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Abstract. In this multi-university collaborative research, we will develop a 
framework for the dynamic data-driven fault diagnosis of wind turbines which 
aims at making the wind energy a competitive alternative in the energy market. 
This new methodology is fundamentally different from the current practice 
whose performance is limited due to the non-dynamic and non-robust nature in 
the modeling approaches and in the data collection and processing strategies. 
The new methodology consists of robust data pre-processing modules, 
interrelated, multi-level models that describe different details of the system 
behaviors, and a dynamic strategy that allows for measurements to be 
adaptively taken according to specific physical conditions and the associated 
risk level. This paper summarizes the latest progresses in the research.  

1   Introduction 

Wind turbines convert the kinetic energy of wind into the electrical energy, which 
provides a pollution-free source of electricity. Today wind power is considered the 
fastest growing energy source around the world. The key issue for all renewable energy 
utilizations is the cost and the marketability [1]. In the US, Class 6 sites (with average 
wind speeds of 6.7 m/s at 10 m height) can in theory market electricity at prices of 3 to 
4c/kWh, which, together with the tax credit (1.7c/kWh), allows wind energy to compete 
with traditional energy sources. As more sites are developed, easily accessible new 
Class 6 sites are becoming less available. Emphasis has now been shifted to Class 4 
wind sites (5.8 m/s at 10 m height), which cover vast areas of the Great Plains from 
northern Texas to the US-Canada border. Class 4 sites represent almost 20 times the 
developable wind resource of Class 6 sites. Currently the electricity at Class 4 sites can 
be generated at costs in the range of 5 to 6 c/kWh. In order to position the wind energy 
as an attractive option, the Federal Wind Energy Program (FWEP) has set a goal to 
reduce the cost of electricity generated at Class 4 sites to 3c/kWh. One major hurdle to 
achieve this goal is the high cost for maintaining the wind turbines at remote areas, 
given the labors, time, and heavy-duty equipment involved. The FWEP’s goal can be 
achieved only after the number of false alarms, the failure-caused down time, and the 
actual maintenance cost of wind turbines can be significantly reduced. 

Clearly, a reliable, robust fault detection and diagnosis system plays a critical role 
in making the wind power more marketable.  In a modern wind turbine, the most 
expensive and fault-prone components are the gearbox and the blades, especially for 
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those low speed wind turbines operating at Class 4 sites. While researchers have 
pursued fault diagnosis for similar structures for decades, diagnosis of wind turbine 
components is unique and poses new challenge.  First, these low speed wind turbines 
constantly operate under non-stationary conditions and involve very complicated 
gearboxes with multiple stages of gears to speed up a hundred times or more.  Second, 
in order to increase the unit power conversion efficiency, the blades used are 
significantly longer, up to 70m in length as compared to the 20m ones currently 
installed in high speed wind turbines.  For these blades with such enormous size and 
made of composite materials, traditional modal-information-based fault diagnosis is 
difficult to be implemented on-line and is insensitive to the dominant failure mode, 
namely the delamination within the layered composites [2].   

The most challenging aspect of wind turbine fault diagnosis comes from the high 
requirements placed on the accuracy and credibility, owing to the cost-sensitive nature 
related to the FWEP’s goal. The currently available signal processing and diagnosis 
methods are deterministic in nature, leading to a large number of false alarms [3].  In 
view of these challenges and the urgent need, in this project we develop a new 
framework for the effective and robust diagnosis of wind turbine systems using the 
dynamic data-driven methodology. This methodology, as illustrated in Fig. 1, consists 
of robust data pre-processing modules for highly sensitive feature extraction, 
interrelated models that describe different details of the system behaviors at multiple 
levels, and a dynamic strategy that allows the measurements to be adaptively taken 
according to the specific physical conditions and the associated risk level.  In this 
paper, we summarize the progresses made in the research. 
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Fig. 1. Framework for dynamic, data-driven diagnosis of wind turbine systems 

2   Signal Pre-processing and Local-Level Detection 

At local level, we are concerned about the health conditions of the gearbox and the 
blades. For the monitoring of the gearbox, vibratory signals during the wind turbine 
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operation collected by accelerometers will be used.  For the monitoring of the blades, 
we mainly rely on an active damage interrogation scheme that uses embedded 
piezoelectric actuators to generate Lamb wave propagation in the blades.  The wave 
propagation anomaly will indicate damage occurrence such as delamination. 

The common feature of the aforementioned signals that are used for health 
monitoring is that they are non-stationary either due to the wind turbine operation, or 
due to the nature of the wave excitation.  For such signals, it is better to choose time-
frequency representations, among which wavelet analysis is particularly useful, to 
extract their critical features.  Different from traditional Fourier transform-based 
frequency analysis, wavelet transforms lead to the flexibility in using narrow 
windows for the analysis of high-frequency content and wide windows for low 
frequencies.  Newland [4] developed harmonic wavelet and its generalized form, 
whose wavelet levels represent non-overlapping frequency bands that can help 
interpret frequency contents and link detection results with physical meanings.  Liu 
improved the generalized harmonic wavelet transform by applying an entropy-based 
algorithm for best basis selection, in the sense that it gives the sparsest representation 
of the signal [5].  Since the time-frequency interpretation is adaptive to specific 
signals, finding the common wavelet bases for a set of samples (signals) in the 
presence of noise requires extra improvement, which is the focus of our current study. 

From the Fourier transform in the frequency domain 

1
         2 2

( ) ( )2

0                           otherwise

k
i

n m

mnk

e m n
W n m

ω
π ω π

ω π
−

−
⎧

≤ ≤⎪= −⎨
⎪
⎩

 (1) 

Newland derived the family of generalized harmonic wavelets [4] 
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where m and n are the level parameters, 0≤m≤n, and integer k denotes the translation 
parameter within the level (m, n).  The advantage of harmonic wavelets is that signal 
analysis is restricted to specific frequency bands with known physical meanings, and 
these bands are represented by corresponding wavelet levels.  A discrete algorithm is 
developed to calculate coefficients by computing the inverse discrete Fourier 
transform (IDFT) of successive blocks (each corresponds to a level m, n) of the 
Fourier coefficients of the input signal. 

Liu treated each selection { }0 0 1 1 1 1( , ),( , ), , ( , )L Lm n m n m n− −…  as a partition of 

{0,1, , }fNΩ = …  and developed a Shannon entropy-based algorithm to search a 

partition tree for the best partition (in the sense that the signal can be represented most 
sparsely) [5].  For any sequence x = {xj}, the Shannon entropy is defined as 

( ) logj j
j

H p p= −∑x  
(3) 

where 2 2
/j jp x= x , and pj log pj is set as 0 if pj = 0.  The entropy above is a measure 

of the sparsity and therefore we expect smaller entropy for a better partition of 
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wavelet coefficients.  We incorporate this technique to the pre-processing of Lamb 
wave-based damage detection in laboratory beam-type specimens.  The iteration 
procedure for a sequence of 16 elements using a binary partition tree is illustrated in 
Fig. 2 (Phase II). For the initial partition, every single Fourier coefficient forms an 
‘initial subgroup’, whose the Shannon entropy can be called initial entropy.  Then in 
Step 1, every 2 successive Fourier coefficients form a ‘Step 1 subgroup’, whose 
entropy is calculated and compared with the corresponding sum of initial entropies.  
For the example in Fig. 2, the sum entropy of the ‘initial subgroups’ 1 and 2 is smaller 
than that of the ‘Step 1 subgroup’ 1.  The former subgroups, instead of the latter, are 
therefore kept after the selection in Step 1.  After the entire iteration, the features of 
the input signal will be highlighted by projecting samples onto those best basis 
functions. 

 

Fig. 2. Discrete-time adaptive harmonic wavelet transform using FFT/IFFT (N=16) 

The above strategy of adaptive harmonic wavelet transform (AHWT) is signal-
dependent.  Multiple signals from the same gearbox or blade may, however, lead to 
different wavelet basis partition simply due to the existence of noise. In order to build 
a baseline dataset, the detection algorithm requires a common wavelet basis set for all 
the samples. We hence extend the adaptive harmonic wavelet transform for 
multivariate applications.  Each time series sample sl = {sl(r), r = 0,1,…,N-1} 
collected from the accelerometer or piezoelectric sensor is associated with a set of 
basis functions {wmnk}l, then all the L samples are projected on {wmnk}l to yield a 
matrix of wavelet coefficients [a1 … aL]l. The total Shannon entropy can be defined 
as H([a1 … aL]l) = H(a1)+…+ H(aL), where l=1,…,L (the number of samples). We 
select the common wavelet basis set {wmnk}u such that the wavelet coefficients [a1 … 
aL]u have the smallest total Shannon entropy, i.e., 

arg min ( )l
l

u H= 1 L[a  ... a ]  
(4) 
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We call [a1 … aL]u the baseline dataset; similarly, the on-line collected response 
signal can be processed by applying the above procedure. 

With the AHWT as basis for feature extraction, we may then use several statistical 
analysis tools for local-level detection.  Principal component analysis (PCA) 
transforms a number of correlated variables into a smaller number of uncorrelated new 
variables called principal components.  Consider a block of baseline data and let C  
be the corresponding covariance matrix.  PCA yields an orthogonal (eigenvector) 
matrix V = [v1 … vK] matrix and a diagonal (eigenvalue) matrix D = diag(λ1,…,λK) 
such that CV = VD. The eigenvalues are arranged in descending order λj ≥ λj+1. 
Introducing the effective rank rk of X [6], we can discard the eigenvectors associated 
with λrk+1,…, λK and form a modified eigenvector matrix Vm.  Here we choose rk as the 
smallest number so that the accumulative energy is above a certain threshold ET%, 
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given that the eigenvalues represent the distribution of the original energy among 
each of the eigenvectors. The local-level detection is facilitated by the Hotelling’s T2 
analysis [7].  First, baseline data are sub-grouped and used to establish an upper 
control limit UCL1 under a certain confidence level 100(1-α)%, where α indicates the 
error probability (0<α<1).  Then in phase II, a distinction is made between the 
baseline and the online sensor data using a modified upper control limit UCL2.  If any 
calculated T2 value exceeds the phase II upper control limit, we may conclude, with 
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Fig. 3. Piezoelectric interrogation and wave signals: local-level data-driven signal processing 
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confidence level 100(1-α)%, that the structure is in its damaged state. Fig. 3 shows an 
example of successful detection of crack damage in a laboratory beam structure using 
piezoelectric-based damage interrogation. 

3   Dynamic Interrogation and Decision-Making 

We intend to develop a “risk-based dynamic decision making” policy, considering the 
loss that may be caused by undetected component failures and the cost of doing 
unnecessary maintenance work for normally operating components.  In this dynamic 
procedure, we classify the sensor feedbacks and the subsequent actions into three 
levels: (1) the normal level, and thus operate as is, when no sign indicates any serious 
problems; (2) the alert level and then put the monitoring into the intensive care mode; 
(3) the alarm level, and thus dispatch the maintenance crew for on-site repairing.  
Under intensive care, one need update the sensor measurements more frequently, use 
advanced mobile sensors for obtaining additional information, and invoke 
computationally intensive modules for predicting failure modes with reduced 
uncertainty.  So the intensive care mode will incur additional cost but will not be as 
expensive as dispatching the crew. The decision will be made dynamically by 
weighing a group of factors. 

Factors need to be considered including the costs and risks associated with 
different actions to be taken (e.g., dispatch a maintenance crew or not),  
weather conditions now and in the near future which affects both the wind power 
generation, the severity of any existing mechanical problem, and the feasibility of a 
repairing mission, the loss caused by the disruption to power generation as the result 
of a major maintenance or as the result of an utter failure. A hidden Markov model [8] 
is being used to model the wind turbine’s health status. Weather is an important 
condition for wind turbine operations because wind is the primary source for 
producing wind power [9]. Non-stationarity and irregularity in wind conditions induce 
the fatigues causing many component failures. The weather condition also affect the 
feasibility and cost of a repairing mission since doing a repair under a severe weather 
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condition will be more costly than doing so under a fair condition. Shutting down the 
wind turbine for repair will also incur losses in power production so one would be 
better off to schedule such an action during a low wind period than a high wind 
period. In addition to the weather condition, a wind farm type such as where the wind 
farm is located (for instance, offshore will need special care and vessel), the distance 
between the wind farm and maintenance center are also the external factors in our 
decision making process. 

As for the internal conditions related to the wind turbine, the probabilities about the 
turbine state, which is derived from sensor signals, are the most important input 
factor. Other factors include the age of the turbine and the repair history and so on.  
Our main objective in this decision making process is to minimize the risk caused by 
the information uncertainties [10, 11] from the external and internal factors. The 
criteria and influential factors are summarized in Fig. 4.  Next, we present a simple 
example to explain the dynamic decision making process. 

In the following example, we simplify the above consideration by assuming that 
the external conditions remain constant.  We assume that a wind turbine could be in 
two health states: survival or failure and the sensor feedback can be classified into 
three categories: that is, },,{ 321 oooOt ∈  or },,{ 321 oooOt ′′′∈′ , where Ot' is obtained from 

an advanced sensor under intensive care, and oi indicates an escalated risk of turbine 
failure as i increases. Similar treatments were also used prior studies [8]. 

Fig. 5 shows a possible trajectory of sensory data and the corresponding scenario 
of decision rules at each epoch. The wind turbine operates normally during t1 ~ t3. At 
t4, o2 is observed from a regular sensor, implying that an intensive care is needed. 
When invoking the advanced sensor, we got an o1' so we operate wind turbine as 
usual. Afterwards, o2 and o2' are observed both at t5 and t6. Then we calculate the risk 
based on both sensor feedbacks and found the failure risk is not high enough at t5 so 
we remain in the intensive care.  But the failure risk crosses the alarm level at t6 so we 
need to dispatch the crew for maintenance. After the repair, the wind turbine returns 
to the normal level. At t10, an alarm signal is detected so we need to dispatch the crew 
right away without going through an intensive care period. 
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4   Summary 

This paper summarizes the recent progresses made in the dynamic data-driven fault 
diagnosis of wind turbine systems. The health monitoring of wind turbine systems is 
inherently challenging due to the high requirements placed on the accuracy and 
reliability of the monitoring system. To fundamentally solve the relevant issues, a 
series of tools and strategies have been developed and explored, which include robust 
data-driven local signal processing and preliminary detection algorithms, redundancy 
analysis for sensor network reliability and robustness, and global strategy for dynamic 
interrogation and decision making. 
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