-
ate kernel function taking an input vector of three dimensions,
denoted by, for instance, x̃(1,2,3) := (x1,x2,x3), or generally,
x̃(i, j,`) := (xi,x j,x`). One can use the multiplicative trivariate
kernels to capture the interaction effect up to three-factor inter-
actions. Then, all the trivariate kernels are pooled together in an
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additive structure:

p̂(y|x) = (7)
N

∑
i=1

1
Q

[
wi(x̃(1,2,3))+wi(x̃(1,2,4))+ ...+wi(x̃(i, j,`))

]
Kλy(y− yi),

where Q is the number of the trivariate kernel functions in the ad-
ditive model. Usually there is no need to enumerate all possible
three-factor interactions, so that the value of Q can stay man-
ageable. With this additive-multiplicative structure, AMK mod-
els can capture important nonlinear effects and their interactions,
while staying scalable in practice.

WIND ENERGY RELEVANCE AND APPLICATIONS
This section presents two case studies: an extreme load anal-

ysis and a quantification of turbine upgrade using power curve.

CASE 1: Extreme load analysis
In this application, y is the maximum bending moments

measured at the critical spots on a turbine structure (most likely
blades). The definition of extreme load is the extreme quantile
value in the distribution p(y) corresponding to a turbines service
time of T years, such as PT = Pr[y > lT ]. International Elec-
trotechnical Commission (IEC) [6] publishes PT for a given T ;
for instance, when T = 50 years, PT = 4×10−7. Once PT is spec-
ified, lT can be determined based on the distribution of y. Here
lT is the designed load endurance level, a design parameter used
to select materials and the associated manufacturing process, so
that as long as the actually experienced extreme load does not
exceed lT , the turbine’s structural integrity will not be compro-
mised. The specification of PT is to ensure that the load thresh-
old lT may be exceeded only in a very small probability during
a turbine’s service life. The load threshold lT is also called the
extreme load level.

In the extreme load analysis, the distribution p(y) is com-
puted by integrating the conditional density p(y|x) and weather
profile distribution p(x), as expressed in equation (1). The latter
has been studied extensively by statisticians and meteorologists
alike [13]. So the focus in [2] is to present a new model to handle
p(y|x).

As an extreme quantile value is sought after in the extreme
load analysis, a generalized extreme value (GEV) distribution
[14] is employed. A GEV distribution has three parameters: the
location parameter µ , the scale parameter σ , and the shape pa-
rameter ξ ; denoted by GEV (µ,σ ,ξ ). Depending on the choice
of ξ , a GEV may manifest in a distribution more familiar to the
practitioners: when ξ > 0, the GEV is a Fréchet distribution;
when ξ < 0, the GEV is a Weibull distribution; when ξ = 0, the
GEV is a Gumbel distribution.

The nonlinearity and heteroscedasticity of the wind-versus-
load relationship demands a non-homogeneous modeling of the
GEV distribution over the whole weather profile. The binning
method is to partition the input domain into small bins, and
then fit a constant parameter GEV distribution to each one of
the bins. Suppose that we have the wind speed as the only in-
put, and we partition the wind speed from the cut-in speed to
the cut-out speed by a resolution of 1 m/s; this may result in
about 20 bins. Then, we fit 20 individual GEV distributions,
namely GEV (µ1,σ1,ξ1), . . . ,GEV (µ20,σ20,ξ20). Within each
bin, the parameters (µi,σi,ξi) are constant, so that the GEV in
that bin is homogeneous and stationary. Usually, people would
let ξ1 = ξ2 . . . = ξ20 = ξ to reduce to some extent the flexibil-
ity of the model; otherwise the model may have too many de-
grees of freedom, leading to an underdetermined system with no
unique solutions. The essence of the binning method is to handle
a challenging non-homogeneous problem with a set of piecewise
homogeneous GEV distributions.

What was proposed in [2] is to abandon the bins altogether,
but instead develop a non-homogeneous GEV distribution over
the entire input domain, supported by locally adaptive spline
models. The locally adaptive spline models connect all the bins
across the input region, so that the limited load and weather data
are pooled together, allowing efficient and effective modeling
and analysis.

Specifically, the modeling elements are as follows. First, a
non-homogeneous GEV distribution is used, which means that
its location parameter µ(x) and scale parameter σ(x) are both a
function of the input x. Its shape parameter ξ can be a func-
tion of x, too, but to follow the same treatment in the cur-
rent practice, the shape parameter is kept as a constant over the
whole input domain and to be estimated from the data. Con-
sequently, the conditional distribution of y|x is expressed as
y|x∼ GEV (µ(x);σ(x);ξ ); and σ(x)> 0.

The two functions µ(x) and σ(x) in the non-homogeneous
GEV distribution are each modeled by a Bayesian MARS model,
as explained in the previous section. The Bayesian MARS mod-
els are solved using a numerical sampling procedure called re-
versible jump Markov chain Monte Carlo (RJMCMC) [15]. The
details of the model and the RJMCMC procedure can be found
in [2].

Naturally, people ask the question – what difference does
this MARS modeling technique make? First, it makes a dras-
tic difference in terms of the complexity of the resulting models.
Although the modeling procedure of Bayesian MARS is more
involved than that of the binning method, the resulting MARS
model in fact uses fewer parameters. In analyzing the wind-to-
load data shown in the left panel of Figure 1, two wind-related
covariates are used: the average wind speed and the standard de-
viation of wind speed (related to turbulence intensity). With two
input variables, [2] tried a binning method that uses 60 bins, and
each bin is fit with a stationary GEV distribution having two pa-

6 Copyright © 2015 by ASME



rameters (µ and σ ). This translates to a total of 120 parameters
for the resulting bin-based GEV model. By contrast, the MARS-
supported GEV model uses about 20 parameters, nearly an order
of magnitude fewer than that in the binning model. Second, the
MARS-supported GEV model produces an estimate of the ex-
treme load level lT that is consistently lower than that by the
binning method; see Figure 6 for an illustration. The estimation
of the extreme load level is for T = 20 years. In [2], we con-
ducted a simulation study in which lT can be observed with suf-
ficient amount of samples, so that the estimations from compet-
ing methods can be compared and assessed of their bias. It was
confirmed that the binning method indeed has the tendency to
overestimate the extreme load level, while the spline-supported
GEV model produces estimations more in line of the observed
lT . These studies demonstrate that the overestimate by the bin-
ning method does not happen by chance. So [2] concluded with a
statement like “In the end, the spline method uses a sophisticated
procedure to find a simpler model that is more capable.”

FIGURE 6. Comparison of the extreme load estimation using the bin-
based GEV model and the spline-based GEV model. The middle point
represents the mean of the extreme load estimate, while the two extreme
points correspond to the 95% credible (or confidence) intervals. In [2],
a simulation study in which lT can be observed with sufficient amount
of samples is conducted and confirms the observation that the binning
method tends to overestimate the extreme load level.

CASE 2: Quantification of turbine upgrade
In this application, y is the the power output measured at in-

dividual turbines. This, together with the wind measurement in
x, leads to the power curves that are commonly used for power
prediction [16, 17]. They can also be used for characterizing en-
ergy production efficiency of a wind turbine generator, because a
change in the position and slope of a turbine’s power curve, espe-

cially in the part between the cut-in wind speed and rated speed,
indicates a change in energy production efficiency.

In this case study, we first estimate the power curve asso-
ciated with a wind turbine. Technically, the objective is to es-
timate the conditional density, p(y|x), or the conditional expec-
tation, E(y|x). Our analysis here, following the methodology
presented in [3], is to build a so-called endogenous power curve,
the curve decided primarily by a turbine’s own aerodynamics, af-
ter the influence from the ambient environmental factors is con-
trolled for. Towards that end, we use the AMK model to cap-
ture the multivariate dependencies and their interactions from an
array of weather covariates including wind speed, wind direc-
tion, air density, humidity, turbulence intensity, above-hub wind
shear and below-hub wind shear. Note that due to lack of instru-
mentation, not all the variables are available in every wind farm
study conducted. If all included, the number of variables in x is
seven, namely q = 7. With multiple dependencies, E(y|x) is no
longer a power curve but a power response surface. For the sake
of being consistent with industrial convention, we use the term
“power curve” in its broad meaning, covering the cases of both
one-dimensional power curves and multi-dimensional power re-
sponse surfaces.

When using the AMK model framework and if we ex-
haust all the trivariate kernels, the total combinations would be
C3

7 = 35. Having Q = 35 terms in an AMK is something solv-
able but may not be necessarily. The physical understanding of
the wind power production tells us that wind speed and wind
direction are two most important factors, whereas other factors
may or may not interact with them. With this understanding, we
decide to order the variables in x based on its likelihood of af-
fecting the wind power production. This places wind speed as
x1, wind direction as x2, air density as x3, and so on. Then we
keep the trivariate kernel terms that have x1 and x2. This yields
a total of five terms, namely x̃(1) = (x1,x2,x3), x̃(2) = (x1,x2,x4),
..., x̃(5) = (x1,x2,x7). The number of terms in the AMK is then
Q = q−2, much smaller than the exhaustive list C3

q.
This endogenous power curve is then used to detect and

quantify an upgrade undertaken on a wind turbine. Recognizing
the fast deterioration of wind turbines as a result of working un-
der harsh conditions and random cyclic stresses, wind operators
from time to time perform certain retrofit to their turbine genera-
tors with the hope to restore or even boost its energy production
efficiency. This action is called turbine upgrade. One of such
retrofit is called the vortex generator (VG) installation [18, 19].
But VG installation is not inexpensive. Naturally, wind operators
would like to know how much benefit can be expected from such
an upgrade under actual operation conditions.

One wind operator asked us to conduct a blind test for de-
tecting and quantifying turbine upgrades. The upgrade type is
indeed vortex generator installation. Three turbines on the same
wind farm were chosen. It was understood that some of the tur-
bines may have undergone a VG type of upgrade. But the follow-
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ing information was withheld from us, namely that whether this
VG upgrade actually took place, and if so, on which turbine(s)
it was done. The specific date of a VG upgrade, if it indeed
occurred, was made available to us. Fourteen months worth of
turbine power data and weather measurement data were gathered
on the wind turbines and were also provided to us. We are asked
to find out whether there is an upgrade on any of the turbines and
if the answer is positive, which one(s). This detection aspect can
be verified with the knowledge of the wind operator who knew
which turbine(s), if any, has been upgraded. If this answer is
correct, then the next question is how much improvement this
upgrade produces in terms of power production improvement.

We proceed to use both the binning method and the AMK
method to fit the power curves associated with the turbines and
compare the curves before and after the upgrade date. We con-
duct a statistical t-test [20] and compute the corresponding p
value. According to the statistical convention, a p value smaller
than 0.05 indicates a significant difference before and after the
upgrade date, pointing to the occurrence of actual upgrade. A
large p value suggests no upgrade. Table 1 presents our analysis
outcome.

TABLE 1. Binning method and kernel method used for detecting a
VG upgrade.

Binning Kernel

t statistic p-value t statistic p-value

Turbine #1 −1.53 0.13 1.75 0.08

Turbine #2 −10.40 4.0×10−24 1.27 0.20

Turbine #3 −6.22 7.4×10−10 2.17 0.03

Based on our analysis using the kernel method, we informed
the wind operator that there was a single turbine that underwent
the VG upgrade and the upgraded turbine is #3. This was con-
firmed by the wind operator as the correct answer. The kernel-
based method also suggests that after the upgrade, the power
production efficiency is increased by 2.48%. This value is not
easy to be validated experimentally, as it is difficult to control
the environmental variables to be the same before and after an
upgrade. Through a simulation study reported in [4], it seems
that the kernel-based method was able to estimate the simulated
improvement accurately.

Had we used the binning method, it would have flagged both
Turbines #2 and #3 as the upgraded turbines. In fact, the confi-
dence to say so about #2 is much stronger than that of #3, as
the corresponding p-value is much smaller. We observed this
type of erratic behavior of using the binning method previously
in [4], and believe that such outcome is largely attributable to the

still large amount of uncertainty unaccounted for while using the
method.

CONCLUSION
This paper presents a discussion of conditional density es-

timation problem and its relevance to two types of wind energy
applications. We discuss two categories of data analytic meth-
ods: the spline methods and the kernel methods. Both of them
are generally classified as semi-parametric or nonparametric ap-
proaches, implying their flexible modeling capability and adap-
tivity to data. We recalled two wind energy-relevant analyses in
which the two data analytic methods are used respectively. The
studies using the actual wind turbine operational data (including
the weather measurement data) appear to support the merit of
adopting these contemporary data analytic methods in wind in-
dustry practices over the binning method, which has dominated
the wind industry as the default data analytic tools for at least a
decade.
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