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ABSTRACT 
 
Image processing techniques are needed to extract critical information pertinent to nano material characterization 
but the current processing methods are slow, expensive and labor intensive.  There is a strong need to develop fast 
and reliable methods, enabling process control compatible automated processing of nano images.  The authors 
believe specialized techniques are needed to address the challenges, and will discuss the recent development of nano 
image processing methods as well as the near- and medium-terms needs in the area of nano metrology and imaging.  
The authors will share their broad perspectives on this research direction. 
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1. INTRODUCTION 
 

National Nanotechnology Initiative (NNI)’s signature initiative [1] identified the major technical roadblocks toward 
the goal of scaling up nanomanufacturing (SNM). The second roadblock in the NNI signature initiative is the 
nanomanufacturing measurement technologies that can satisfy the needs for process and quality control of SNM 
processes. In this paper, we intend to discuss the research challenge and needs in the context of automated nano 
image processing for the purpose of material characterization, a task we believe of essential importance in 
addressing NNI’s Signature Initiative. 
 
The NNI Signature Initiative states: “Existing [measurement] methods are time-consuming, expensive, and require 
high-tech infrastructure and high skill levels to perform.” Our own experience confirms what is said in this 
statement. Working with various nanomanufacturing processes, we realize that measurements revealing the structure 
and function of nano subjects are most likely in an image format.  Consequently, image processing techniques are 
inevitably needed to extract critical information pertinent to a subject’s formation as well as interaction with the host 
materials.  These images (referred to as nano images hereafter) are of large data size and contain complicated 
features. The current nano image processing methods are indeed slow and laborious; it sometimes takes hours to 
complete the processing, while for in-process control purposes, the processing time needs to be within the range of a 
few minutes. NNI’s statement calls for innovation in developing both hardware metrology devices and software 
measurement processing methods that meet the fast, reliable, process-control-compatible requirement. 
  
The international standard on nanotechnology leaves it for the users to identify an appropriate data analysis 
algorithm or to seek a third party software solution. When an incapable image processing tool is used, this approach 
leaves a gap in the loop of nano metrology on imaging data. The high resolution enabled by the physical instruments 
may not be preserved.  
 
We also believe that nano images have their uniqueness.  Features valid, and techniques favored, in the general 
image processing or bio-imaging field may no longer be effective in nano imaging. Specialized image processing 
techniques are needed to address the challenges.  Towards that goal, we discuss in this paper our recent development 
of image processing methods specifically tailored for the nano image data, as well as the near- and medium-terms 
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needs in the area of nano metrology and imaging.   
 
The paper unfolds as following. Section 2 describes the state of the art practice in processing nano images. Section 3 
presents a summary of our recent development of specially tailored methods for processing nano images. Section 4 
discusses the research needs in the near future.  Section 5 summarizes the paper. 
 

2. STATE OF THE ART PRACTICE 
 

Nano images contain the morphological information (size and shape) of nano subjects as well as the information of 
their locations; the latter can be used to discern the uniformity of dispersion or distribution of nano subjects in a host 
material. The state of the art practice can be summarized in the following three aspects:  
 
(a) General image processing methods and bio-imaging methods. We come across a good number of existing 

methods, including watershed methods [2-5] (in the mathematical morphology branch [6]), active contour [7-
10], graph cut [11,12], sliding band filter [13,14], iterative voting [15], and a sophisticated multi-scale 
decomposition approach [16] that was developed rather recently.  Many variants and recently improved 
versions of these methods are also investigated [17-20].  A summary of these methods and their performance 
comparison based on a set of gold nanoparticle micrographs can be found in [21].    

 
(b) Nano imaging in the fields of material sciences and manufacturing. There is a limited amount of literature 

[22-25] about automated analysis of nano images in the fields of material sciences and manufacturing. Existing 
methods in the fields of material and manufacturing are less sophisticated than those developed in the general 
image processing or bio-imaging field. They often make strong simplifications, invoke heuristics, or simply 
adopt techniques from the image processing field as is. Here we articulate “automated” because manual 
analysis of material images for characterization was conducted immediately after imaging equipment was 
introduced to material sciences. 

 
(c) Software and tools used in practice.  There exist a few software tools, some of which come with the 

characterization instruments, such as a transmission electron microscope or scanning electron microscope. 
When our team informally surveyed several nano-research groups in and outside the U.S, including those 
working with us, we find that one popular tool in use is ImageJ [26].  ImageJ is a freeware provided by the 
National Institute of Health for cell morphology analysis. Given the apparent similarity between cell and nano 
images, it is not surprising that people went to the bio-imaging field to look for a tool.  ImageJ is a good 
representation of the tools used in practice because other commercial software tools we came across do not 
really exhibit any greater capability than that of ImageJ.  ImageJ does have a number of plug-ins, which are 
built based on the methods reviewed above in (a). 

 
The current image processing methods are ineffective for scalable production purpose, due to its low recognition 
rate of nano subjects.  One principal challenge is due to the existence of overlaps between nano subjects observed in 
nano images, meaning that a cluster of nano subjects often aggregates together, forming an agglomerate. This 
challenge is made even more difficult by a number of other factors, such as the sheer number of nano subjects in a 
nano image (in hundreds or thousands), a great variety of geometric shapes that can be taken by nano subjects 
(round, triangle, rectangle, or rod), high noise and low contrast if nano subjects are embedded in a host substrate of 
similar atomic masses, and the lack of underlying truth to guide a learning algorithm.  
 
When the existing methods are applied to typical nano image, one finds that over-segmentation and under-
segmentation occur frequently. For instance, as reported in [27, Fig. 12], when it is used on a nano image in which 
nanoparticles are moderately overlapping, ImageJ only identifies 28% of the particles correctly, or 110 out of the 
396 total. This low rate of recognition will have to be compensated by laborious manual operation to isolate nano 
subjects, because without isolating individual subjects, neither morphology analysis nor dispersion quantification 
(i.e., assess how uniformly nano subjects are distributed in the host material) can be accurately performed.  It is 
evident that the lack of automation in processing the nano images creates a bottleneck hampering scale-up towards 
the creation of an industry of tomorrow. 
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3. RECENT DEVELOPMENTS 
 

Handling overlapped nano subjects entails three major technical undertakings (see Figure 1): (a) image 
segmentation, aiming at separating individual subjects from a nano-subject agglomerate; (b) contour inference, 
recovering the missing parts of the separated nano subjects; (c) shape classification, classifying the nano subjects by 
shape and compute its morphology related metrics (such as size or aspect ratio). Fulfilling the research objectives 
needs advancement not only in image processing [28] but more so in the intersection of image processing and 
statistical shape analysis [29]. In the past, however, research conducted in the two fields has been done by and large 
sequentially; image processing first and then shape analysis. This may have presented a fundamental obstacle 
causing the lack of reliable methods in processing the large number of overlapped subjects of various shapes present 
in nano images.  
 

 
Figure 1. Three major technical components in isolating nano subjects for analysis and characterization. 

 
We have investigated and developed several approaches of different flavors [21, 27, 30, 31]. We started off with a 
three-stage, divide-and-conquer strategy [27] and gradually evolved to more sophisticated, integrated approaches 
[21, 30].  Our most recent work handles as well the high-level noise existing in some of the nano images [31].  

 
Figure 2. Summary of different approaches investigated in the team’s preliminary study. 

 
Figure 2 summarizes the features of the approaches in our research development. Our current methods made a 
remarkable improvement.  For instance, in the example mentioned in Section 2, of which ImageJ identified correctly 
only 28% of the 396 nanoparticles, one of our approaches, reported in [27], can identify over 90% of them correctly.  
From the summary in Figure 2, one can also observe that a wide variety of image processing, machine learning and 
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Three-stage, divide-and-conquer approach
(IIE Transactions - Quality & Reliability [27])

• Particle separation via a convexity analysis;
• Recover missing contour using functional 

principal component analysis (PCA) [32]
• Shape classification using the k-nearest 

neighbor method [33].

Two-stage, simultaneous learning approach
(IEEE T-Patten Analysis & Machine Intelligence [21])

• Segmentation via a robust, revised watershed variant;
• Joint learning of missing contour and shape class;  
• A B-spline contour regulated through a Gaussian 

mixture model and solved through an ECM algorithm 
[34].

Bayesian shape analysis approach
(Annals of Applied Statistics [30])

• Nano subjects modeled after a set of candidate 
shapes in a dictionary;

• Shape evolution represented by a reverse jump 
process [35];

• Bayesian solution finds the optimal match between 
a shape template and image observation.

Robust fusion of complementary image infomation
(IEEE T-Image Processing [31])

• Both image intensity and gradient information are 
utilized;

• Consensus detection reinforces the trust of a correct 
identification.

• Conflict detection are resolved through a binary 
integer programming (IP) formulation [36] and 
solution.
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statistical modeling techniques were used and tailored for the nano imaging problems. It is our belief that in order to 
effectively address the challenging problem of automated nano image processing, the latest developments and tools 
in all relevant areas must be fully made use of, so that the unprecedented capability called for could possibly 
materialize and the technical barriers be overcome.  

 
 

4. RESEARCH NEEDS 
 

Our recent developments have made remarkable inroad towards making nano imaging methods compatible with 
scaled-up production, especially in terms of addressing the uniqueness of nano images and boosting the 
identification rate of entangled nano subjects. To make the nano imaging techniques ready for production scale, we 
believe that several additional challenges have to be addressed: 

• Enhancement of computational efficiency. The computational efficiency of handling nano images with over 
1,000 nano subjects still needs a boost. The current methods take anywhere from tens of minutes to close to an 
hour to process a nano image of such scale. For a method suitable for in-process quality control purpose, the 
processing time needs to be at the level of a few minutes.  

• Assessment of metrology characteristics. Nano imaging is one critical element of the whole nano metrology 
process.  Outcomes of nano imaging (the measurement processing methods) need to be reflected in the final 
metrology assessment, such as characterization of bias, repeatability and reproducibility, so that one can 
quantify how much a quality engineer can trust the output from the nano metrology equipment.  

• Sequential sampling based on multi-resolution measurements. One nano image of 1,024-by-1,024 pixels 
under nanometer resolutions covers a very small region of bulk materials, e.g., a 100 nm-by-100 nm view field.  
To ensure the quality of the whole material, a single nano image is insufficient. But surveying the whole bulk in 
the same nanometer resolution is not practical, as it would take forever to analyze even a single piece of 
product, hardly something quality engineers could use for continuous production. We hypothesize that a better 
approach is to trade off measurement speed and accuracy by studying nano images taken at different resolutions 
(such as at 10, 100, and 1,000 nm). Understandably, the measurements taken at the low resolution are faster but 
less specific, while the high-resolution measurements are slower but revealing. An efficient approach could be 
to let the low-resolution measurements to guide a sequential sampling over the bulk material and triggers high-
resolution measurements only when necessary.   

• From 2-d to 3-d.  Up to date, the vast majority of nano images used in material characterization are two-
dimensional projections of nano subjects that are embedded in a three-dimensional space.  The inverse problem 
is how we can infer about the nano subject’s morphology and distribution in the original three dimensional 
space. Electron microscopic tomography [37] is now available, and reconstruction can be done based on the 
Fast Fourier Transform (FFT) and Inverse FFT [38]. But the key difference here is that those reconstructions are 
still pixels based, meaning that to interpret features, human experts are needed to look at the reconstructed 
images (similar to what doctors do with medical computerized tomography).  Two problems are of interest to 
explore in the near term: one is how much we can say about 3-d characterization based on 2-d images taken at a 
single projection angle; and the other is about the same question but based on a sequence of 2-d images 
obtained at different projection angles. 

• Imaging moving and morphing nano subjects: In recent years in situ techniques such as x-ray scattering, 
TEM, SEM, and laser-based optical imaging have been introduced for monitoring nanomanufacturing processes 
[39-45], such as sol gel processes for nanoparticle and self-assembled cluster synthesis, as well as chemical 
vapor deposition processes for synthesizing nanotubes, wires and films. These techniques provide an 
opportunity to monitor, at atomic resolutions, the motion and transformations that the individual nano subjects 
undergo during a nano synthesis process (i.e., estimate process state). Ability to track the motion and 
transformation of individual nano subjects at high specificity can accelerate the discovery of causal pathways 
that lead to various nanostructures [46]. It can also provide a precise assessment of the effects of various 
process parameters, compared to the current, population-based statistical descriptions of the transformations 
(e.g., average change in particle size). Towards this end, the nano subjects need to be tracked not just within a 
synthesis step but also over multiple stages of a nanomanufacturing process (e.g., catalyst film deposition, 
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stabilization through the nanostructure growth stage). Two challenges that arise in this context are — how to 
associate nano subjects over multiple image snapshots? What time-resolutions are needed for different imaging 
techniques-nanostructure combinations to achieve a specified level of confidence with identifying individual 
nano subjects? Intuitively, these challenges are akin to those encountered in identifying persons of interest 
based on multiple facial images, albeit over a much short time scales and more rapid transformations. 

5. SUMMARY

In this paper, we present our perspectives concerning nano imaging and its future research for the purpose of 
satisfying the needs in scalable nanomanufacturing. This line of research is to address one major roadblock 
identified by NNI’s signature initiative and meant to benefit a broad array of scalable nanomanufacturing processes, 
as opposed to a specific process. The proposed nano imaging capability, if materialized, could enable process and 
quality control capabilities in nanomanufacturing processes, leading to reduction in waste of energy and materials 
and improvement in efficiency.  A competent quality control is essential to reducing a manufacturing system’s 
negative footprint on environment and to enhancing its market competitiveness. Our final note is to point out that 
our discussion here focuses on the software/algorithm side, namely, the development of efficient measurement data 
processing methods. We want to stress that to fulfill the process control objective, innovations in both measurement 
technology (hardware) and data processing capability (algorithms) are pressingly needed.   
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