
Graph-based Clustering for Detecting Frequent Patterns in Event Log
Data

Erika Sy1, Sam Ade Jacobs2, Aldo Dagnino3 and Yu Ding4

Abstract— Finding frequent patterns is an important problem
in data mining. We have devised a method for detecting frequent
patterns in event log data. By representing events in a graph
structure, we can generate clusters of frequently co-occurring
events. This method is compared with basic association mining
techniques and found to give a “macro-level” overview of
patterns, which is more interpretable. In addition, the resulting
graph-based clustering output for frequently co-occurring event
sets is substantially less than association mining, while providing
similar information levels. Therefore, the results are more
manageable for practical applications.

I. INTRODUCTION
Frequent pattern mining was popularized in the mid-1990s

by Agrawal et al. [1]. They described an association mining
algorithm to find reoccurring purchasing patterns of cus-
tomers. This problem is often called market basket analysis
and attempts to find items that frequently get purchased
together, e.g., cereal and milk. Frequent pattern mining is
a technique in data mining involved in finding frequently
occurring itemsets, subsequences, or substructures [2]. A
user-defined threshold determines the minimal frequency to
be considered as frequent enough. Frequent pattern mining
has many applications such as gene sequencing [3], social
network trends [4], and mining data streams [5].

We focus specifically on the application of frequent pattern
mining to event log data. Event log data capture monitored
changes to the state of a system and record the information
concerning “who, what, when, where, why” of a system
in the event log database. Therefore, event logs are often
manifested in a format containing a list of timestamped
events with attributes such as: EventID: unique event identi-
fier, EventName: descriptive name of event, EventMessage:
detailed description of event, EventStartTime: timestamp of
recorded event, etc. Examples of event log data are computer
event logs, network history logs, control system alarm logs,
and machine maintenance logs. These records are often
stored sequentially in a database; as such, event logs can
be considered as temporally-ordered sequences.

We want to find frequently co-occurring events in event
logs. Events that frequently occur together exhibit regulari-
ties within the data. When supplemented with domain knowl-
edge, these patterns can provide useful insight. Consider in

1Erika Sy with the Department of Industrial & Systems Engineering,
Texas A&M University, College Station, TX erika.sy@tamu.edu

2Sam Ade Jacobs with ABB Corporate Research, Raleigh, NC
sam.jacobs@us.abb.com

3Aldo Dagnino with ABB Corporate Research, Raleigh, NC
aldo.dagnino@us.abb.com

4Yu Ding with the Department of Industrial & Systems Engineering,
Texas A&M University, College Station, TX yuding@tamu.edu

a machine where a set of event patterns generated from
two sources (e.g., a fan and the battery within a laptop)
may indicate dependence within the parts of the machine
(e.g., fan malfunction leads to overheating battery). A pattern
with a critical event may indicate the root cause of the
critical event (e.g. battery failure is a critical event caused
by overheating caused by fan malfunction). Hence, finding
frequently co-occurring events can be very helpful to the
practice of root cause diagnosis or anticipating a failure event
and thus staging a preventive action ahead of time.

The unique nature of event logs is best suited to two
analysis techniques [2]: association mining and sequence
mining; we will review them in more details in Section II.
Both approaches can be applied to databases of itemsets, i.e.,
records containing multiple events. The main difference be-
tween the two approaches is that sequence mining considers
the temporal-order of items (i.e., events), while association
mining does not. One limitation common to both approaches
is that they often lead to the finding of too many frequent
sets. For instance, when using one dataset that has over 6,000
original events (Dataset B in Section V), an existing method
yields 3,000 to 4,500 frequent sets, even though the method
covers only about 10% of the original events. With this many
frequent sets, it becomes impractical for decision makers to
make sense out of them easily.

In this paper, we propose a clustering-based approach to
provide results that can greatly reduce the final number of
frequent sets and are thus easily interpretable to real-world
data. A graph is constructed with two characteristics: events
with shorter temporal distance are represented by a shorter
graph distance, and events with frequent co-occurrence have
a higher weight between their paths. Clustering constrains
each event to appear only once among all clusters. Each
cluster represents a frequently co-occurring set. In a way,
the resulting output synthesizes the results of traditional
association mining or sequence mining, while being robust
to patterns that appear sparingly within the data.

The rest of the paper unfolds as follows: Section II
reviews the related works in association mining and sequence
mining. Section III describes the proposed solution approach.
Section IV analyzes three different datasets. Discussion of
the results follows in Section V. Finally, in Section VI, we
conclude the paper.

II. RELATED WORKS

Agrawal et. al [1] first proposed an algorithm for mining
association rules in market basket data. Association mining



can be stated as two subproblems: 1) frequent itemset gen-
eration and 2) rule generation. Frequent itemsets generation
mines a database for all sets of items that occur together
within baskets at least a specified number of times. This
minimum threshold is a user-defined parameter. Using the
frequent itemsets, rule generation produces if-then rules:
an antecedent itemset appearing in a basket implies a
consequent itemset will also appear in the same basket.
Soon afterwards, Agrawal et al. [6] proposed the Apriori
algorithm, one of the most well-known association mining
algorithms. Based on the Apriori property: no superset of
an infrequent itemset can be frequent. The ideas from [6]
spawned many variant algorithms over the years [7]–[11].

Association mining does not explicitly use the temporal
nature of data to provide results. But since association mining
requires baskets of items as inputs, time could be used while
generating the baskets of events. If this preprocessing step
is undertaken, the temporal information could have been
implicitly considered in the process of association mining.

Closely related to association mining, sequence mining,
as suggested by its name, is the frequent pattern mining
technique that considers the temporal nature of a dataset. The
basic idea of sequence mining is to scan through the temporal
ordered data records to find subsequences that constitute
frequent itemsets (i.e., items appear frequently in order). The
problem of sequence mining is that it is more complicated
than association mining precisely because the items in a
basket are ordered and time is explicitly modeled. Many
association mining algorithms are based on enumeration
trees, which can be generalized to sequences [12]. Owing
to the enumeration nature and the need to go through a large
number of combinations, sequence mining often runs slowly
when it is applied to a large dataset, which is usually the
case for many of the event log datsets.

To alleviate the computational demand for handling large
sized event log datasets, events can be partitioned into
baskets using a time window. While such partitions reduce
the number of combinations to scan through, the data remains
in a sequential fashion for sequence mining.

Nevertheless, the key drawback of association mining
and sequence mining approaches when applied to event
log data, as it has been attempted before [13]–[15], is that
these approaches lead to copious amounts of frequent item
patterns, too many for decision makers to make practical use
of. We present a different approach here to provide a solution
to address this shortcoming.

III. GRAPH-BASED CLUSTERING FOR
FREQUENT PATTERN DETECTION

For detecting frequent patterns in an event log, at leats
two actions are needed: first the events and their connections
should be represented in a model, and then a method is
needed to extract events similar enough into a pattern set.
This is fulfilled in three steps in our proposed method.

For representing the event connections, many association
mining and sequence mining algorithms use enumeration
trees [12], requiring a pre-processing basketization step for it

Raw data

Graph construction

Communities of similar co-occurence

Frequent pattern sets

Evaluate results

Fig. 1. Proposed methodology pipeline.

to be applicable to event log data. Here we propose to model
events in a directed graph instead by exploiting the linear,
timeline nature of event logs. The graph is constructed such
that events with shorter temporal distance are represented
with a shorter graph distance, and events with frequent co-
occurrence have a higher weight between their paths.

Grouping objects based on a similarity measure is the
action of clustering. When applied to graphs, clustering is
often called community detection [16]. One specific class
of community detection algorithms, hierarchical clustering-
based, is well-suited to our problem. It does not require
prior knowledge about the number of clusters, and it uses
connectivity-based similarity metrics. Since the structure of
our graph uses path weights and graph distance to repre-
sent frequency, the community detection outcomes are the
communities of similar co-occurrences.

The last step, a subclustering action, is to filter out the
subclusters from the detected communities that have higher
enough co-occurrence frequencies. The outcomes of the
subclustering is the final frequent pattern sets. A flowchart
depicting the steps of the proposed solution is in Fig. 1.

A. Graph Construction

For a timestamped event log file, construct a weighted,
directed graph G(V,E) such that:
• Vertices in V represent the unique events.
• Edges E exist from vertex u to vertex v if the event

associated with u immediately precedes the event asso-
ciated with v in temporal order.

• The edge weight wt(u, v) is the sum of number of times
the event associated with u immediately precedes the
event associated with v in the event log.

This graph G will henceforth be referred to as a follow graph.
The adjacency matrix A for G is defined by:

Auv =

{
wt(u, v), if an edge exists between u and v
0, otherwise

(1)
It is recommended to prune the graph by deleting edges

with low weights. This is analogous to supplying a minimum
support threshold in frequent itemset mining. After pruning,



remove singleton vertices, else each singleton vertex will be
classified as its own cluster.

Pruning is based on a user-defined minimum threshold.
The value can be chosen specific to a dataset. As the
weights of the edges represent the number of times a pair
of events appear adjacent to each other in the event log,
larger datasets can afford a higher pruning threshold. The
considerations for the pruning threshold include a trade-
off between computation time, robustness, and usefulness of
results. A minimum threshold = 0 (no pruning) leads to the
longest computation time and the most number of events
being clustered. This ensures the lower frequency events
(e.g., critical events) will appear in the results, but the clusters
may contain a lot of noise and extraneous events that do not
truly represent a frequent pattern. On the other hand, a higher
threshold will find frequent patterns more efficiently, but the
results may miss key events that happen more sparingly. We
recommend trying a range of thresholds and then settle down
on a manageable outcome.

B. Community Detection

Since the follow graph is innately able to capture the
associations between events, our next goal is to extract the
events which co-occur frequently from the graph. For that
purpose, we use community detection methods [16]. The
idea of community detection is to partition a graph such
that the vertices within a cluster are “close” to one another
with respect to some measure of distance or similarity. When
using edge weights in our follow graph as a similarity metric,
a community detection method provides the set of events that
co-occur frequently enough to be considered as “belonging
to the same community.”

Community detection assigns vertices of a graph into
clusters using a similarity measure. We use community
detection to get an initial clustering of events.

One popular category of community detection algorithms
are called hierarchical clustering, which iteratively creates
clusters [16]. We chose to utilize these types of algorithms
because the hierarchical structure provides both a sense of
similarity and dissimilarity between events. In addition, it
uses a connectivity-based similarity metric which can be
measured by attributes of the graph.

For our experiments, we used the hierarchical clustering
algorithm by Clauset et al. [17].

Our chosen similarity metric, modularity, quantifies the
strength of a graph division into partitions. It is a popular
metric for determining the stopping criteria of hierarchical
clustering algorithms [16]. Defined in (2), modularity quanti-
fies the significance of a partition compared to a completely
random partition. Originally defined for unweighted graph
[18], A represents the adjacency matrix consisting of 1s and
0s. m = 1

2

∑
uv Auv is the number of edges in the graph.

ku =
∑

v Auv is the degree of vertex u. The δ-function
δ(i, j) equals 1 if i = j and 0 otherwise. The modularity
ranges from 0 to 1, with 0 indicating randomness and values

0
2

4
6

8

H
ei

gh
t

A B

E

C D

nodes
leaves

Fig. 2. Simple dendrogram example.

greater than 0 indicating significance of the partition [18].

Q =
1

2m

∑
uv

[
Auv −

kukv
2m

]
δ(cu, cv) (2)

Modularity can be generalized for weighted graphs [19] by
defining A as an adjacency matrix of edge weights (1), then
updating the values in (2) accordingly.

By the construction of the follow graph, the edge weights
indicate strong associations. Therefore, the edge weights
should be used in the calculation of the modularity for the
community detection algorithm. Using the edge-weighted
modularity allows for a better representation of the partition
in the follow graph.

The result of hierarchical clustering can often be repre-
sented with a dendrogram.

C. Subclustering

Although community detection returns clusters of events,
subclustering can provide a higher level of granularity, es-
pecially within large clusters. Subclustering finds the highly
associated subclusters by using the dendrogram to determine
distances. Events that are highly associated will be within a
close distance i.e, a small height difference, specified by a
threshold parameter. Subclustering finds the frequent event
patterns with high co-occurrence in the event log.

Dendrograms are tree diagrams customarily used to illus-
trate and represent hierarchical clustering [16]. Dendrograms
are a specific type of binary tree structure where the parent
nodes represent a cluster containing only its children. Fig.
2 shows a simple dendrogram structure. Leaves are special
nodes that contain no children. Clustering can be done by
making a cut on the dendrogram at a specific height.

A dendrogram can be created such that each vertex is
a leaf. Each merge in the hierarchical clustering algorithm
represents a node in the dendrogram. The height of each
node and leaf is equivalent to the iteration number in the
hierarchical clustering algorithm where the merge of two
events occurred.

The overall dendrogram provides multiple levels of gran-
ularity to find relationships among events and subclusters.
Since any cut in the dendrogram can be considered a cluster,
there are numerous possibility for clustering.

To perform subclustering, a distance metric needs to be
defined for events (repesented as leaves) in the dendrogram.



Require: dendrogram, heightfraction
1: Let threshold = heightfraction×

height(dendrogram)
2: for each node k do
3: Let partition Pk = leaf descendants of k
4: distancek = height(k)−minp∈Pk

(height(p))
5: if distancek ≤ threshold then
6: partition Pk is a candidate subcluster
7: end if
8: end for
9: if Pi * Pj ,∀j 6= i, where Pi, Pj are candidate subclus-

ters then
10: Pi is a subcluster
11: end if
12: return subclusters

Fig. 3. Subclustering algorithm

The subclustering algorithm uses a notion from phylogenet-
ics called cophenetic value [20] as a distance metric. The
cophenetic value for two leaves in a dendrogram is equivalent
to the lowest height of their common ancestors.

The subclustering algorithm is presented in Fig. 3. A
user-defined parameter determines the maximum allowable
distance between any two events to be considered within a
subcluster. If all the descendant leaves of a node are within
the threshold height difference, then it is a candidate sub-
cluster. Since the nodes are self-containing, if a parent node
is a subcluster candidate, all of its descendant nodes will
also be candidate subclusters. Therefore, subset subclusters
should be removed (lines 9-10 in Fig. 3).

IV. EXPERIMENTAL RESULTS

We have three sets of event log data from various sources.
The graph-based clustering methodology is applied to each
of the datasets and compared with association mining for
frequent itemsets. The association mining algorithm used in
these experiments is the Apriori algorithm [6].

A. Datasets

The three datasets will henceforth be labeled as Dataset
A, Dataset B, and Dataset C, respectively. Dataset A is
provided by an oil and gas company. The data contains
one month of event logs with 1458 unique events and
38,899 observations. Dataset B is provided by a hydro power
generation station. The data contains thirteen months of event
logs with 6009 unique events and 149,977 observations.
Dataset C is provided by an offshore wind farm. The data
contains four years of event logs with 172 unique events and
39,039 observations. Due to confidentiality agreements, any
identifying information is removed from all three datasets.

B. Comparison of Approaches

The Apriori association mining algorithm cannot be
directly applied to event log data. Association mining tra-
ditionally requires an input of baskets of items, whereas
an event log is essentially one long sequence of items.

TABLE I
DATASET A: FREQUENT ITEMSETS RESULTS

time interval 10 min 20 min 30 min
baskets 4464 2232 1488
support 0.0035 0.007 0.0105
unique events 275 261 258
frequent itemsets 265,677 401,842 1,324,921
closed frequent itemsets 2864 5687 9947
coverage 0.897 0.891 0.889

Therefore, we need to basketize the data by cutting the event
log into a series of time intervals. Each time interval will
constitute one basket.

Results for the three datasets’ association mining frequent
itemsets are presented in Tables I, II, and III. In association
mining, support is a user-defined minimum threshold. It is the
minimal fractional value of all baskets that the itemset must
appear in to be considered a “frequent” itemset. The events
must meet the specified support to qualify as a candidate
item in frequent itemsets. Therefore, not all events in the
event log will be included in the results of association mining
algorithm. The number of unique events contained in the
frequent itemsets found by the Apriori algorithm are de-
scribed in the experimental results. Coverage is represented
by the fraction of observations in the data log which are
contained in the set of unique events as defined. It can be
thought of as an information measure. Although there are
many frequent itemsets, closed frequent itemsets are often
used for analysis instead. Closed frequent itemsets contain
no supersets with the same support [8].

The subclustering results are presented in Tables IV, V,
and VI for the three datasets. Coverage and the number
of unique events for sublclustering results are defined in a
similar manner as for association mining. The exception is
that we consider subclusters rather than frequent itemsets.

There are two input parameters for the graph-based
clustering approach: pruning threshold and height fraction.
Pruning threshold is a user-defined mininmum threshold for
edge weight in the graph. Height fraction is a fractional
multiplier which gives the maximum distance two leaves in
a dendrogram can be considered as “close,” and therefore,
a subcluster. A maximum height fraction value of 1 would
consider all leaves in the dendrogram to be “close.”

The two parameters in association mining, time inter-
val and support, are analogous to the two parameters in
subclustering, height fraction and pruning threshold. Time
interval and height fraction both determine which events
can be considered “close” in occurrence, whereas support
and pruning threshold are both minimum thresholds for
determining what can be considered “frequent” itemset in
the association mining case, or “frequently co-occurring”
subcluster.



TABLE II
DATASET B: FREQUENT ITEMSETS RESULTS

time interval 10 min 20 min 30 min
baskets 58,320 29,160 19,440
support 0.001 0.002 0.003
unique events 608 565 542
frequent itemsets 1,082,393 1,113,293 2,216,476
closed frequent itemsets 2823 3428 4474
coverage 0.729 0.716 0.709

TABLE III
DATASET C: FREQUENT ITEMSETS RESULTS

time interval 1 day 3 days 7 days
baskets 50,955 16,972 7,267
support 0.0006 0.0018 0.0042
unique events 68 46 35
frequent itemsets 208 202 241
closed frequent itemsets 207 201 235
coverage 0.978 0.946 0.894

V. DISCUSSION OF RESULTS

A. Choosing Subclustering Parameters

Examining the subclustering results in Tables IV, V, and
VI, it can be observed that higher pruning thresholds can
be tolerated for larger datasets. For example, Dataset B
contains nearly 150,000 observations. Compared to associ-
ation mining (Table II), a pruning threshold (Table V) of
4 or 5 can provide similar coverage levels. Lower pruning
thresholds can result in better coverage. Conversely, for
Datasest A and C, a pruning threshold of 0 or 1 is required
to obtain similar coverage levels as association mining. We
recommend choosing the highest possible pruning threshold
that allows an acceptable coverage level.

TABLE IV
DATASET A: GRAPH-BASED CLUSTERING RESULTS

Height fraction
0.05 0.1 0.15 0.2 0.25 0.3

Pr
un

in
g

th
re

sh
ol

d

0
unique events 720 806 855 906 949 1001
subclusters 284 262 238 218 207 203
coverage 0.748 0.867 0.914 0.939 0.958 0.969

1
unique events 381 407 429 453 469 482
subclusters 145 142 132 129 125 110
coverage 0.638 0.743 0.809 0.862 0.879 0.893

2
unique events 277 291 308 321 339 350
subclusters 106 103 98 92 78 70
coverage 0.596 0.666 0.734 0.783 0.825 0.846

3
unique events 222 231 243 259 272 285
subclusters 86 82 78 76 69 66
coverage 0.586 0.613 0.678 0.746 0.789 0.822

4
unique events 212 220 230 241 351 262
subclusters 82 78 77 75 68 62
coverage 0.596 0.627 0.690 0.737 0.767 0.797

5
unique events 184 191 200 211 224 228
subclusters 71 69 67 63 59 54
coverage 0.572 0.582 0.643 0.683 0.737 0.747

TABLE V
DATASET B: GRAPH-BASED CLUSTERING RESULTS

Height fraction
0.05 0.1 0.15 0.2 0.25 0.3

Pr
un

in
g

th
re

sh
ol

d

0
unique events 3165 3462 3658 3812 3958 4106
subclusters 1168 1072 958 875 835 788
coverage 0.812 0.878 0.914 0.933 0.946 0.958

1
unique events 2268 2397 2501 2585 2684 2748
subclusters 842 797 753 711 616 513
coverage 0.776 0.841 0.870 0.888 0.903 0.915

2
unique events 1780 1876 1979 2027 2076 2120
subclusters 667 636 603 573 495 410
coverage 0.753 0.802 0.846 0.861 0.873 0.882

3
unique events 1461 1546 1598 1652 1689 1722
subclusters 552 529 502 439 387 332
coverage 0.723 0.776 0.807 0.825 0.838 0.847

4
unique events 1265 1337 1393 1430 1465 1484
subclusters 479 458 440 396 344 306
coverage 0.702 0.752 0.783 0.802 0.817 0.824

5
unique events 1152 1213 1268 1304 1327 1343
subclusters 438 414 402 360 321 290
coverage 0.686 0.734 0.762 0.784 0.796 0.802

TABLE VI
DATASET C: GRAPH-BASED CLUSTERING RESULTS

Height fraction
0.05 0.1 0.15 0.2 0.25 0.3

Pr
un

in
g

th
re

sh
ol

d

0
unique events 52 62 68 76 80 90
subclusters 21 21 21 20 20 20
coverage 0.892 0.914 0.921 0.930 0.932 0.938

1
unique events 50 58 63 72 75 80
subclusters 20 20 20 20 20 19
coverage 0.890 0.909 0.917 0.927 0.928 0.930

2
unique events 38 46 50 54 62 63
subclusters 14 14 14 14 14 14
coverage 0.871 0.894 0.898 0.902 0.908 0.908

3
unique events 36 39 44 48 53 56
subclusters 13 13 13 12 12 12
coverage 0.872 0.883 0.892 0.896 0.900 0.902

4
unique events 36 37 44 47 51 54
subclusters 13 11 11 11 11 11
coverage 0.869 0.873 0.889 0.893 0.896 0.898

5
unique events 33 35 41 45 50 54
subclusters 14 10 10 10 10 10
coverage 0.862 0.865 0.882 0.888 0.891 0.898

The height fraction is proportional to the maximum dis-
tance between two events to be considered as part of the
same subcluster. Higher height fractions will provide higher
coverage, but the average number of events per subcluster
(the number of unique events divided by the number of
subclusters) will increase. Therefore, the subclusters will
be less frequently co-occurring compared to lower height
fractions. We recommend choosing a lower height fraction
that provides an acceptable coverage level and gives suitable
subcluster sizes (which depends on the dataset).

B. Coverage versus Frequent Pattern Sets

We will consider the frequent pattern sets for association
mining and subclustering to be closed frequent itemsets and
subclusters, respectively. When comparing the number of



A
B

C

0.0 0.2 0.4 0.6 0.8 1.0

Cohesivesness

D
at

as
et

Fig. 4. Cohesiveness of subclusters

closed frequent itemsets versus the number of subclusters for
similar coverage values, there are substantially less number
of subclusters. Therefore, similar amounts of information are
conveyed using less frequent pattern sets in subclustering.
This provides more manageable results which can be more
easily interpreted and applied to practical applications.

C. Quality of Subclusters

In addition to comparing subclusters with frequent item-
sets, we established a metric to quantify the performance of
subclusters found in the graph-based clustering method. We
are able to use the graph structure to establish cohesiveness.

Cohesiveness of subcluster c, defined in (3), measures how
tightly clustered c is by examining the weights of all edges
connected to vertex u within c. The value can range from
0 to 1. A high cohesiveness indicates that events within a
subcluster contain many edge connections with each other
compared to edge connections with other events. Since the
edges of our graph were determined by co-occurrence, high
cohesiveness should correspond with frequent co-occurrence.

cohesiveness(c) =

∑
u,v∈c

wt(u, v)∑
u,v∈c

wt(u, v) +
∑
u∈c
w/∈c

wt(u,w)
(3)

Fig. 4 shows boxplots for the cohesiveness of the sub-
clusters in each dataset. The chosen parameters (pruning
threshold, height fraction) for each dataset are as follows:
Dataset A (1, 0.25), Dataset B (4, 0.1), and Dataset C (0,
0.25). For Datasets A and B, at least half of the subclusters
obtained using the specified parameters in our method have a
maximum cohesiveness value of 1. For Dataset C, half of the
subclusters have a cohesiveness greater than 0.66. Therefore,
the subclusters obtained from our method correctly grouped
events that were frequently co-occurring.

VI. CONCLUSIONS

Results from the proposed graph-based clustering solution
have been compared with traditional association mining of
frequent itemsets. The subclusters are able to accurately
capture the co-occurrence relationships. This is established
by comparing the coverage levels with the association mining
results. This information is relayed through substantially less
frequent sets. It also does not require basketization, which
could lose some information from the original event log data.

Graph-based clustering produces manageable and easily
interpretable results because each subcluster indicates a
frequent co-occurring set of events. Since events cannot
be repeated in a different subcluster, each subcluster can
represent one distinct collection to be further examined.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” SIGMOD Record, vol. 22,
no. 2, pp. 207–216, June 1993.

[2] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining:
current status and future directions,” Data Mining and Knowledge
Discovery, vol. 15, no. 1, pp. 55–86, 2007.

[3] R. Alves, D. S. Rodriguez-Baena, and J. S. Aguilar-Ruiz, “Gene
association analysis: a survey of frequent pattern mining from gene
expression data,” Briefings in Bioinformatics, vol. 11, no. 2, pp. 210–
224, 2010.

[4] P. N. Nohuddin, F. Coenen, R. Christley, C. Setzkorn, Y. Patel, and
S. Williams, “Finding interesting trends in social networks using
frequent pattern mining and self organizing maps,” Knowledge-Based
Systems, vol. 29, pp. 104 – 113, 2012.

[5] N. Jiang and L. Gruenwald, “Research issues in data stream association
rule mining,” SIGMOD Record, vol. 35, no. 1, pp. 14–19, Mar. 2006.

[6] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB ’94. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.

[7] B. Liu, W. Hsu, and Y. Ma, “Mining association rules with multiple
minimum supports,” in Proceedings of the Fifth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ser.
KDD ’99. New York, NY, USA: ACM, 1999, pp. 337–341.

[8] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
frequent closed itemsets for association rules,” in Database Theory
ICDT99, ser. Lecture Notes in Computer Science, C. Beeri and
P. Buneman, Eds. Springer, 1999, vol. 1540, pp. 398–416.

[9] Y. Koh and N. Rountree, “Finding sporadic rules using apriori-
inverse,” in Advances in Knowledge Discovery and Data Mining, ser.
Lecture Notes in Computer Science, T. Ho, D. Cheung, and H. Liu,
Eds. Springer, 2005, vol. 3518, pp. 97–106.

[10] C.-K. Chui, B. Kao, and E. Hung, “Mining frequent itemsets from
uncertain data,” in Advances in Knowledge Discovery and Data
Mining, ser. Lecture Notes in Computer Science, Z.-H. Zhou, H. Li,
and Q. Yang, Eds. Springer, 2007, vol. 4426, pp. 47–58.

[11] L. Szathmary, A. Napoli, and P. Valtchev, “Towards rare itemset
mining,” in Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th
IEEE International Conference on, vol. 1, Oct 2007, pp. 305–312.

[12] C. C. Aggarwal and J. Han, Eds., Frequent Pattern Mining. Springer,
2014.

[13] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu, “Mining access patterns
efficiently from web logs,” in Knowledge Discovery and Data Mining.
Current Issues and New Applications, ser. Lecture Notes in Computer
Science, T. Terano, H. Liu, and A. Chen, Eds. Springer, 2000, vol.
1805, pp. 396–407.

[14] C. Ezeife and Y. Lu, “Mining web log sequential patterns with posi-
tion coded pre-order linked wap-tree,” Data Mining and Knowledge
Discovery, vol. 10, no. 1, pp. 5–38, 2005.

[15] R. Vaarandi, “A breadth-first algorithm for mining frequent patterns
from event logs,” in Intelligence in Communication Systems, ser.
Lecture Notes in Computer Science, F. Aagesen, C. Anutariya, and
V. Wuwongse, Eds. Springer, 2004, vol. 3283, pp. 293–308.

[16] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 35, pp. 75 – 174, 2010.

[17] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, p.
066111, Dec 2004.

[18] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, p. 026113, Feb
2004.

[19] M. E. J. Newman, “Analysis of weighted networks,” Physical Review
E, vol. 70, p. 056131, Nov 2004.

[20] F. J. R. Robert R. Sokal, “The comparison of dendrograms by objective
methods,” Taxon, vol. 11, no. 2, pp. 33–40, 1962.


