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Variation propagation in a multi-station manufacturing process (MMP) is described
the theory of ‘‘Stream of Variation.’’ Given that the measurements are obtained via ce
sensor distribution scheme, the problem of whether the stream of variation of an MM
diagnosable is of great interest to both academia and industry. We present a compr
sive study of the diagnosability of MMPs in this paper. It is based on the state space m
and is parallel to the concept of observability in control theory. Analogous to the obs
ability matrix and index, the diagnosability matrix and index are first defined and t
derived for MMP systems. The result of diagnosability study is applied to the evalu
of sensor distribution strategy. It can also be used as the basis to develop an op
sensor distribution algorithm. An example of a three-station assembly process with m
fixture layouts is presented to illustrate the methodology.@DOI: 10.1115/1.1435645#
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1 Introduction

1.1 Problem Statement. A multi-station manufacturing
process~MMP! can be defined as a process involving operatio
on multiple work stations to manufacture a product. Examples
MMPs include: 1! the automotive body assembly, in which mu
tiple parts are assembled on multiple stations; 2! the transfer-line
machining process, which involves multiple machining operatio
of a single part on multiple stations; and 3! the progressive die
stamping process, which involves multiple stamping stations
form one part. Statistical analysis of variation propagation
MMPs is important to quality and productivity improvement.

A product inspection-oriented measurement strategy is usu
employed in industrial practice to ensure product quality. Follo
ing this strategy, measurements are taken directly from the
ished and/or intermediate product, and then compare with
product design nominals. The measurement selection is so
based on product features and their specifications. If the mea
ments show that there are some product features out of their s
fications ~e.g., there is an excessive deviation from the des
nominal or large variability!, this measurement strategy alone m
not lead to the identification of the root causes of quality defe
The problem of root cause identification is very challenging,
pecially for MMPs, due to the large amount of needed informat
and complex variation propagation during the manufacturing p
cess.

As shown in Fig. 1, the quality information flow in anN-station
process can be arranged in a parallelepiped with each cr
section representing a work station. On each station, there are
of multiple attributes~denoted asM1 , M2 , . . . , andMm ! that
are produced continuously as production proceeds. For insta
curves shown in the final cross-section in Fig. 1 are represe
tions of time series data obtained during production. Genera
there exists an autocorrelation~in terms of time! among data of
the same attribute and a cross-correlation among data of diffe
attributes. On the other hand, every attribute can be tracked o
stations. For example, the thick line demonstrated in Fig. 1 re
sents the tracking of attributeM2. More complicated relationship
exists in the autocorrelation of each attribute on different statio
The quality information flow in the parallelepiped is analogous
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the water flow in a river. This analogy leads to the term ‘‘Strea
of Variation ~SOV!’’ used to describe the propagation of quali
information in an MMP@1#.

It is very common that manufacturers take measurements
large sample of products on a given station, which only require
install sensors on that specific station. The information obtaine
this way is equivalent to the data produced within ay-z cross-
section of the parallelepiped in Fig. 1. Thus, the data are refe
to as ‘‘cross-sectional’’data in literature@2#. The question of in-
terest is whether the stream of variation of an MMP is diagn
able, i.e., if the root causes of quality-related problem can
identified, given the sensor distribution at selected ‘‘cro
sections.’’ In this paper, we address the diagnosability of MMPs
terms of sensor distribution and process configuration in a gen
setting.

1.2 Related Work. In a manufacturing system, diagnos
ability could be given different focus in different situations. Us
ally, it is classified as fault detectability and distinguishabili
Detectability measures the performance of recognizing fault
currence while distinguishability refers to the capability of iden
fying the root cause of an occurred fault. In an MMP, the occ
rence of faults can be detected by using SPC~Statistical Process
Control! control charts@3#, which are constructed based on me
surements of the final product. However, the SPC control ch
cannot identify the root causes of specific quality defects. In fa
the diagnosability that we are concerned about correspond
fault distinguishability, namely the ability to identify root caus
When SPC charts are used, it is the operators/engineers’ jo
identify what the root cause is, based on their experience. I
then difficult to identify root cause in an MMP since quality d
fects that are detected on the current station could be cause
variation transmission and accumulation from upstream statio
One straightforward solution is to apply the SPC techniques
every single station in an MMP since the root cause within
single station is easier to identify based on operators’ empir
knowledge. The implementation of this solution is neither nec
sary nor economical since it involves obtaining measurem
constructing controller, and implementing control charts at e
station. Actually this solution overlooks the inherent relationsh
among different stations. In this case, a vast amount of us
information is not fully utilized to reduce the number of senso
actuators, and control charts.

An innovative approach is to establish analogy between sta
index and time index so that the quality information in the MM
can be put into a serial order, which looks like ‘‘time’’ series da
~e.g., the thick line in Fig. 1!. This analogy functions as a mecha

he
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MARCH 2002, Vol. 124 Õ 1
002 by ASME



u

a
i

l
f
v

-

e

e

-

are

on
t

as-
di-

in
s-

ur
r of
n-
at-
ion
ges
en

a
g-
s
dy-
of

root
data.
ex

iew
dies
d in
Fi-

nd

ol
ma-

e to
al

ig.

ing

n.
he

ed
d.
tor
en-
nism to link together information at different stations. B
Shewhart charts are not appropriate for directly monitoring su
kind of ‘‘time series’’ data because the quality values of produ
features on a downstream station are affected by those on
stream stations, and thus the data are likely to be correlated am
stations. Control theory fits better to analyze these autocorrel
data~in terms of station! generated through the MMP if appropr
ate stream-of-variation models could be developed to characte
the quality information in an MMP, as opposed to the tradition
models that describe the behavior of a single manufacturing
tion @4–7#.

Several SOV models were proposed recently such asstate tran-
sition model @8#, AR(1) model @2,9#, and state space mode
@10,11#. Mantripragada and Whitney@8# adopted the concept o
output controllability from control theory to evaluate and impro
the automotive body structure design in order to reduce the
mensional variation. Lawless et al.@2,9# investigated variation
transmission in both assembly and machining processes by
mating parameters in their AR~1! model with the measured quality
information.

When the MMP models are used for diagnosis, the diagnosa
ity is an important issue to be investigated together with the
velopment of the diagnosis algorithm. In@12#, the diagnosability
is defined in the following way.

If a system can be modeled by a linear input-output relations
as

yt5C•xt1«t (1)

whereyt is the measurement vector,xt is the state vector to be
estimated, and«t is the sensor noise, then the system diagnosa
ity is satisfied ifC is of full rank. In the situation that the input
output relationship is nonlinear, linearization is conducted at so
setpoints and the higher order uncertainties are merged with«t as
the new noise term. In dynamic systems, the diagnosability
equivalent to the observability of state variables. Consider a tim
invariant linear system. The state vectorxt is governed by the
following dynamic equation

xt115Axt1But1jt (2)

whereut is the input vector,jt is the process background nois
andA is the dynamic matrix. The observability grammianW0 is
defined as the solution to a Lyapunov equation@13#

ATW01W0A52CTC (3)

Thus, this dynamic system is said to be observable ifW0 is of full
rank.

In the two aforementioned approaches~state transition model
and AR~1! model!, measurements are assumed to be availabl
every station in the process. With that assumption, the MMP
always diagnosable. Both authors suggested the case of inc
plete observation~i.e., information only available at several lim
ited stations! as future research topics. Agrawal et al.@2#, as men-
tioned previously, said that ‘‘it is often time consuming and
expensive to track items through a process’’and raised the ques

Fig. 1 Information flow in multi-station manufacturing
processes
2 Õ Vol. 124, MARCH 2002
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tion of how to utilize the ‘‘cross-sectional’’ information, which is
the essence of diagnosability of an MMP given that sensors
distributed only on the selected stations.

The authors developed a state space model@10,11# to charac-
terize the dimensional stream of variation in an MMP. Based
the model, Ding et al.@14# presented the methodology for roo
cause diagnosis given the end-of-line measurements and the
sumption that a single fixture fault occurs. The conditions of
agnosability, under the single fault assumption, are also given
terms of the distinguishability among fault patterns with the pre
ence of noises.

However, it is often the case that two or more faults occ
simultaneously in a process with multiple stations. The numbe
combinations of simultaneous fault patterns will grow expone
tially when more stations are considered. The multiple fault p
terns are rarely orthogonal. Nor do they have clear distinct
between each other with the presence of noises. More challen
are encountered in evaluating the diagnosability of an MMP wh
multiple simultaneous faults are considered.

1.3 Proposed Method. This paper aims to fill this gap by
presenting a diagnosability study of MMPs on the basis of
stream-of-variation model in a generic setting. The study of dia
nosability is similar to that of observability in dynamic system
since our state space model is of the same format as that in
namic systems. A diagnosability matrix is constructed in terms
process/product design, and can be used to indicate if the
cause can be uniquely identified based on the cross-sectional
As for a partial diagnosable system, the diagnosability ind
~analogous to observability index! is defined to quantitatively
characterize system capability in fault diagnosis.

The paper unfolds as follows. Section 2 presents a brief rev
of the state space model with some discussions. Section 3 stu
the system diagnosability of a generic MMP. Examples are use
Section 4 to compare different sensor distribution schemes.
nally, in Section 5 we discuss the implication of this study a
summarize the results.

2 State Space Model
In this paper, we primarily focus on dimensional quality contr

in discrete part manufacturing systems such as assembly and
chining processes. The root cause to be isolated is mainly du
fixture malfunction, which is identified as a major dimension
variation contribution during new product launch@15#. For in-
stance, a workpiece is positioned by a set of locators$P1 ,P2% in
x-z plane. The design nominal position of the part is shown in F
2~a!. When one of the fixture locators$P1 ,P2% malfunctions, de-
viations could be associated with the corresponding locat
point~s!. Figure 2~b! shows thatdP2(z) is the deviation in
z-direction associated with locatorP2 whenP2 malfunctions. As a
result, the workpiece is also deviated from its nominal positio
The fixture variation is defined in terms of the variance of t
positional deviation at a locating point, say var(dP2(z)), where
var~•! is the variance of a random variable. A fixture is consider
‘‘faulty’’ if its variation is greater than the assigned threshol
Such a large fixture variation occurs due to the fact that the loca
may be worn, loose, bent, or broken. The task of root cause id

Fig. 2 An example of fixture fault manifestation
Transactions of the ASME



o
t
h

t

h

r

s

e

-

n a
in a

e

sub-

l
tate

lity
,
nos-
erv-
in

f
er
sses

s are
su-

n’’
con-
sys-
r

-of-
ality
in

The
th-

of
sen-
pace

of
itial

ed
ated

the
the
res
uld
trix.

d on

tor
s-

-

,

tification is to isolate the faulty fixture locator with undesire
variation level. The diagnosability will be defined later in terms
fixture variation.

In order to deliver the intended dimensional accuracy of a pr
uct, dozens of fixtures are intensively used on each sta
throughout the production line. However, by adopting t
product-inspection-oriented philosophy in quality assurance,
tures used in production are not directly measured after be
installed. The measurements that are taken on the finished pro
or intermediate products are values of product quality. The pro
gation of fixture variation contributed from each station and
impact on product quality are described by the stream-of-varia
model.

Dimensional stream-of-variation model has been developed
multi-station assembly processes@10,11# and machining processe
@16# by using state space representation. The stream of variatio
an MMP is illustrated in Fig. 3 for anN-station process, where
XkPRn31 is the part accumulated deviation;PkPRmk31 is the
fixture deviation contributed from stationk; YkPRqk31 is the
measurement obtained on stationk; superscriptsn, mk, andqk are
dimensions of the three vectors, respectively;jk ,hk are mutually
independent noises.

The stream of variation in this MMP is characterized by t
following equations

Xk5Ak21Xk211BkPk1jk , k51,2, . . . ,N (4)

Yk5CkXk1hk , $k%,$1,2, . . . ,N% (5)

where the first equation, known as the state equation, implies
part deviation on stationk is influenced by two sources: the accu
mulated variation up to stationk21 and the variation contribution
on stationk; the second equation is the observation equation. D
tailed expressions of system matricesAk, Bk, andCk can be found
in @10,11#. Regarding this representation, several remarks are
ticulated here.

Remark 2.1. Both Xk and Pk are random vectors. Since th
variation-type faults are concerned in the dimensional control
dressed in this paper,Xk and Pk are assumed to be zero-mea
random vectors unless otherwise indicated.

Remark 2.2. System matricesAk, Bk, andCk are determined by
process/product design.Ak, known as dynamic matrix, characte
izes deviation change due to part transfer between stationk and
station k11, namely Ak depends on the change of locatin
schemes in a production stream. If the fixture locating schem
unchanged in the consecutive stations, e.g., several feature
machined by using the same datum in a multi-station machin
operation, thenAk is just an identity matrixI ~corresponding to a
simple translation! @16#. On the other hand, if a part is positione
by a new set of fixtures, the part will be reoriented on a n
fixture set. As a result,Ak is no longer an identity matrixI . More
discussion on this topic is presented in@10,11#.

Matrix Bk is the input matrix which determines how fixtur
deviation affects part deviation on stationk, based on the geom
etry of a fixture locating layout. The rank ofBk equals to the
number of degrees of freedom~d.o.f.! of the supported workpieces
restrained by the fixture set.

Fig. 3 Diagram of an assembly process with N stations
Journal of Dynamic Systems, Measurement, and Control
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Matrix Ck contains the information about sensor locations o
station. When sensors are installed on one or more stations
production line, the index for the observation equation~Eq. 5! is
actually a subset of$1,2, . . . ,N%, whereas the index for the stat
equation~Eq. 4! is the complete set. Similarly, the rank ofCk
corresponds to the number of measured d.o.f. of a part or a
assembly on stationk.

MatricesAk, Bk, andCk in general are different for individua
stations. Therefore, analogous to a dynamic system, the s
space equations describe a discrete ‘‘time-varying’’~actually
station-varying! stochastic system. Therefore, the observabi
grammianW0 in Eq. ~3!, defined for a time invariant system
cannot be directly used here. The difference between the diag
ability of this station-indexed state space model and the obs
ability of a time varying dynamic system will be discussed
detail in Section 3.

Remark 2.3. Also notice that an MMP has limited number o
stations. An MMP is not only of finite horizon but also the numb
of states is small compared to a time series process. Proce
such as an automotive body assembly process with 50 station
already very complicated. Many other multi-station processes u
ally only constitute 10 stations or so. For such a small ‘‘ru
station-indexed state space model, any techniques relying on
vergence properties like the state observer in linear dynamic
tem will not work effectively since there is not enough ‘‘time’’ fo
the observer to converge to the true value.

In summary, the above remarks suggest that the stream
variation model integrates the process/product design and qu
information. The model allows to apply the tools and concepts
system analysis to solve problems of manufacturing systems.
development of diagnosability analysis will use and expand ma
ematical tools of conventional system analysis.

3 Diagnosability Analysis
As it was stated earlier, there is similarity between concepts

diagnosability and observability. However, there are some es
tial differences between these two concepts for the state s
model with station index. One difference is that the concept
observability relies on the complete measurements from the in
time t0 to the current time@13#, which accordingly requires the
tracking of the same item on all stations in our station-index
state space model. However, the diagnosability to be investig
here is based on measurements obtained from one~most likely the
end-of-line! or several~but limited number! ‘‘cross-sections.’’ An-
other difference is that the observability concept describes
state vector itself while the diagnosability concept focuses on
variation of state variables and input vectors. This further requi
that the original state space model for variable deviations sho
be transformed into a state space model for the covariance ma
It is assumed that accumulated part deviationXk21, fixture devia-
tion Pk, and unmodeled higher order termjk are independent.
Thus, the state space model for the covariance matrix base
Eqs.~4! and ~5! turns out to be

Sk
X5Ak21Sk21

X Ak21
T 1BkSk

PBk
T1Sk

j , k51,2, . . . ,N (6)

Sk
Y5CkSk

XCk
T1Sk

h , $k%,$1,2, . . . ,N% (7)

whereSk
(•) is the covariance matrix of a zero mean random vec

on stationk. Thus, in terms of the covariance matrix, the diagno
ability of a multi-station system can be defined as follows.

Definition 1.The stream of variation in an MMP is called diag
nosable if all fixture covariance matricesSk

P, k51,2, . . . ,N, are
uniquely determined given measurementsSk

Y on selected stations
i.e., $k%,$1,2, . . . ,N%.

We first introduce the notation of state transition matrixF(•,•)
from control theory as

Fk, j5H Ak21Ak22•••A j , k> j 11

I , k5 j
. (8)
MARCH 2002, Vol. 124 Õ 3
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The state space model in Eqs.~4! and~5! can be converted into an
input-output model

F Y1

Y2

A

YN

G5F C1B1 0 ••• 0

C2F2,1B1 C2B2 ••• 0

A A � A

CNFN,1B1 CNFN,2B2 ••• CNBN

G •F P1

P2

A

PN

G
1F C1F1,0

C2F2,0

A

CNFN,0

G •X01F «1

«2

A

«N

G (9)

where Ck50 if no sensor is installed at stationk and «k
5S i 51,kCkFk,iji1hk. Given the independence relationship a
sumed amongXk21, Pk, jk, andhk, the product deviationX0, the
fixture deviationPk, and the noise term«k are also independent
Further define

G5F C1B1 0 ••• 0

C2F2,1B1 C2B2 ••• 0

A A � A

CNFN,1B1 CNFN,2B2 ••• CNBN

G ,

G05F C1F1,0

C2F2,0

A

CNFN,0

G (10)

we can have,

SY5G•SP
•GT1G0S0

XG0
T1S« (11)

where

SP[cov~@P1
T P2

T
••• PN

T #T!,

SY[cov~@Y1
T Y2

T
••• YN

T #T!,

S«[cov~@«1
T «2

T
••• «N

T #T!,

and

S0
X[cov~X0!.

Then, the diagnosability in Definition 1 is equivalent
uniquely identifyingSP. In Eq. ~11!, S0

X is known based on mea
surements obtained at the end of the upstream process. Fo
stance, in the case of assembly process, the upstream proc
the sheet metal stamping process. IfSk

« is not known and should
be estimated through in-line measurements, more sensors ne
be installed at appropriate locations within each station to red
the influence of noise@17,18#. Those proposed techniques can
applied together with the diagnosability study presented in
paper to give a comprehensive solution. Given that those te
niques are available, we assume in this study thatSk

« is known or
can be estimated from historical data. With this assumption,SLHS

is defined as the summation of all measured or estimable qu
ties

SLHS5SY2G0S0
XG0

T2S« (12)

then, Eq.~11! is simplified as

SLHS5G•SP
•GT (13)

where the right hand side is the summation of fixture variatio
from all stations, and is our focus in this study.

Since fixture deviations are independent among stations,SP is a
diagonal matrix with the variances of fixture deviations as its
agonal elements. The diagonal elements are arranged in a var
4 Õ Vol. 124, MARCH 2002
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Then, Eq.~13! can be expressed as

vec~SLHS!5p~G!•sP (15)

where vec~•! is the vector operator listed in Appendix I andp~•! is
a transform defined as

p:Gq3w→p~G!
q(q11)

2 3w (16)

(17)

whereGPRq3w andq, w are appropriate values corresponding
the dimensions ofG, gi is the i th row vector ofG, and ^ repre-
sents the Hadamard product, explained in Appendix I as wel
brief derivation leading to Eq.~15! is included in Appendix II. The
p-transform has the following properties that will be utilized lat
~the proofs are given in Appendix II!:

Property 1. If the columns inG are independent, then the co
umns inp(G) are also independent.

Property 2. Given any two matricesGi andGj , if all columns in
Gi are independent of those inGj , then all columns inp(Gi) will
be independent of columns inp(Gj ) .

Then, we define the matrix

DN5p~G!5pS F C1B1 0 ••• 0

C2F2,1B1 C2B2 ••• 0

A A � A

CNFN,1B1 CNFN,2B2 ••• CNBN

G D
(18)

as thediagnosability matrix. The condition of the system diagnos
ability is revealed by the following theorem.

Theorem 1.Given an MMP characterized by Eqs.~4! and ~5!,
the stream of variation is diagnosable if and only ifDN

TDN is of
full rank or r(DN)5Sk51

N mk, wherer~•! is the rank of a matrix
andmk is the number of potential fixture faults at stationk.

The proof is straightforward and thus omitted. Because
p-transform conducts multiplication among rows, Eq.~18! can be
further written as

DN5@P1 ••• Pk ••• PN# (19)

where

(20)

Pk is actually the diagnosability matrix of a single stationk. It has
Transactions of the ASME
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a zero submatrix because the information obtained by sensor
stationsk21, k22, . . . ,1 will not directly contribute to the di-
agnosis of faults on stationk. The meaning ofPk can be seen
through the following. If only fixture fault~ Pk ! on stationk is
concerned, we can write the input-output relationship as

F Yk

A

YN

G5F CkBk

A

CNFN,kBk

G •Pk1F CkFk,0

A

CNFN,0

G •X01F «k

A

«N

G (21)

In order to make the sizes of vectors and matrices consis
when different stations are considered, i.e., to make the vector
the same as@Y1

T . . . YN
T #T, we augment the vectors and matr

ces using a zero submatrix with appropriate dimensions as

(22)

Following the analysis procedure in Eqs.~9!–~15!, Pk will turn
out to be the expression as defined in Eq.~20!. It is obvious that
Pk characterizes the diagnosability of individual stations. T
actually leads to a further partition of system diagnosability ela
rated as follows.

Ding et al.@14# pointed out that the diagnosability of the enti
system can be partitioned as two types: 1! within-station diagnos-
ablility and 2! between-station diagnosability. The conditions
diagnosability given in@14# are for the single fault situation. Here
the conditions of diagnosability for multiple faults situation a
stated.

Definition 2.The stream of variation is said to be within-statio
diagnosable~for instance, at stationk! if all variances in sk

P

5diag(Sk
P)5@s1

2(k) ••• smk

2 (k)#T can be uniquely determine

by measurementsSi
Y, $ i %,$1,2, . . . ,N% in the situation that fix-

ture faults only occurred at that station.
Theorem 2.Given an MMP characterized by Eqs.~4! and ~5!,

the stream of variation is within-station diagnosable at stationk if
and only if Pk

TPk is of full rank or r(Pk)5mk.
Remark 3.1. Pk is also called within-station diagnosability ma

trix. It is obvious that a station is not diagnosable if there is
sensor installed on or after this station.

Remark 3.2. The observability matrix@13# for a discrete time
varying dynamic system on@k0 ,kf # is

Ok0 ,kf
5F Ck0

Fk0 ,k0

Ck011Fk011,k0

A

Ckf21Fkf21,k0

G (23)

Comparing the observability matrixOk0 ,kf
with diagnosability

matrix Pk, we see several differences:~1! Pk has matrixBk at its
each row element because diagnosability defined in this p
concerns input vectorPk rather than state vectorXk. ~2! Indices in
row elements inPk may not be continuous because sensors
normally installed at selected stations in an MMP and each in
corresponds to a physically different sensor or sensor set. On
other hand, indices inOk0 ,kf

are continuous fromk0 to kf since
sensors can continuously produce time-series data in dynamic
tem and all the indices actually correspond to the same senso
~3! The matrixPk is computed after applying thep-transform on
the input-output matrix because diagnosability refers to thevaria-
tion of fixture deviationrather than the fixture deviation itsel
Based on the above comparison, it is concluded that within-sta
diagnosability matrix in an MMP is equivalent to the observabil
Journal of Dynamic Systems, Measurement, and Control
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matrix defined in a dynamic system. The newly defined with
station diagnosability matrix captures the unique properties
manufacturing system, and thus it is more appropriate for ma
facturing applications.

The between-station diagnosability refers to the capability
distinguish fixture faults occurring across different stations. I
fault occurred on stationk, it may have distinct symptom from al
other faults at the same and different stations. Then, the fault
be uniquely determined by using in-line measurements. Howe
it may have the same symptom with other faults at the sa
stations but the distinct symptom from faults at different statio
In such a situation, only a superposition of faults with the sa
symptom can be estimated. If all components included in the
perposition come from the same station, we are still able to tel
which station the faulty fixture locates, although the exact fau
fixture is unclear.

Definition 3. The stream of variation is said to be betwee
station diagnosable on stationk if a superposition of fixture faults
on stationk can be uniquely determined by measurementsSi

Y,
$ i %,$1,2, . . . ,N%.

Theorem 3.Given an MMP characterized by Eqs.~4! and ~5!,
the stream of variation is between-station diagnosable on statik
if and only if the columns inPk are independent of all othe
columns inDN.

Proof. DN is grouped into two parts:Pk andP(r ), whereP(r )

includes all the rest of the columns inDN other than those inPk.
Accordingly, the variance vectorsP is also grouped as
@sk

Ts(r )T#T. By using the algorithm of singular value decompos
tion @19#, we can write

Pksk5 (
i 51

r(Pk)

l i
(k)ui

(k)~vi
(k)Tsk!

and

P(r )s(r )5 (
i 51

r(P(r ))

l i
(r )ui

(r )~vi
(r )Ts(r )! (24)

wherevi
(k)Tsk is a linear combination ofsk. Since the columns in

Pk are independent of those inP(r ), l i
(k)ui

(k)’s are also indepen-
dent ofl i

(r )ui
(r )’s, implying that the coefficient matrix comprising

l i
(k)ui

(k) andl i
(r )ui

(r ) is of full rank. Therefore,vi
(k)Tsk, the linear

combination of fixture faults at stationk, i.e., the fault superposi-
tion on stationk, is uniquely determined from the left hand vect
in Eq. ~24!. Q.E.D.

If the stream of variation of an MMP is between-station dia
nosable and also within-station diagnosable on each station
entire system is then diagnosable. This partition provides a t
step diagnosis procedure in the MMP: first localize the fixtu
faults at a candidate station and second isolate the fixture f
right on that candidate station. This two-step procedure was
posed in@20# for a knowledge-based expert system. Our analyti
approach is consistent with the heuristic reasoning procedure
provides more rigorous mathematics foundation.

When a system is not fully diagnosable, it can either be
diagnosable at all or partially diagnosable. Differentiation amo
these partially diagnosable system is also of our interest. An
gous to observability index@13# used in control theory, we define
diagnosability index to quantitatively describe the percentage
potential faults that can be identified.

Definition 4. Within-station diagnosability index, denoted a
mk, is defined as the ratio of the number of independent colum
in Pk over the number of potential fixture faults, that is,

mk5
r~Pk!

mk
(25)

Index mk indicates how many fixture faults and/or their supe
position on a station can be determined. It is a normalized quan
MARCH 2002, Vol. 124 Õ 5
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in @0, 1#. mk50 means that the fixture fault on this station
completely undistinguishable, whilemk51 indicates a complete
diagnosable station. Thus, Theorem 2 can be rephrased as th
stream of variation is within-station diagnosable on stationk if
and only if mk51. Any mk between 0 and 1 is for a partiall
diagnosable station. In fact, the numerator ofmk is corresponding
to the observability index defined in control theory, where t
observability index is not normalized. The difference betweenPk
and observability matrix has already been addressed inRemark
3.2. In spite of the differences, these two indices have a comm
objective, which is to quantify the independent sensing inform
tion for a given system configuration. The independent sens
information refers to a sensor measurement which is distinct f
and also not the superposition of other sensor measurements

Definition 5.The process diagnosability index of an MMP, d
noted asm, is defined as

m5
r~DN!

Sk51
N mk

(26)

Indexm quantitatively describes the percentage of independ
equations with respect to the total number of potential fixt
faults in the entire MMP. Same asmk, m is also a normalized
quantity in @0, 1#, with m51 meaning that the process is com
pletely diagnosable. It should be noted that the conditionm51is
stronger than the condition$mk51,k51,2, . . . ,N% because fixture
faults could be undistinguishable among different stations, i.e.,
between-station diagnosability not ensured.

4 Example
A three-station assembly process~N53! is used to illustrate the

proposed methodology. There are four parts marked as 1, 2, 3
4. Three stations are involved to finish assembly and meas
ments:~1! parts 1 and 2 are assembled at Station I~Fig. 4~a!!, ~2!
subassembly ‘‘112’’ is welded with parts 3 and 4 at Station I
~Fig. 4~b!!, and~3! the assembly are measured at Station III~Fig.
4~c!!. If I k is used to denote the number of parts involved in
assembly on stationk, thenI 152, I 25I 354 for this example.

In this example, we only consider 2-D in-plane motion of rig
parts, i.e., DOF53. Each part is restrained by a set of fixtur
constituting a four-way pin/hole locating pair controlling motio
in both x and z directions and a two-way pin/slot locating pa
controlling motion only inz direction. A subassembly with severa
parts also needs a four-way pin and a two-way pin to comple
control its d.o.f. For example, subassembly ‘‘112’’ is positioned
by the fixture pair$P1 ,P4% on part 1 and part 2, respectively, a
shown in Fig. 4~b!. A pinhole/slot is called ‘‘active’’ pinhole/slot if
it is used on the current station to position an assembly, re
sented by a black circle/slot in Fig. 4; otherwise it is ‘‘inactive
represented by an empty circle/slot.

4.1 Sensor Distribution Scheme 1: End-of-Line Sensing.End-
of-line sensing describes the scenario where all sensors ar
stalled only at the end of production line. It is cost effective a
widely implemented in industry for the purpose of product insp
tion.

Fig. 4 Three-station assembly with end-of-line sensing
6 Õ Vol. 124, MARCH 2002
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In such case,~after removing the zero submatrix! Pk becomes

Pk5p~C3F3,kBk! (27)

Even if r(C3)5I 3 •DOF, i.e., a sufficient number of sensors c
access all d.o.f. of workpieces in the product,Pk could still be
rank-deficient ifF3,k is not of full rank. The only exception is for
the last stationk53, whereP35p(C3B3)sinceF3,35I . The suf-
ficient number of sensors makes all d.o.f. of components at
tion III measurable, which rendersr(P3)5m3. This suggests tha
the fixture fault is diagnosable at the last station. In general,
diagnosability of an MMP depends strongly on the transition m
trix FN,k, which is in turn determined by the dynamic matrixAk.
As pointed out inRemark 2.2, Ak is primarily decided by the
consistency in fixture layouts among stations. Difference of fixt
locating layouts between stations results in reorientation so
some ‘‘memory’’ about part position and orientation on the pre
ous station may be lost, causingAk rank deficient. Thus, the sys
tem diagnosability is not guaranteed by employing the end-of-
sensing strategy.

The above argument can be verified by the given example, w
sensorsM128 installed at Station III as shown in Fig. 4. Here
r(C3)5433512.

Step 1. Set up the state space model for this three-station
cess.

The state space representation of this process is shown as
lows

X15B1P11j1

and Xk5Ak21Xk211BkPk1jk , k52,3 (28)

Y35C3X31h3, (29)

where the initial stateX0 that is part deviation from the stampin
process is assumed negligible. Numerical expressions ofA, B, and
C of the assembly process in Fig. 4 are given as follows.

(30)
Transactions of the ASME



(31)

(32)

Step 2. Diagnosability Study. Within-station diagnosability matrixPk equal top(Gk), whereGk5C3F3,kBk for k51,2,3. TheGk’s
are shown as follows,
Journal of Dynamic Systems, Measurement, and Control MARCH 2002, Vol. 124 Õ 7



G15

l

0 0.4011 20.7857 0 0 0.3846
0 0.0729 20.1429 0 0 0.0699
0 0.4011 20.7857 0 0 0.3846
0 20.6199 1.2143 0 0 20.5944

21 0.2448 0 1 20.7 0.4552
0 20.4056 0 0 1.16 20.7544

21 20.5245 0 1 1.5 0.9755
0 0.0699 0 0 20.2 0.1301
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

m

1636

G25

l

0 0.1215 20.3846 0 0 0 0 0 0.2632
0 0.0221 20.0699 0 0 0 0 0 0.0478
0 0.1215 20.3846 0 0 0 0 0 0.2632
0 20.1877 0.5944 0 0 0 0 0 20.4067
0 20.0773 0.2448 0 0 0 0 0 20.1675
0 20.1877 0.5944 0 0 0 0 0 20.4067
0 0.1656 20.5245 0 0 0 0 0 0.3589
0 20.3379 1.0699 0 0 0 0 0 20.7321

21 20.3110 0 1 0.4 20.4 0 0 0.3110
0 20.2679 0 0 1.12 20.12 0 0 20.7321

21 20.1196 0 1 20.4 0.4 0 0 0.1196
0 0.0574 0 0 20.24 1.24 0 0 21.0574

21 0.0957 0 0 0 0 1 20.4 0.3043
0 20.2679 0 0 0 0 0 1.12 20.8521

21 20.0957 0 0 0 0 1 0.4 20.3043
0 0.0574 0 0 0 0 0 20.24 0.1826

m

1639

G35

l

1 0.2632 20.2632
0 1.0478 20.0478
1 0.2632 20.2632
0 0.5933 0.4067
1 20.1675 0.1675
0 0.5933 0.4067
1 0.3589 20.3589
0 0.2679 0.7321
1 0.3110 20.3110
0 0.2679 0.7321
1 0.1196 20.1196
0 20.0574 1.0574
1 20.0957 0.0957
0 0.2679 0.7321
1 0.0957 20.0957
0 20.0574 1.0574

m

1633

(33)
8 Õ Vol. 124, MARCH 2002 Transactions of the ASME
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It is noticed thatG1 and G2 are of rank 3 and rank 6, respec
tively, andG3 is of rank 3~full rank!. The reason thatG1 andG2
are less than full rank is that state transition matricesF(•,•)’s are
singular for all transitions due to the inconsistency in fixture
cating layouts among different stations.G3 is of full rank since the
sensor is directly installed on Station III, and there is no p
transition involved. AlthoughG1 andG2 are less than full rank, the
corresponding within-station diagnosability matricesP1 and P2
could be of full rank since thep-transform defined in Appendix II
can potentially increase the rank of a matrix by generating m
rows and keeping the same number of columns. Actually,r(P1)
54 andr(P2)59 soP25p(G2) is of full rank. P3 is certainly
of full rank sinceG3 has full rank. Because of the high dimension
of Pk’s (P1PR13636, P2PR13639, P3PR13633), their expres-
sions are not listed.

One also notices thatG1 can be divided into two blocks with
dimension 836, and the second block ofG1 is a zero matrix. The
zero block is corresponding to parts 3 and 4, which have not b
assembled at Station I.G2 andG3 do not contain such kind of zero
block since all four workpieces appear on both Stations II and
With the zero-block inG1, it is easy to verify that all columns in
G1 are independent of those inG2 andG3. Moreover, with numeri-
cal computation, the columns inG2 are found to be independent t
the columns inG3. According toProperty 2of p-transform, the
columns inP1, P2, or P3 should be independent to those in th
other two matrices. Therefore, the fixture fault in this assem
process is between-station diagnosable. The values of rank ofPk,
mk ~i.e., # of faults!, and diagnosability index are listed in Table
It is concluded that fixture fault is partially diagnosable at Stati
I but is diagnosable at Stations II and III. Thus, with the end-
line sensing strategy, the entire system is not fully diagnosa
The overall system has 88.9% diagnosability, wherem25m351
andm150.667~66.7% diagnosability!.

4.2 Sensor Distribution Scheme 2: ‘‘Saturated Sensing.’’
When a sufficient number of sensors are installed at every sta
to measure all degrees of freedom of each part, i.e.,r(Ck)5I k
•DOF, this distribution scheme is known as ‘‘saturated sensin
Thekth row block inPk is CkBk, which is the transformation from
the fixture deviation to the deviation at the sensor location
stationk. Since all d.o.f. of each workpiece are restrained and a
measured,CkBk is of full rank in this case. Thus, the correspon
ing columns inPk after thep-transform are independent due t
Property 1of p-transform. As a result,r(Pk)5mk, namelyPk

TPk

Fig. 5 Three-station assembly with ‘‘saturated sensing’’

Table 1 Diagnosability indices

Parameters Station I Station II Station III Overa

r~•! 4 9 3 16
mk 6 9 3 18
m 0.667 1 1 0.889
Journal of Dynamic Systems, Measurement, and Control
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is of full rank. Moreover, the row blocks inPk with index less
thank are all zero blocks~refer to Eq.~20!!, implying thatDN is in
an echelon format andPj has different number of zero rows asPk
has, for anyj Þk. According to this echelon structure, it is obv
ous that the columns inPk are independent ofPj for any j Þk.
That means fixture fault is not only with-station diagnosable
each station but also between-station diagnosable, so it is equ
lent to the condition thatDN is of full rank andm51. This is
consistent with our intuition that the complete diagnosability
MMPs can be achieved by installing sensors alm
everywhere.

In this example, there are total 20 sensors installed at all th
stations, with two sensors on each part, as shown in Fig. 5.
state equations are the same as those in Eq.~28!. However, the
observation equation consists of three equations for sensor
stalled at all three stations as

Yk5CkXk1hk , k51,2,3, (34)

whereC3 is the same as that in Eq.~32!, andC1 andC2 are given
as follows.

(35)

The above generic conclusion concerning the diagnosability
‘‘saturated sensing’’ scheme can be confirmed by numerical
culation. However, this scenario is too costly in reality and n
necessary.

ll
MARCH 2002, Vol. 124 Õ 9
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4.3 Sensor Distribution Scheme 3. We know that the sen-
sor installation in Scheme 2 can achievemk51 for all three sta-
tions. Using the sensor installation in Scheme 2 as the star
point, Scheme 3 can be obtained by trying out different combi
tions to minimize the number of sensors while maintainmk51 at
each station. Since the number of sensors is limited at each
tion, the minimum solution usually can be quickly found for
single station. In this procedure, minimization is only done fo
single station without considering sensors installed on other
tions. Therefore, it is a local optimization scheme.

As for Scheme 3, the station-wise optimization is carried o
forward from Station I to Station III. The results are shown in F
6, with total 8 sensors installed at three stations. At Station I, t
sensors (M1,2) are placed on part 1 and part 2, respectively.
Station II, four sensors (M326) are placed on different parts with
one sensor on each individual part. Two more sensors (M7,8) are
placed on part 1 and part 4 at Station III, respectively. Thou
$mk51,k51,2,3% is not in general equivalent tom51, m is in
fact 1 for this specific sensor distribution, after achievingmk51
for three stations.

The observation matrices are different from those in Section
since the different number of sensors are implemented. Matr
C18, C28, andC38 in Yk5Ck8Xk1hk, k51,2,3 are given as

(36)

By using this sensor distribution scheme, the number of sen
implemented is 12 less than that in the ‘‘saturated sensi
scheme, rendering a 60% decrease.

Fig. 6 Sensor distribution scheme 3
10 Õ Vol. 124, MARCH 2002
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4.4 Sensor Distribution Scheme 4. Distribution Scheme 4
is obtained in a similar way as Scheme 3, however, with
station-wise optimization done backward from Station III to St
tion I. On each single station, the procedure is the same as th
Scheme 3. From the diagnosability study, it is known that sens
installed on the downstream station will contribute to diagnosis
fixture fault at the previous stations, whereas sensors on upstr
stations do not help in diagnosing the downstream process. A
result, sensors distributed by using Scheme 4 should be no m
than the number of sensors determined in Scheme 3.

Scheme 4 ends up with five sensors$M125% implemented in the
process to achieve 100% within-station diagnosability, i.e.,mk
51, k51,2,3. The five sensors are distributed at three stati
with two at Station III, two at Station II, and one at Station
shown in Fig. 7. When the overall system diagnosability is ve
fied, m is also 100% for this particular example.

The observation matricesC19, C29, and C39 in Yk5Ck9Xk1hk,
k51, 2, 3 are different from those in Sections 4.2 and 4.3, and
also listed here.

(37)

4.5 Comparison. Four schemes are compared in Table
Among these four given sensing schemes, Scheme 4 yields
least number of sensors while makingm51.

Fig. 7 Sensor distribution scheme 4

Table 2 Comparison among four sensing schemes

# of sensing station # of sensor m

Scheme 1: end-of-line sensing 1 8 88.9%
Scheme 2: saturated sensing 3 20 100
Scheme 3 3 8 100%
Scheme 4 3 5 100%
Transactions of the ASME
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However, the limitations behind the station-wise optimizati
are:~1! The global optimality is not guaranteed since there may
further reduction in the number of sensing stations and sens
~2! The two station-wise optimization algorithms, although yie
systems withm51, cannot in general guarantee a fully diagno
able system due to the fact that$m51% is a stronger condition than
$mk51 for k51,2, . . . ,N%. In light of this need, more system
atic study is desired to develop an optimal sensing strategy.
development of diagnosability analysis in this paper can be u
as the mathematical basis for such research.

5 Conclusion
It is often costly and difficult to identify the root causes of th

stream of variation in complex MMPs. A comprehensive diagn
ability study based on the stream-of-variation theory is presen
in this paper to address this issue.

The approach takes advantage of the state space system m
that was developed in the authors’ previous publications. In p
allel to the concept of observability in control theory, diagnosab
ity matrix and index are defined accordingly for MMPs. The d
agnosability of the entire systems can be broken down at
levels—within-station diagnosability and between-station di
nosability. It turns out that the observability in control theory
corresponding to within-station diagnosability in manufacturi
systems. This methodology can be used to evaluate different
sor distribution strategies. Through studies of the sensor distr
tion schemes of end-of-line sensing and ‘‘saturated sensing,’’
known that diagnosability is guaranteed but at a very high c
with a sufficient number of sensors installed at every stati
while the end-of-line sensing, although economical, by no me
guarantees system diagnosability. Other sensor distribu
schemes that are discussed in this paper can reduce the num
sensors but cannot provide a global optimality and may so
times result inm,1 by conducting station-wise optimization. I
addition to this diagnosability study, more systematic study
needed to determine the optimal sensor distribution strategy i
MMP.

The presented methodology is fairly general for any MMP t
can be modeled in a state space representation. The physic
terpretation of the stream of variation relies on specific manu
turing systems. Unique properties of those processes shoul
taken into account so that the diagnosability study of the stream
variation can be carried over in different types of processes wi
the proposed framework.
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Appendix I: Hadamard Product and Vec Operator
The notations of Hadamard product and vec operator are

tailed in @21#. Hadamard product, denoted by the symbol^, sim-
ply performs the elementwise multiplication of two matrice
Given matricesU and V are eachm3n, then their Hadamard
product is
Journal of Dynamic Systems, Measurement, and Control
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U^ V5F u11 ••• u1n

A � A

um1 ••• umn

G ^F v11 ••• v1n

A � A

vm1 ••• vmn

G
5F u11v11 ••• u1nv1n

A � A

um1vm1 ••• umnvmn

G (a1)

Some elementary properties that follow directly from the defi
tion are listed as follows without proof, where matricesU, V, and
W are of the same size,

Item ~a! U^ V5V^ U, item ~b! (U^ V) ^ W5U^ (V^ W),
item ~c! (U1V) ^ W5U^ W1V^ W, item ~d! (U^ V)T5UT

^ VT, item ~e! wT(u^ v)5(w^ v)Tu5(w^ u)Tv whereu, v, and
w arem31 vectors.

Vec operator is used to transform a matrix to a vector that
the elements of the matrix as its elements. If a matrixUm3n hasui

as itsi th column vector, the vec~U! is themn31 vector given by

vec~U!5F u1

u2

A

un

G (a2)

Since covariance matrixS is n3n square symmetric matrix, ther
are redundant elements in vec(S). Elimination of these redundan
elements can reduce the dimension of vec(S) to (n21n)/2 31.

Appendix II: p-Transform and Its Properties

Obtain Eq. (15) in Section 3.When SP is diagonal, we can
write

SP
•GT5@sPT

^ g1 ••• sPT
^ gq# (a3)

Furthermore,

G•SP
•G5F g1~sPT

^ g1! g1~sPT
^ g2! . . . g1~sPT

^ gq!

g2~sPT
^ g1! g2~sPT

^ g2! . . . g2~sPT
^ gq!

A A � A

gq~sPT
^ g1! gq~sPT

^ g2! ••• gq~sPT
^ gq!

G
(a4)

According to Property~e! of Hamadard product, Eq.~a4! turns out
to be,

G•SP
•GT5F ~g1^ g1!sP ~g1^ g2!sP

••• ~g1^ gq!sP

~g2^ g1!sP ~g2^ g2!sP
••• ~g2^ gq!sP

A A � A

~gq^ g1!sP ~gq^ g2!sP
••• ~gq^ gq!sP

G
(a5)

Since Hamadard product is inter-changeable~Property ~a!!, the
MARCH 2002, Vol. 124 Õ 11
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matrix at right hand side in Eq.~a5! is symmetric, which is con-
sistent with the symmetry ofG•SP

•GT. Rearranging Eq.~a5! in a
vector format by using vec~•! operator will give

vec~G•SP
•GT!5p~G!•sP (a6)

Then,

vec~SLHS!5vec~G•SP
•GT! (a7)

which becomes Eq.~15! by substituting Eq.~a6! into it.
One should notice thatp-transform can increase the rank of

matrix. For instance, given

Gj5F 1 21 0

0 0 0

0 21 1
G is of rank 2, (a8)

after p transformation, we have

p~Gj !53
1 1 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 1

4
633

is of rank 3. (a9)

This property is helpful in explaining why the variation can
diagnosable althoughGj is singular, as we see in Section 4.1.

Proof of Property 1 in Section 3.Given that G is an m3n
matrix, the firstm rows in p(G) is

p~G!1,m5F g1^ g1

A

g1^ gm

G (a10)

where the subscript~1, m! indicates that it is a submatrix contain
ing row 1 to rowm of the original matrix. Eq.~a10! can be written
as

p~G!1,m5F u u u

g11•g1 g12•g2
••• g1n•gn

u u u
G (a11)

wheregj is the j th column vector ofG. Since the columns inG are
independent, the columns inp(G)1,m should also be independen
Notice that

p~G!5F p~G!1,m

p~G!m11,m(m11)/2
G (a12)

Therefore, we can conclude the columns inp(G) are independent
Proof of Property 2 in Section 3.The proof of Property 2 will

follow the same idea in the above proof of Property 1. Since
columns inGi are independent of those inGj , it is easy to see tha
the columns inp(Gi)1,m should be also independent of those
p(Gj )1,m. Again, partitioningp(Gi) andp(Gj ) as

p~Gi !5F p~Gi !1,m

p~Gi !m11,m(m11)/2
G

12 Õ Vol. 124, MARCH 2002
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and

p~Gj !5F p~Gj !1,m

p~Gj !m11,m(m11)/2
G (a13)

we can conclude that the columns inp(Gi) are independent of
those inp(Gj ).

Nomenclature

Ak 5 dynamic matrix
Bk 5 input matrix of stationk
Ck 5 observation matrix of stationk
DN 5 the diagnosability matrix for the overall system

DOF 5 the degrees of freedom of each rigid workpiece,
DOF53 for a 2-D rigid body, DOF56 for a 3-D
rigid body

I k 5 the number of parts involved in assembly at stationk
N 5 the number of manufacturing stations

Pk 5 input vector, the fixture deviation vector of stationk
Xk 5 state vector, the part deviation vector on stationk
Yk 5 observation vector on stationk

d.o.f. 5 degrees of freedom
k 5 station index
n 5 dimension ofXk , ;k

mk 5 dimension ofPk
qk 5 dimension ofYk

x, y, z 5 coordinate variables
vec~•! 5 vec operator

S 5 the covariance matrix
F 5 state transition matrix
P 5 within-station diagnosability matrix
Gi 5 equal toCkFk,iBi

r(•) 5 the rank of a matrix
p(•) 5 p-transform

m 5 diagnosability index
j,h 5 noise vector
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