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Variation propagation in a multi-station manufacturing process (MMP) is described by
the theory of “Stream of Variation.” Given that the measurements are obtained via certain
sensor distribution scheme, the problem of whether the stream of variation of an MMP is
diagnosable is of great interest to both academia and industry. We present a comprehen-
sive study of the diagnosability of MMPs in this paper. It is based on the state space model
and is parallel to the concept of observability in control theory. Analogous to the observ-
ability matrix and index, the diagnosability matrix and index are first defined and then
derived for MMP systems. The result of diagnosability study is applied to the evaluation
of sensor distribution strategy. It can also be used as the basis to develop an optimal
sensor distribution algorithm. An example of a three-station assembly process with multi-

fixture layouts is presented to illustrate the methodolog®Ol: 10.1115/1.1435645

the water flow in a river. This analogy leads to the term “Stream
of Variation (SOV)” used to describe the propagation of quality
1.1 Problem Statement. A multi-station manufacturing information in an MMP[1].
processMMP) can be defined as a process involving operations |t s very common that manufacturers take measurements of a
on multiple work stations to manufacture a product. Examples pfrge sample of products on a given station, which only requires to
MMPs include: } the automotive body assembly, in which mulinstall sensors on that specific station. The information obtained in
tiple parts are assembled on multiple stationsth2 transfer-line thijs way is equivalent to the data produced withiry-a cross-
machining process, which involves multiple machining operatiorgction of the parallelepiped in Fig. 1. Thus, the data are referred
of a single part on multiple stations; and the progressive die to as “cross-sectional’data in literaturg2]. The question of in-
stamping process, which involves multiple stamping stations {grest is whether the stream of variation of an MMP is diagnos-
form one part. Statistical analysis of variation propagation igple, i.e., if the root causes of quality-related problem can be
MMPs is important to quality and productivity improvement.  identified, given the sensor distribution at selected “cross-
A product inspection-oriented measurement strategy is usuadgctions.” In this paper, we address the diagnosability of MMPs in
employed in industrial practice to ensure product quality. Followterms of sensor distribution and process configuration in a general
ing this strategy, measurements are taken directly from the figetting.

ished and/or intermediate product, and then compare with thell2 Related Work. In a manufacturing system, diagnos-

product design nominals. The measurement selection is solgljit, could be given different focus in different situations. Usu-
based on product features and their specifications. If the measygy, it is classified as fault detectability and distinguishability.
ments show that there are some product features out of their spgsitectability measures the performance of recognizing fault oc-
fications (e.g., there is an excessive deviation from the desigiurrence while distinguishability refers to the capability of identi-
nominal or large variability this measurement strategy alone majying the root cause of an occurred fault. In an MMP, the occur-
not lead to the identification of the root causes of quality defecteence of faults can be detected by using SBtistical Process
The problem of root cause identification is very challenging, e§ontro) control chartg3], which are constructed based on mea-
pecially for MMPs, due to the large amount of needed informatiofHrements of the final product. However, the SPC control charts

and complex variation propagation during the manufacturing pr§&nnot identify the root causes of specific quality defects. In fact,
cess. the diagnosability that we are concerned about corresponds to

P T . : . fault distinguishability, namely the ability to identify root cause.
rﬁsezz()\év:nmbzgérlr;]hzgui?]“tgmfg:;“i:g"} fleo(;lv\';itﬁmzzict;]oncrowtlen SPC charts are used, it is the operators/engineers’ job, to
P 9 P pIp (Elsentify what the root cause is, based on their experience. It is

section_ represgnting a work station. On each station, there are & difficult to identify root cause in an MMP since quality de-
of multiple attributes(denoted asl;, M;, ..., andMp ) that  fects that are detected on the current station could be caused by
are produced continuously as production proceeds. For instanggyiation transmission and accumulation from upstream stations.
curves shown in the final cross-section in Fig. 1 are represen®ne straightforward solution is to apply the SPC techniques to
tions of time series data obtained during production. Generallyery single station in an MMP since the root cause within a
there exists an autocorrelatigim terms of tim¢ among data of single station is easier to identify based on operators’ empirical
the same attribute and a cross-correlation among data of differ&npwledge. The implementation of this solution is neither neces-
attributes. On the other hand, every attribute can be tracked on%@y nor economical since it involves obtaining measurement,
stations. For example, the thick line demonstrated in Fig. 1 rep@nstructlng contrc_JIIer, an_d implementing c_ontrol charts 'at ea_ch
sents the tracking of attributél,. More complicated relationship station. A_ctually this _solutlon oyerlooks the inherent relationship
exists in the autocorrelation of each attribute on different statiorfdn'0nd different stations. In this case, a vast amount of useful

o . . . . information is not fully utilized to reduce the number of sensors,
The quality information flow in the parallelepiped is analogous t ctuators, and control charts.

An innovative approach is to establish analogy between station
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autocorrelation tion of how to utilize the “cross-sectional” information, which is

in terms of stations the essence of diagnosability of an MMP given that sensors are
) - M distributed only on the selected stations.
multiple m
attributes cross-correlation The authors deVe|0ped a state space m@ﬂéjl]] to charac-
z M, pemongmultiple  terize the dimensional stream of variation in an MMP. Based on
o M xff attributes the model, Ding et al[14] presented the methodology for root
time history .o Mo M, . : . .
G cause diagnosis given the end-of-line measurements and the as-
. /dmo"e]aﬁon sumption that a single fixture fault occurs. The conditions of di-
in terms of time agnosability, under the single fault assumption, are also given in
< » . station terms of the distinguishability among fault patterns with the pres-
station 1 station 2 station N index ence of noises.

However, it is often the case that two or more faults occur
simultaneously in a process with multiple stations. The number of
combinations of simultaneous fault patterns will grow exponen-
tially when more stations are considered. The multiple fault pat-

) i . . ) . terns are rarely orthogonal. Nor do they have clear distinction
nism to link together information at different stations. BUhepyeen each other with the presence of noises. More challenges

Shewhart charts are not appropriate for directly monitoring SUGie encountered in evaluating the diagnosability of an MMP when
kind of “time series” data because the quality values of produtisiple simultaneous faults are considered.

features on a downstream station are affected by those on up-
stream stations, and thus the data are likely to be correlated among.3 Proposed Method. This paper aims to fill this gap by
stations. Control theory fits better to analyze these autocorrelafésenting a diagnosability study of MMPs on the basis of a
data(in terms of stationgenerated through the MMP if appropri-stream-of-variation model in a generic setting. The study of diag-
ate stream-of-variation models could be developed to characterikgsability is similar to that of observability in dynamic systems
the quality information in an MMP, as opposed to the traditionalince our state space model is of the same format as that in dy-
models that describe the behavior of a single manufacturing st@mic systems. A diagnosability matrix is constructed in terms of
tion [4-7]. process/product design, and can be used to indicate if the root
Several SOV models were proposed recently sucdtate tran- cause can be uniquely identified based on the cross-sectional data.
sition model [8], AR(1) model[2,9], and state space model As for a partial diagnosable system, the diagnosability index
[10,11. Mantripragada and Whitne}8] adopted the concept of (analogous to observability indpxs defined to quantitatively
output controllability from control theory to evaluate and improveharacterize system capability in fault diagnosis.
the automotive body structure design in order to reduce the di-The paper unfolds as follows. Section 2 presents a brief review
mensional variation. Lawless et dR,9] investigated variation of the state space model with some discussions. Section 3 studies
transmission in both assembly and machining processes by e#te system diagnosability of a generic MMP. Examples are used in
mating parameters in their AR) model with the measured quality Section 4 to compare different sensor distribution schemes. Fi-
information. nally, in Section 5 we discuss the implication of this study and
When the MMP models are used for diagnosis, the diagnosatilimmarize the results.
ity is an important issue to be investigated together with the de-
velopment of the diagnosis algorithm. [[h2], the diagnosability 2 State Space Model

is defined in the following way. _ _ _ _In this paper, we primarily focus on dimensional quality control
If a system can be modeled by a linear input-output relationship giscrete part manufacturing systems such as assembly and ma-
chining processes. The root cause to be isolated is mainly due to
=C.x+¢ 1) fixture malfunction, which is identified as a major dimensional
Yt tT & (1) o L . )

] ] variation contribution during new product laun¢h5]. For in-
Wh.ereyt is the measurement Ve'CtOft, is the state Vectpr to be stance, a Workpiece is positioned by a set of |Oca{@(§’ PZ} in
estimated, and, is the sensor noise, then the system diagnosabjl; plane. The design nominal position of the part is shown in Fig.
ity is satisfied ifC is of full rank. In the situation that the input- 2(a). When one of the fixture locatof$, ,P,} malfunctions, de-
output relationship is nonlinear, linearization is conducted at sogytions could be associated with the corresponding locating
setpoints an_d the higher order u_ncertainties are m_ergeds{vii_b_ point(s). Figure 2b) shows thatsP,(z) is the deviation in
the new noise term. In dynamic systems, the diagnosability jsjirection associated with locaté, whenP, malfunctions. As a
equivalent to the observability of state variables. Consider a timgssyit, the workpiece is also deviated from its nominal position.
invariant linear system. The state vectqris governed by the The fixture variation is defined in terms of the variance of the
following dynamic equation positional deviation at a locating point, say véif,(z)), where

Xcs1=AX+ BU+ & @) Yfar(~) |s _thg varia_nc_e of'a random variable. A fixt_ure is considered
aulty” if its variation is greater than the assigned threshold.
wherev, is the input vector; is the process background noiseSuch a large fixture variation occurs due to the fact that the locator

andA is the dynamic matrix. The observability grammi&fy is  may be worn, loose, bent, or broken. The task of root cause iden-
defined as the solution to a Lyapunov equafid]

ATW,+W,A=-C'C 3)

Thus, this dynamic system is said to be observabiidfis of full M,

rank. : M,
In the two aforementioned approach@sate transition model

and AR1) mode), measurements are assumed to be available 8PA2)

every station in the process. With that assumption, the MMP pl(EL’x ! Pé

always diagnosable. Both authors suggested the case of inc( !

plete observatiori.e., information only available at several lim-LM,

ited stationgas future research topics. Agrawal et[&l}, as men- (a) (b)

tioned previously, said thatit' is often time consuming and

expensive to track items through a processid raised the ques- Fig. 2 An example of fixture fault manifestation

Fig. 1 Information flow in multi-station manufacturing
processes

as

=Ze.
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Y, Matrix C, contains the information about sensor locations on a
N« station. When sensors are installed on one or more stations in a
production line, the index for the observation equatign. 5 is
X, X, actually a subset of1,2, . .. N}, whereas the index for the state

— ! Station 1|—» ...—»{Stationk |+ ...—Station N —— €duation(Eq. 4 is the complete set. Similarly, the rank @
corresponds to the number of measured d.o.f. of a part or a sub-

I I I I I I assembly on statiok.
MatricesA,, B, andC, in general are different for individual
P & stations. Therefore, analogous to a dynamic system, the state

space equations describe a discrete “time-varyin@ttually
station-varying stochastic system. Therefore, the observability
grammianW, in Eg. (3), defined for a time invariant system,
cannot be directly used here. The difference between the diagnos-
gbility of this station-indexed state space model and the observ-

Fig. 3 Diagram of an assembly process with N stations

tification is to isolate the faulty fixture locator with undesire bility of a time varying dynamic system will be discussed in
\{ariation Igvgl. The diagnosability will be defined later in terms Ofjat4il in Section 3.
fixture variation.. ) ) . Remark 2.3Also notice that an MMP has limited number of

In order to deliver the intended dimensional accuracy of a prodeations. An MMP is not only of finite horizon but also the number
uct, dozens of fixtures are intensively used on each statigf siates is small compared to a time series process. Processes
throughc_nut the_ proqluctlon "Ue- How_ever, l_)y adopting th_@uch as an automotive body assembly process with 50 stations are
product-inspection-oriented philosophy in quality assurance, fixyeady very complicated. Many other multi-station processes usu-

tures used in production are not directly measured after bei only constitute 10 stations or so. For such a small “run”
ins.talled. The measurements that are taken on the fjnished prodyction-indexed state space model, any techniques relying on con-
or intermediate products are values of product quality. The propgsrgence properties like the state observer in linear dynamic sys-
gation of fixture variation contributed from each station and it& ' will not work effectively since there is not enough “time” for
impact on product quality are described by the stream-of-variatigfe ghserver to converge to the true value.
moqel. . L In summary, the above remarks suggest that the stream-of-
Dimensional stream-of-variation model has been developed {0k jation model integrates the process/product design and quality
multi-station assembly procesgé®,11] and machining processesinsormation. The model allows to apply the tools and concepts in
[16] by using state space representation. The stream of varlatlorg%tem analysis to solve problems of manufacturing systems. The

an M'\fxpli? illustrated in Fig. 3 for al-station process, where geyelopment of diagnosability analysis will use and expand math-
XceR"™ " is the part accumulated deviatioRi e R~ is the  ematical tools of conventional system analysis.

fixture deviation contributed from statiok Y, e R%*1 s the
measurement obtained on statiorsuperscripts), my, andqy are 3 pjagnosability Analysis

dimensions of the three vectors, respectivély,n, are mutually . ) o
independent noises. As it was stated earlier, there is similarity between concepts of

The stream of variation in this MMP is characterized by thgiagn'osability and observability. However, there are some essen-
following equations tial differences between these two concepts for the state space
model with station index. One difference is that the concept of

Xi=A 1 X_1+BP+&, k=12,...N (4) observability relies on the complete measurements from the initial
time ty to the current timg13], which accordingly requires the
Yi=CXet i, {kpC{1,2,... N} (5) tracking of the same item on all stations in our station-indexed

islate space model. However, the diagnosability to be investigated

where the first equation, known as the state equation, impliesth is based ts obtained f ¢ likelv th
part deviation on statiok is influenced by two sources: the accul1€r€ i based on measurements obtained frontonet likely the

mulated variation up to statido—1 and the variation contribution end-of-ling or severalbut limited number“cross-sections.” An-
on stationk; the second equation is the observation equation. Dg’gher dlf‘fere_nce IS that the _observab_ll_lty concept describes the
tailed expréssions of system matrides B,, andC, can be found state vector itself while the diagnosability concept focuses on the

in [10,11. Regarding this representation, several remarks are Fgriation of state variables and input vectors. This further requires
ticulated here ' that the original state space model for variable deviations should

Remark 2.1 Both X, and P, are random vectors. Since thebe transformed into a state space model for the covariance matrix.
variation-type faults are concerned in the dimensional control afi/S @ssumed that accumulated part deviatiqn ,, fixture devia-
ion P,, and unmodeled higher order ter§ are independent.

dressed in this papek, and P, are assumed to be zero-mea . :
random vectors unless otherwise indicated. hus, the state space model for the covariance matrix based on
Egs.(4) and(5) turns out to be

Remark 2.2System matrice8,, By, andC, are determined by

process/product desighA,, known as dynamic matrix, character- SX=A 3K A +BIMBI+3E, k=1,2,...N (6)
izes deviation change due to part transfer between stétiand
station k+1, namely A, depends on the change of locating s/=CcIiCci+3y, {kc{12,...N} (7

schemes in a production stream. If the fixture locating scheme i%

unchanged in the consecutive stations, e.g., several features'd greX is the covariance matrix of a zero mean random vector
machined by using the same datum in a multi-station machiniﬁ’@f’tat'onk' Thus, in terms of the covariance matrix, the diagnos-
operation, ther, is just an identity matrix (corresponding to a @Pility of a multi-station system can be defined as follows.
simple translation[16]. On the other hand, if a part is positioned Pefinition 1.The stream of variation in an MMP is called diag-
by a new set of fixtures, the part will be reoriented on a ne@osable if all fixture covariance matricdy, k=1,2,... N, are
fixture set. As a resul#\, is no longer an identity matrik. More  uniquely determined given measuremeljson selected stations,
discussion on this topic is presented[i0,11]. e, {k}C{1,2,... N}.

Matrix By is the input matrix which determines how fixture We first introduce the notation of state transition mathix .,
deviation affects part deviation on statiGnbased on the geom- from control theory as

etry of a fixture locating layout. The rank @&, equals to the AA A k=i+1
number of degrees of freedofm.o.f) of the supported workpieces B, = k2T =1 ®)
restrained by the fixture set. ) [ k=j -
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The state space model in E¢4) and(5) can be converted into an yector ¢Fas
input-output model

Y3 C.B; 0 e 0 Py o' =diag(2")=[diag(E})" --- diag(ZH)"]"
Yo Co®, 1B, C,B, 0 P, :[0%(1) U';an(l) U?(N) U',ZnN(N)]T
LT . . . . b 14)
Yy C\®yiBi Cn®ysBs -+ CaBy Py Then, Eq.(13) can be expressed as
C,d,, . veq IS = 7(T)- o© (15)
C.® ' e where ve¢-) is the vector operator listed in Appendix | ang) is
2re0 Ko+ 2 (9) @ transform defined as
: : J 7T(F)q(q;rl) w (16)
Cn®Pro EN
where C,=0 if no sensor is installed at statiok and g My
=3;_1xC @y &+ . Given the independence relationship as-
sumed amon&,_4, Py, &, and,, the product deviatioiX,, the i
fixture deviationP,, and the noise terna, are also independent. 7o,
Further define 4
ClBl O ce O 1/2® b e 17
Co®;,1B, C,B; e 0 ()= : 0
a : : - o 1,97,
CN(I)N,lBl CN(I)N,ZB2 e CNBN
Cl(I)l,O
CZ(DZ,O - ‘Yq® ‘yt -
Fo=| (10)

wherel’ e R”W andq, w are appropriate values corresponding to
Cn®no the dimensions of’,  is thei' row vector ofT", and® repre-
sents the Hadamard product, explained in Appendix | as well. A

we can have, brief derivation leading to Eq15) is included in Appendix II. The

SY=r.3P.T+ rogérg+ e (11) m-transform has the following properties that will be utilized later
(the proofs are given in Appendix)ll
where Property 1 If the columns inl" are independent, then the col-
SP=cou[P! P} ... PL) umns in7(I') are also independent.
roe NG Property 2 Given any two matriceF; andT;, if all columns in
EYECOV([Y; Yz .. YI,]T), I; are independent of those _]?], then all columns inr(I) will
. T be independent of columns im(I}) .
X=covle; & -+ &), Then, we define the matrix
and C,B, 0 .0
2"E)(ECOV(XO)' CZ(I)Z,lBl Csz e 0
DN: W(F) =1 . . .

Then, the diagnosability in Definition 1 is equivalent to
uniquely identifyingZP?. In Eq.(11), 35 is known based on mea-
surements obtained at the end of the upstream process. For in-
stance, in the case of assembly process, the upstream process is
the sheet metal stamping processX{fis not known and should as thediagnosability matrixThe condition of the system diagnos-
be estimated through in-line measurements, more sensors needlity is revealed by the following theorem.
be installed at appropriate locations within each station to reducelheorem 1Given an MMP characterized by Eqel) and (5),
the influence of nois¢17,18. Those proposed techniques can bthe stream of variation is diagnosable if and onlyDFDy is of
applied together with the diagnosability study presented in thigll rank orp(DN)=EE:1mk, wherep(+) is the rank of a matrix
paper to give a comprehensive solution. Given that those teendm, is the number of potential fixture faults at statikin
niques are available, we assume in this study Xfais known or The proof is straightforward and thus omitted. Because the
can be estimated from historical data. With this assumplidH® ~ m-transform conducts multiplication among rows, Etf) can be
is defined as the summation of all measured or estimable quaffigrther written as

CN(I)N,lBl CN(I)N,ZBZ e CNBN

ties
Lhs v _— ] Dy=[y -+ I -+ TIy] (19)
2 :2 _Fozoro_z (12) where
then, Eq.(11) is simplified as 0
SHS=.3P. T 13 —
. o . _ ( . ). M= CiBy (20)
where the right hand side is the summation of fixture variations k .

from all stations, and is our focus in this study.
Since fixture deviations are independent among stat®nss a CyDy B,
diagonal matrix with the variances of fixture deviations as its di-
agonal elements. The diagonal elements are arranged in a varialgés actually the diagnosability matrix of a single statlorit has
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a zero submatrix because the information obtained by sensorsmoatrix defined in a dynamic system. The newly defined within-

stationsk—1, k—2,...,1 will notdirectly contribute to the di- station diagnosability matrix captures the unique properties of
agnosis of faults on statiok. The meaning ofll, can be seen manufacturing system, and thus it is more appropriate for manu-
through the following. If only fixture faul{ P, ) on stationk is facturing applications.

concerned, we can write the input-output relationship as The between-station diagnosability refers to the capability to
distinguish fixture faults occurring across different stations. If a
Yi CiB Ci®yo k fault occurred on statiok, it may have distinct symptom from all
= : P+ : Ko+ i (21) other faults at the same and different stations. Then, the fault can

be uniquely determined by using in-line measurements. However,
Y CnPr, Bk Cn®Po N it may have the same symptom with other faults at the same
In order to make the sizes of vectors and matrices consist&ttions but the distinct symptom from faults at different stations.
when different stations are considered, i.e., to make the vector si@esuch a situation, only a superposition of faults with the same
the same aBY] Y1", we augment the vectors and matri-Symptom can be estimated. If all components included in the su-
ces using a zero submatrix with appropriate dimensions as ~ Perposition come from the same station, we are still able to tell on
which station the faulty fixture locates, although the exact faulty
0 0 0 0 fixture is unclear.
Definition 3. The stream of variation is said to be between-
station diagnosable on statidrif a superposition of fixture faults

Y C,B C,d . . .
k= KOk Pyt | TETRO | X 4| B (22) on stationk can be uniquely determined by measuremeXjfs
i {ilc{1.2,... N} _
Y, Cy®y B, CyDyo . Theorem 3Given an MMP characterized by Eq&) and (5),

the stream of variation is between-station diagnosable on station

Following the analysis procedure in Eq9)—(15), II, will turn if and on]y if the columns inll, are independent of all other
out to be the expression as defined in E2f). It is obvious that columns inDy.
TI, characterizes the diagnosability of individual stations. This Proof. Dy is grouped into two partdl, andII”), whereIl®")
actually leads to a further partition of system diagnosability elabécludes all the rest of the columns By, other than those i,
rated as follows. Accordingly, the variance vectore” is also grouped as
Ding et al.[14] pointed out that the diagnosability of the entirg of o‘”T]". By using the algorithm of singular value decomposi-
system can be partitioned as two typepwithin-station diagnos- tion [19], we can write
ablility and 2 between-station diagnosability. The conditions of

diagnosability given inl14] are for the single fault situation. Here, o . (K ()T
the conditions of diagnosability for multiple faults situation are o= .21 AU (v o)
stated. B
Definition 2.The stream of variation is said to be within-statiorand
diagnosable(for instance, at statiork) if all variances in trE e
—di 2 2 T . . P
—dlag(EE)—[al(k) omk(k)] can be uniquely determined ) gt E OO (O 50 (24)
by measurement&], {i}C{1,2,... N} in the situation that fix- =

ture faults only occurred at that station. T ) o ) .
Theorem 2Given an MMP characterized by Eqd) and (5), Wherev;” oy is a linear combination of. Since the columns in
the stream of variation is within-station diagnosable at statign II, are independent of those H", A¥u{?'s are also indepen-
and only if I[TL, is of full rank or p(IL)=m,. dent ofA{"'u{"s, implying that the coefficient matrix comprising
Remark 3.111, is also called within-station diagnosability ma-\®u® and\(Pu(" is of full rank. Thereforey¥ 7oy, the linear
trix. It is obvious that a station is not diagnosable if there is ncombination of fixture faults at statidg i.e., the fault superposi-

sensor installed on or after this station. tion on statiork, is uniquely determined from the left hand vector
Remark 3.2 The observability matrix[13] for a discrete time in Eq. (24). Q.E.D.
varying dynamic system ofkg,k;] is If the stream of variation of an MMP is between-station diag-
C. @ nosable and also within-station diagnosable on each station, the
ko ko.ko entire system is then diagnosable. This partition provides a two-
Cr 1P 41k step diagnosis procedure in the MMP: first localize the fixture
Oy .= 0 0r o (23) faults at a candidate station and second isolate the fixture fault
0 right on that candidate station. This two-step procedure was pro-
Co @ posed in20] for a knowledge-based expert system. Our analytical
Ki=1 Tk~ Lko approach is consistent with the heuristic reasoning procedure and

Comparing the observability matri©y_, with diagnosability Provides more rigorous mathematics foundation.

matrix IT,, we see several differenced) IT, has matrixB, atits . "When a system is not fully diagnosable, it can either be not
each row element because diagnosability defined in this pa gnosable at all or partially diagnosable. Differentiation among

concerns input vectd?, rather than state vectdf,. (2) Indices in ese partially dlqgnqsable system IS also of our interest. Analo-
row elements inll, may not be continuous because sensors & us to observability indekL3] used in control theory, we define

normally installed at selected stations in an MMP and each ind k’agnosability index to quantitatively describe the percentage of

corresponds to a physically different sensor or sensor set. On Hﬁ%enfya}lt_faulis \t/t‘/f"t‘;.cant bt(_e |dedr}t|f|ed. bility ind denoted
other hand, indices i®©,_,. are continuous fronk, to k; since ehinition 4. Within-station diagnosabiiity index, denoted as

. IO f d " ies data in d A $§, is defined as the ratio of the number of independent columns
sensors can continuously produce time-series data in dynamic SYSty, over the number of potential fixture faults, that is,
tem and all the indices actually correspond to the same sensor set.

(3) The matrixII, is computed after applying the-transform on p(IIy)

the input-output matrix because diagnosability refers tovtréa- M= (25)

tion of fixture deviationrather than the fixture deviation itself. k

Based on the above comparison, it is concluded that within-stationindex w, indicates how many fixture faults and/or their super-
diagnosability matrix in an MMP is equivalent to the observabilitposition on a station can be determined. It is a normalized quantity
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in [0,1]. u,=0 means that the fixture fault on this station is In such case(after removing the zero submatyikl, becomes
completely undistinguishable, while,=1 indicates a complete

diagnosable station. Thus, Theorem 2 can be rephrased as that the = 7(C3®3,B,) (27)
stream of variation is within-station diagnosable on stakoif ’

and only if s =1. Any w, between 0 and 1 is for a partially pyen if p(C,) =1, -DOF, i.e., a sufficient number of sensors can
diagnosable station. _In fact, thg numeratomfls corresponding sccess all d.of. of workpieces in the produl, could still be
to the observability index defined in control theory, where thgyni_deficient ifds, is not of full rank. The only exception is for
observability index is not normalized. The difference betwHBgn ¢ |55t statiork=3, wherell;= 7(C;Bs)sinced; .= 1. The suf-
and observability matrix has already been addresseeimark ficient number of sensors makes all d.o.f. of components at Sta-
3.2.1n spite of the differences, these two indices have a comm@gy, || measurable, which rendergI1;) =m;. This suggests that
objective, which is to quantify the independent sensing informgse fixtyre fault is diagnosable at the last station. In general, the
tion for a given system configuration. The independent sensigg,qnosability of an MMP depends strongly on the transition ma-
information refers to a sensor measurement which is distinct from, ®,, , which is in turn determined by the dynamic matf.
and also not the superposition of other sensor measurements. pq poiht,ed out inRemark 2.2 A, is primarily decided by the
Definition 5.The process diagnosability index of an MMP, deqnsistency in fixture layouts among stations. Difference of fixture
noted asu, is defined as locating layouts between stations results in reorientation so that
(Dy) some “memory” about part position and orientation on the previ-
_ PEN (26) ous station may be lost, causirg rank deficient. Thus, the sys-
EE: M tem diagnosability is not guaranteed by employing the end-of-line

nsing strategy.

Index u quantitatively describes the percentage of independe% . . .
equations with respect to the total number of potential fixturgz-;ggrgaove ?rrg?;ﬂggt;tagtt;?igr?rmegsbgggsvg'\i/r?nF%)(aznpl'eér‘g'th
1-8 - A )

faults in the entire MMP. Same gs$,, u is also a normalized (Cy)=4X3=12
quantity in[0, 1], with u=1 meaning that the process is comP 3 ’
pletely diagnosable. It should be noted that the conditienlis Step 1. Set up the state space model for this three-station pro-
stronger than the conditide,=1k=1,2, ... N} because fixture cess.

faults could be undistinguishable among different stations, i.e., theThe state space representation of this process is shown as fol-

between-station diagnosability not ensured. lows
4 Example X1=BiP1+ &
A three-station assembly proce®$=3) is used to illustrate the
proposed methodology. There are four parts marked as 1, 2, 3, and and Xg=Ag 1 X 1+BPt+ &, k=23 (28)
4. Three stations are involved to finish assembly and measure-
ments:(1) parts 1 and 2 are assembled at StatidRig. 4(a)), (2) Y 3=C3X3+ 7, (29)

subassembly “#2” is welded with parts 3 and 4 at Station Il

(Fig. 4b)), and(3) the assembly are measured at Statior(f.  \yhere the initial stat&, that is part deviation from the stamping
4(c)). If 1, is used to denote the number of parts involved in thﬁrocess is assumed negligible. Numerical expressions Bf and

assembly on statiok, thenl, =2, 1,=15=4 for this example. ¢ of the assembly process in Fig. 4 are given as follows.
In this example, we only consider 2-D in-plane motion of rigid

parts, i.e., DOF3. Each part is restrained by a set of fixturer -

l -
constituting a four-way pin/hole locating pair controlling motior 0 0 0 0 0 : 0
in both x and z directions and a two-way pin/slot locating pair 0 0 0 0 0 0 1 0
controlling motion only inz direction. A subassembly with several |
parts also needs a four-way pin and a two-way pin to complete 0 00007 1 0 -00007 -0.3497 : 056
control its d.o.f. For example, subassembly+2” is positioned A, =|-1 0 01 0 0 :
by the fixture paif{P,,P,} on part 1 and part 2, respectively, as _ _ i
shown in Fig. 4b). A pinhole/slot is called “active” pinhole/slot if 0 03457 0 0 0.3497 325.17 1
it is used on the current station to position an assembly, repi _()___()990_7__9_Q_:Q.QQO]__Q.QS_O_S_L___
sented by a black circle/slot in Fig. 4; otherwise it is “inactive,” 0% 1 [6%6
represented by an empty circle/slot. - - 12z
4.1 Sensor Distribution Scheme 1: End-of-Line Sensindend- (o 0 0! 10 0 0 |
of-line sensing describes the scenario where all sensors are : 26 |
stalled only at the end of production line. It is cost effective an 0 0 01 0°°,0 0 0
widely implemented in industry for the purpose of product inspe« 0 0.0005 1 : : 0 -0.0005 -0.2392
ton. | eeeccccce=- e, ———————
-1 0 O :O 0 0
0 -05550 Of !0 -04450 —222.49
]
i : ommn [ ey A, =| O 00005 01 o io ~0.0005 -0.2392
S -1 -02153 o (0 02153 107.655
Soblh o &l ! [
6 = 0 -0.2392 0: :O -0.7608 -380.38
P, loctingpins _0__00005_0p___10_-00005 —-02392
Pt -1 0 0 11 -00005 0
s 0 -02392 0 0> i 0 02392 -380.38
@ mertocer L0 00005 O (0 -0.0005 07608 |
Fig. 4 Three-station assembly with end-of-line sensing (30)
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1 0 0 0 0 0
0 1 0 0 0 0
0 -00014 00014 0 0 0
B, =0 0 0 1 0 0
0 0 0 0 1 0
o_.0___.0 __9_-0002 0002
L 06X6 J12x6
(1 0 o | ] 1 0 0 ]
0 1 0 | 0 1 0
0 -0.0007 0.0007 o6 0 -0.0005 0.0005
. 0
1 0 0 | 1 0 0
0 03497 0.6503i 0 05550  0.4450
0 —0.0007 0.0007! 0 -0.0005 0.0005
B, =|-———2==—--=_-—_ o B, = 31
2 :1 0 00 0 0 *711 02153 -0.2153 (1
:0 | 0 0 0 0 0 0.02392 0.7608
05 :0 -0.002 0.002 0 0 0 0 —0.0005 0.0005
:() 0 0 0 0 0 1 0 0
100 0 0o 1 0 0 02392 0.7608
i 1000 0 -0002 0.002],, [0 -00005 00005 |,
1 0 -550] ! ! ]
|
0 1 -100 | 04x3 : 04x3 : 04x3
1 0 =550, ! !
0_1_850 ______ e b
11 0 3501 !
| |
043 : 01 _80| 043 | 0+3
i1 0 750! |
| | |
I 101 600, _______ Lo
C, = B 17707 -200] (32)
| |
04x3 : 04x3 :O 1 _60| 4x3
i L1 0 200
|
_______ | oo lD0_1 620 _____
1 ! C170 200
| | |
. | . . 101 -60
043 I 043 : 043 |
! | :1 0 -200
|
L ! ! IO 1 620_|6x|2

Step 2. Diagnosability Study. Within-station diagnosability matrikl, equal tow(I'y), whereI'y=C3;®3,By for k=1,2,3. Thel'\’s
are shown as follows,
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0 0  0.0699

0O 0 03846

0 0 -0.5944
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0 o0 0

) 0

0 o0 0

0 o0 0

) 0

0 o0 0

0 o0 0

0 0 0 o 16X6

0O 0 o0 0.2632
o 0 o0 0.0478
0O 0 o0 0.2632
0O 0 0 -04067
O 0 0 -01675
0 0 0 -04067
0O 0 o0 0.3589
0 0 0 -07321
04 0 0 0.3110
-012 0 0 -07321
04 0 0 0.1196
124 0 0 —1.0574
0 1 -04 03043
0 0 112 -0.8521
0 1 04 -03043
0 0-024 0.1826)]

—0.2632]

~0.0478

~0.2632

0.4067

0.1675

0.4067

—0.3589

0.7321

~0.3110

0.7321

~0.1196

1.0574

0.0957

0.7321

~0.0957

1.0574] .

16X 9

(33)
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Table 1 Diagnosability indices is of full rank. Moreover, the row blocks ihl; with index less
thank are all zero blocksrefer to Eq.(20)), implying thatDy is in

Parameters Station | Station Il Station 1l Overallyn echelon format antl; has different number of zero rows Hg
p(-) 4 9 3 16 has, for anyj #k. According to this echelon structure, it is obvi-
my 6 9 3 18  ous that the columns i, are independent dil; for any j #k.

% 0.667 1 1 0.889

That means fixture fault is not only with-station diagnosable at
each station but also between-station diagnosable, so it is equiva-
lent to the condition thaDy is of full rank andu=1. This is
consistent with our intuition that the complete diagnosability of

It is noticed thatl'; andI', are of rank 3 and rank 6, respec-gﬂvl\élgivhgr%r.] be achieved by installing sensors almost

tively, andT's is of rank 3(full rank). The reason thaf, andT’, Inthis example, there are total 20 sensors installed at all three
are less than full rank is that state transition matrigs.)’'s are stations, with two sensors on each part, as shown in Fig. 5. The
singular for all transitions due to the inconsistency in fixture |Ostate equations are the same as those in(E8). However, the

cating layouts among different statiod% is of full rank since the opservation equation consists of three equations for sensors in-
sensor is directly installed on Station Ill, and there is no pagkalied at all three stations as

transition involved. Althought’; andT’, are less than full rank, the
corresponding within-station diagnosability matridds and I1,
could be of full rank since ther-transform defined in Appendix Il
can potentially increase the rank of a matrix by generating more
rows and keeping the same number of columns. Actuallyl,)

=4 andp(Il,) =9 soll,= = (I',) is of full rank. Il; is certainly

of full rank sincel’; has full rank. Because of the high dimensions
of Is (II; e R¥%%6 TI,e R3O TI,e R¥%3) their expres-
sions are not listed.

One also notices thdf; can be divided into two blocks with
dimension &6, and the second block &, is a zero matrix. The
zero block is corresponding to parts 3 and 4, which have not been
assembled at StationT, andI'; do not contain such kind of zero
block since all four workpieces appear on both Stations Il and Il 1
With the zero-block inl'y, it is easy to verify that all columns in
I'; are independent of those Iy andI';. Moreover, with numeri- 0
cal computation, the columns Iy, are found to be independent to 1 0 =550 :

0

Y =C X+, k=1,2,3, (34)

whereCs is the same as that in E(B2), andC, andC, are given
as follows.

the columns inl';. According toProperty 2of w-transform, the
columns inIl,, II,, or Il; should be independent to those in the C, =|"==-- 8_59_:_ _______ - 086
other two matrices. Therefore, the fixture fault in this assemb | 1
process is between-station diagnosable. The values of raHk,of ! 0
my (i.e., # of fault, and diagnosability index are listed in Table 1 0+ |

It is concluded that fixture fault is partially diagnosable at Statio i1
| but is diagnosable at Stations Il and Ill. Thus, with the end-o : 0
line sensing strategy, the entire system is not fully diagnosab - ' - 812
The overall system has 88.9% diagnosability, whese= ;=1

and u,=0.667(66.7% diagnosability

1 0 -550 : : :
4.2 Sensor Distribution Scheme 2: “Saturated Sensing.” 0 1 -100 | s o i
When a sufficient number of sensors are installed at every stati 1 0 —550 : 0 I 0 ] 0
to measure all degrees of freedom of each part, p€G,) =1 1 : :
-DOF, this distribution scheme is known as “saturated sensing Q_l___8§Q_: ------- PR Jl- -------
Thek™ row block inTI, is C,By, which is the transformation from 10 _750| I
the fixture deviation to the deviation at the sensor location 0% o 1 -80] 0% I 0%
stationk. Since all d.o.f. of each workpiece are restrained and al: 10 350 : :
measuredC, By is of full rank in this case. Thus, the correspond 'o 1 600! |
ing columns inIly after then-transform are independent due tcC, =| ====---- q' ——————— Jl_l__ﬁ-_zf)(_)jl' -------
Property 1of -transform. As a resulip(IL) = my, namelyIT} IT, | ! !
04x3 | 04)(3 : 0 1 - 60 | 04:(3
| 1 B d
: ! 10 20I
_______ |1 0 L6200 __
1 ! F170 200
04 i 04 i 0+ i 0 1 -60
! ! ! 1 0 200
L ! 1 101 620, .
P; —locating points (35)

M; — measurement points

@ - active 4-way pinhole
@ - active 2-way slot
O - inactive 4-way pinhole . . ) ) .
it The above generic conclusion concerning the diagnosability of
“saturated sensing” scheme can be confirmed by numerical cal-
culation. However, this scenario is too costly in reality and not
Fig. 5 Three-station assembly with “saturated sensing” necessary.
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(b) Station 11 By, Table 2 Comparison among four sensing schemes

(a) Station I 2 M
Ps 3 P, s
; M, e @ - of - -
2 of sensing station # of sensor u
1 P, 1
P B P. ! P, | P P, - -
. P ° ° o o e|e i - Scheme 1: end-of-line sensing 1 8 88.9%
| Ms  Scheme 2: saturated sensing 3 20 100%
Scheme 3 3 8 100%
. o Scheme 4 3 5 100%
(c) Station III 2 Py =locatngpoints
Mi — measurement pOlI‘IlS
M, 1 03 O @ - active 4-way pinhole
@ - active 2-way slot
P P Mg O - inactive 4-way pinhole
o o Olog ‘ O - inactive 2-way slot
@@ - sensor location

4.4 Sensor Distribution Scheme 4. Distribution Scheme 4
is obtained in a similar way as Scheme 3, however, with the
station-wise optimization done backward from Station Il to Sta-
tion I. On each single station, the procedure is the same as that in
Scheme 3. From the diagnosability study, it is known that sensors
installed on the downstream station will contribute to diagnosis of

4.3 Sensor Distribution Scheme 3. We know that the sen- fixture fault at the previous stations, whereas sensors on upstream
sor installation in Scheme 2 can achigug=1 for all three sta- stations do not help in diagnosing the downstream process. As a
tions. Using the sensor installation in Scheme 2 as the startifgsult, sensors distributed by using Scheme 4 should be no more
point, Scheme 3 can be obtained by trying out different combinghan the number of sensors determined in Scheme 3.
tions to minimize the number of sensors while maintaj=1 at Scheme 4 ends up with five sensfké; _s} implemented in the
each station. Since the number of sensors is limited at each gieacess to achieve 100% within-station diagnosability, i&.,
tion, the minimum solution usually can be quickly found for a=1, k=1,2,3. The five sensors are distributed at three stations
single station. In this procedure, minimization is only done for @ith two at Station Ill, two at Station I, and one at Station I,
single station without considering sensors installed on other sghown in Fig. 7. When the overall system diagnosability is veri-
tions. Therefore, it is a local optimization scheme. fied, u is also 100% for this particular example.

As for Scheme 3, the station-wise optimization is carried out The observation matriceg”, 7, andCy in Y, =CiXy+ 7,
forward from Station | to Station Ill. The results are shown in Figk=1, 2, 3 are different from those in Sections 4.2 and 4.3, and are
6, with total 8 sensors installed at three stations. At Station |, tWQ)sg listed here.

sensors 1, ;) are placed on part 1 and part 2, respectively. At
Station Il, four sensorsM;_¢) are placed on different parts with
cy_[

Fig. 6 Sensor distribution scheme 3

one sensor on each individual part. Two more senskirgg are
placed on part 1 and part 4 at Station lll, respectively. Though
{m=1,k=1,2,3 is not in general equivalent to=1, u is in

10 —550:0“9
T10 1 1004 -

fact 1 for this specific sensor distribution, after achievipg=1 r b1 0 =750 s b, 3‘
for three stations. 0™ 01 —80 | 0~ 0™
The observation matrices are different from those in Section 4.2 C) =| - i I R—
since the different number of sensors are implemented. Matrices 023 ! 023 ! 10 -200 023
Ci, Cj, andCj in Y= C/ X+, k=1,2,3 are given as i ! '0 1 620 ) P
1 0 -550 : 2.3 : 10 _550: 2x3 : 02x3 : 02x3
cootzml U . J VIR T} A i
e 23 0 750 | 37 ] ] 11 0 -200
0 : | 02x3 | 02x3| 02x3 1
01 600 | ax12 L ! ! ! 0 1 620 1 ax12
- ! T
1 0 550 : 02x3 i 02x3 i 02x3 (37)
_(’_J__—_IQQJI ________ R ittt 4.5 Comparison. Four schemes are compared in Table 2.
0> |1 0 -750 : 0> : 0> Among these four given sensing schemes, Scheme 4 yields the
C 40_1_-80_! | least number of sensors while makipg=1.
A e it Attt t---=-=---
023 : 023 i1 0 —200 023
________ 1016200 __
1
023 : 023 : 02 10 200
. i 10 1 620,
L - (a) Station I 2 (b) Station II ﬁiz S M,
1 0 —550: 243 : 03 : 023 e & g —_— 12 1 ° Ao
C, = Q_J____IQQg___q___q. ________ hd - i - o - 4 -
37 ] ] I -
02x3 : 02x3: 02x3 : 10 200 (36) i
01 00 Ju s z Lo P
[ T | 03 O : -acgveg-wayp]inhole
- active 2-way slot
O - inactive 4-way pinhole
gl o [e] Olo g P& M, ﬁ-inac:ive;-\yails)l::‘l
By using this sensor distribution scheme, the number of sens: - sensor ocation
implemented is 12 less than that in the “saturated sensing”
scheme, rendering a 60% decrease. Fig. 7 Sensor distribution scheme 4
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However, the limitations behind the station-wise optimization
are:(1) The global optimality is not guaranteed since there may be . ) .
further reduction in the number of sensing stations and sensors. UsV=| : N L@
(2) The two station-wise optimization algorithms, although yield
systems withu=1, cannot in general guarantee a fully diagnos- _
able system due to the fact tHat=1} is a stronger condition than Uiwgr -0 Ugplin
{me=1 for k=1,2,... N}. In light of this need, more system- - : - :

X . ' h : : . : (a1)
atic study is desired to develop an optimal sensing strategy. The
development of diagnosability analysis in this paper can be used LUniWm1 ~++ UmUmn
as the mathematical basis for such research.

Upjg -+ Ugp Uiz "+ Uip

LUnz -+ Umnp Umi " Umn

Some elementary properties that follow directly from the defini-
tion are listed as follows without proof, where matri¢¢sV, and
W are of the same size,

. Item (@ UeV=VgU, item (b) (U®V)eW=U®(VW),
5 Conclusion item (¢) (U+V)eW=UsW+VaW, item (d) (UsV)T=UT

It is often costly and difficult to identify the root causes of theg VT, item (e) w'(u®v)=(w®v) Tu=(weu)'v whereu, v, and
stream of variation in complex MMPs. A comprehensive diagnogy aremx 1 vectors.
ability study based on the stream-of-variation theory is presentedvec operator is used to transform a matrix to a vector that has
in this paper to address this issue. the elements of the matrix as its elements. If a matfX" hasu;

The approach takes advantage of the state space system mgdesith column vector, the vet)) is themnx 1 vector given by
that was developed in the authors’ previous publications. In par-

allel to the concept of observability in control theory, diagnosabil-
ity matrix and index are defined accordingly for MMPs. The di-

agnosability of the entire systems can be broken down at two Uy
levels—uwithin-station diagnosability and between-station diag- U,
nosability. It turns out that the observability in control theory is veqU)=| _ (a2)
corresponding to within-station diagnosability in manufacturing :
systems. This methodology can be used to evaluate different sen- u,

sor distribution strategies. Through studies of the sensor distribu-
tion schemes of end-of-line sensing and “saturated sensing,” it j . (¥ is nx i trix. th
known that diagnosability is guaranteed but at a very high co fCce covariance matrix 1S nx n square symmetric matrix, there
with a sufficient number of sensors installed at every statioft'® redundant elements in v&)( Elimination of these redundant

) ; 5
while the end-of-line sensing, although economical, by no meafi€Mments can reduce the dimension of ®c(o (n+n)/2 X 1.

guarantees system diagnosability. Other sensor distribution

schemes that are discussed in this paper can reduce the number of

sensors but cannot provide a_global _optim_ality and_ma_y Somﬁ'ppendix ll: a-Transform and Its Properties

times result inu<1 by conducting station-wise optimization. In

addition to this diagnosability study, more systematic study is Obtain Eq. (15) in Section 3When X" is diagonal, we can
needed to determine the optimal sensor distribution strategy in \&ite

MMP.
The presented methodology is fairly general for any MMP that P.T_r P pr
can be modeled in a state space representation. The physical in- XI=[o"on o 0% (a3)
terpretation of the stream of variation relies on specific manufac-
turing systems. Unique properties of those processes shouldf&thermore,
taken into account so that the diagnosability study of the stream of
variation can be carried over in different types of processes within o ® o o Ple
the proposed framework. el _ n nle § ”) nle § %)
3P e Yo" ®n) w(ePey) .. v ®y)
PT PT T
o ® o Ry, - o ®
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Appendix |: Hadamard Product and Vec Operator ' ' ’ '
PP , P (Y®n o (%@1)0" - (y®@v)
The notations of Hadamard product and vec operator are de-
tailed in[21]. Hadamard product, denoted by the symiglsim-
ply performs the elementwise multiplication of two matrices. (@5)
Given matricesU and V are eachmxn, then their Hadamard
product is Since Hamadard product is inter-changeati®eoperty (a)), the
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matrix at right hand side in Eqa5) is symmetric, which is con-
sistent with the symmetry df- 3P T'T. Rearranging Eqa5) in a
vector format by using vee) operator will give

vedT-3P-TT==(T)- o (ab)

Then,

veqIHS)=veqT-3P.TT)
which becomes Eq.15) by substituting Eq(a6) into it.

(@)

One should notice that-transform can increase the rank of a

matrix. For instance, given
1 -1 0
=0 0 0| isofrank2, é8)
0 -1 1
after 7 transformation, we have
(1 1 0]
0 0 O
0 1 0 < of rank
m(l))= 0 0 0o is of rank 3. €9)
0 0 O
L O 1 1- 6X3

This property is helpful in explaining why the variation can be

diagnosable although; is singular, as we see in Section 4.1.
Proof of Property 1 in Section 3Given thatI' is an mXn
matrix, the firstm rows in #(I") is

e Y
()1 m=
Y19 Ym

where the subscrigtl, m) indicates that it is a submatrix contain-
ing row 1 to rowm of the original matrix. Eq(al0) can be written
as

(a10)

| \ |
7(I)ym=]| Y11° Y v ¥ Yt ¥
| | |

wherey is thej™ column vector of". Since the columns iF are
independent, the columns (I"), , should also be independent.
Notice that

(all)

(D) 1m
(L) mt 1m(m+ 1)12

Therefore, we can conclude the columnsgri’) are independent.
Proof of Property 2 in Section 3he proof of Property 2 will

m(l)= (a12)

follow the same idea in the above proof of Property 1. Since th@_z]

columns inI’; are independent of those I}, it is easy to see that

and
( Fj ) 1m

m(I})=
! I 1mme1)r2

(al3)

.

we can conclude that the columns 4(I';) are independent of
those inm(T)).

Nomenclature

Ay = dynamic matrix
B, = input matrix of statiork
Cy = observation matrix of statiok
Dy = the diagnosability matrix for the overall system
DOF = the degrees of freedom of each rigid workpiece,
DOF=3 for a 2-D rigid body, DOF6 for a 3-D
rigid body
I, = the number of parts involved in assembly at stakon
N = the number of manufacturing stations
P, = input vector, the fixture deviation vector of statikn
X, = state vector, the part deviation vector on station
Y, = observation vector on statidn
d.o.f. = degrees of freedom
k = station index
n = dimension ofX,, Vk
m, = dimension ofP,
gy = dimension ofY
X, ¥, Z = coordinate variables
veq-) = vec operator
3, = the covariance matrix
® = state transition matrix
II = within-station diagnosability matrix
I't = equal toC,®y ;B;
p(-) = the rank of a matrix
7(-) = wr-transform
p = diagnosability index
& m = noise vector
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