
Optimal Engineering System Design Guided
by Data-Mining Methods

Pansoo KIM

School of Business Administration
Kyungpook National University
Daegu, South Korea, 702-701

(pskim@knu.ac.kr)

Yu DING

Department of Industrial Engineering
Texas A&M University, 3131 TAMU
College Station, TX 77843-3131

(yuding@iemail.tamu.edu)

An optimal engineering design problem is challenging because nonlinear objective functions usually need
to be evaluated in a high-dimensional design space. This article presents a data-mining–aided optimal
design method, that is able to find a competitive design solution with a relatively low computational cost.
The method consists of four components: (1) a uniform-coverage selection method, that chooses design
representatives from among a large number of original design alternatives for a nonrectangular design
space; (2) feature functions, of which evaluation is computationally economical as the surrogate for the
design objective function; (3) a clustering method, that generates a design library based on the evaluation
of feature functions instead of an objective function; and (4) a classification method to create the design
selection rules, eventually leading us to a competitive design. Those components are implemented to
facilitate the optimal fixture layout design in a multistation panel assembly process. The benefit of the
data-mining–aided optimal design is clearly demonstrated by comparison with both local optimization
methods (e.g., simplex search) and random search-based optimizations (e.g., simulated annealing).

KEY WORDS: Classification and regression tree; Fixture layout optimization; K-means clustering;
Kriging model; Multistation assembly processes; Uniform design.

1. INTRODUCTION

An optimal design problem is to select the best of alterna-
tive design variables from a candidate design space subject to
certain constraints. Generally, an optimal design problem needs
to evaluate nonlinear objective functions in a high-dimensional
design space. Nonlinear programming methods, such as se-
quential quadratic programming (Hillier and Lieberman 2001)
and simplex search (Nelder and Mead 1965), have been used to
find the optimal solution, and they usually converge to a solu-
tion in a relatively short time. But the quality of the final solu-
tion depends highly on the selection of an initial design. These
methods are known as “local” optimization methods, because
the solutions are easily entrapped in a local optimum. To escape
local optima, one would prefer to use a random search-based
method, such as the genetic algorithm (GA) (Gen and Cheng
2000) or the simulated annealing algorithm (SA) (Bertsimas
and Tsitsiklis 1993). Empirical evidence shows that GA and
SA are indeed quite effective in escaping local optima but at
the expense of considerably slower convergence, and thus are
impractical when the computation cost of evaluating an objec-
tive function is high (Schwabacher, Ellman, and Hirsh 2001).

As an example of optimal engineering design, we consider
the assembly process of the side frame of a sport utility vehi-
cle (SUV) in Figure 1. The final product, the inner-panel com-
plete, comprises four components (A-pillar, B-pillar, rail roof
side panel, and rear quarter panel) assembled on three stations
(stations I, II, and III). Then the final assembly is inspected
at station IV [M1–M10 in Fig. 1(d) are key dimensional fea-
tures]. The dimensional quality measured at those key features
is determined mainly by the variation input from fixture loca-
tors P1–P8. The design objective is to find the optimal fixture
layout of a multistation assembly process so that the product-
dimensional variability (measured at M1–M10) is insensitive to
the fixture variation input.

There are eight fixture locators (P1–P8) in the aforemen-
tioned assembly process. Each part or subassembly is posi-
tioned by a pair of locators. For the sake of simplicity, we are
concerned only with a two-dimensional (2-D) assembly in the
X–Z plane. As illustrated in Figure 1(e), two different types of
locator are used in the locating pair on each panel in the fix-
turing mechanism under consideration. The pin-hole locator,
usually called a four-way locator, will restrain two degrees of
freedom (df) of the part motion, and the pin-slot locator, usu-
ally called a two-way locator, will restrain the remaining 1 df of
the 2-D part. Thus this pair of locators can provide a complete
constraint on 3 dfs that any 2-D part has.

In a 2-D assembly process, the position of a locator is de-
termined by its X and Z coordinates. Thus the design space
has 16 parameters for 8 locators and is continuous, meaning
that there are infinite numbers of design alternatives. We can
generate a finite candidate design space via discretization, say,
using a resolution of 10 mm (the size of a locator’s diameter)
on each panel. This resolution level will result in the number
of candidate locations on each panel as n1 = 308, n2 = 905,
n3 = 396, and n4 = 6,204, where nj denotes the number of can-
didate locations on panel j. Because of the differences of the
two locators used on each panel, the layout of P1 = (X1,Z1)

and P2 = (X2,Z2) may generate different responses on product-
dimensional variability than the layout of P1 = (X2,Z2) and
P2 = (X1,Z1) does. Thus the total number of design alterna-
tives is 2C308

2 × 2C905
2 × 2C396

2 × 2C6,204
2 ≈ 4.65 × 1023, where

Cb
a is the combinational operator—namely, it is the number of

ways in which a objects can be selected from a set of size b.
Apparently, the number of design alternatives is overwhelm-
ingly large, and numerous local optima are embedded in the

© 2005 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3
DOI 10.1198/004017005000000157

336

DATA–MINING–AIDED OPTIMAL DESIGN 337

Figure 1. Assembly Process of an SUV Side Frame.

16-dimension design space. Any local optimization method will
hardly be effective, and a GA/SA random search could be inef-
ficient.

Recently, noteworthy efforts have been made in using data-
mining methods to aid the process of an optimal engineer-
ing design (Schwabacher et al. 2001; Igusa, Liu, Schafer, and
Naiman 2003). The basic idea is to use a data-mining method—
various classification methods are the major ones used in such
applications—to extract good initial designs from a large vol-
ume of design alternatives. In other words, if the design alter-
natives are treated as a dataset, then a data-mining method may
be able to discover valuable structures within the dataset and
generalize design selection rules leading us to a much smaller
good design subset, which is more likely to yield a better design
solution even if a local optimization method is applied.

The idea is illustrated in Figure 2. A data-mining method
generalizes the design selection rules based on the training data
in a design library, which in turn is created either from a col-
lection of historical design results or from random sampling
among design alternatives. The resulting selection rules are of-
ten expressed as a classification tree or, equivalently, a set of

“if–then” rules. Then the large number of design alternatives
will pass through the selection rules, and certain local optimiza-
tion methods will be applied to the selected good designs to
find the final optimal design. Schwabacher et al. (2001), for in-
stance, applied this idea in the prototype selection of structures
of a racing yacht and a supersonic aircraft, where their design li-

Figure 2. Design Optimization Using Data-Mining Methods.

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

338 PANSOO KIM AND YU DING

brary is created from historical designs and a C4.5 decision tree
(Quinlan 1993) is used to generate the design selection rules.

Although the general idea as described in Figure 2 could
aid in discovering valuable design selection guidelines, there
is a major obstacle to applying this idea to engineering design
problems, especially those with a computationally expensive
objective function. The obstacle is that for a new design without
sufficient historical data, generation of design selection rules
needs to evaluate the objective functions of all designs in a de-
sign library. For the design library to be representative of a large
volume of design alternatives, one will have to include a suffi-
cient number of designs in the library—potentially too many to
be computationally affordable for generating the design selec-
tion rules.

In the design of a civil structure, Igusa et al. (2003) proposed
a more sophisticated idea that circumvents frequent evaluation
of an objective function. They recommend using a much sim-
pler feature function together with a clustering method to re-
duce the number of designs whose objective function needs to
be evaluated for the generation of a classification tree.

Following the general idea proposed by Igusa et al. (2003),
we develop a data-mining–aided optimization method for the
aforementioned multistation fixture layout design. The method
includes the following components: (1) a uniform-coverage se-
lection method that chooses design representatives from among
a large amount of original design alternatives for a nonrectan-
gular design space; (2) feature functions; of which evaluation is
computationally economical as the surrogate for the design ob-
jective function; (3) a clustering method that generates a design
library based on the evaluation of feature functions instead of
an objective function; and (4) a classification method to create
the design selection rules, eventually leading us to a competitive
design. We demonstrate the design effectiveness and efficiency
of the proposed method by comparison with the simulated an-
nealing algorithm and a local optimization method.

Among the aforementioned four components, identifying
good feature functions as a surrogate for the true objective func-
tion plays a critical role. Existence of such a set of feature
functions is actually the reason why we can eventually reduce
computation. However, identification of feature functions is still
ad hoc and a matter of engineering knowledge. For this reason,
we caution the reader that the success of the proposed method-
ology depends greatly on the presence and reliability of such
knowledge.

The article is organized as follows. Section 2 presents the
data-mining–aided design method and develops each compo-
nent in the context of the multistation fixture layout design.
Section 3 implements the resulting method and compares the al-
gorithm performance with other optimization methods. Finally,
Section 4 concludes the article.

2. DATA–MINING–AIDED OPTIMAL
DESIGN METHOD

2.1 Design Objective and Overview of the Method

The goal of fixture layout design, as already mentioned
in Section 1, is to find an optimal layout so that assembly-
dimensional variability is insensitive to variation of inputs from

fixture locators. Research efforts have been made to establish
a linear variation propagation model that links the product-
dimensional deviation (measured at M1–M10) to fixture loca-
tor deviations at P1–P8 on three assembly stations (Jin and Shi
1999; Ding, Ceglarek, and Shi 2000; Camelio, Hu and Ceglarek
2003). Based on the variation model, a sensitivity index S was
developed by Kim and Ding (2004) as a nonlinear function of
the coordinates of fixture locators, represented by the 16×1 pa-
rameter vector θ ≡ [X1 Z1 · · · X8 Z8]T , where Xi and Zi

are the pair of coordinates of locator Pi. Using this notation, the
fixture layout design attempts to find a set of θ that minimizes
the sensitivity S while satisfying the geometric constraint G(·),
that is,

min
θ

S(θ),

subject to G(θ) ≥ 0.
(1)

Equation (1) actually captures a general formulation of a non-
linear optimization problem; S(·) is the objective function,
G(·) is the constraint function, and θ is the vector of design
parameters. In the foregoing formulation, without loss of gen-
erality, we present a minimization problem. A maximization
problem can be solved in the same fashion. The objective func-
tion S(·) in an engineering optimal design is generally compli-
cated. For example, if we consider the flexibility of parts during
assembly operations, then S(·) will have to be evaluated using
computationally expensive finite-element analysis (FEA) codes
(Camelio et al. 2003). For this reason, the efficiency of an op-
timal design algorithm can be loosely determined by how often
S(·) is evaluated—we denote by T the computer time necessary
to calculate S(·) once.

There is virtually no efficient method that allows us to di-
rectly optimize over the huge volume of original design alter-
natives, such as the possible combinations of locators, as many
as 4.65 × 1023, in the multistation fixture layout design. The
proposed method starts with extracting design representatives
from original design alternatives. However, it is often the case
that the design representatives, although remarkably fewer than
the original design alternatives, are still too many to be used
as the design library. In this article we use a clustering method
with a set of computationally simple feature functions to facili-
tate the creation of a design library. This procedure will allow us
to eventually have an affordable number of designs as a training
dataset in a design library. The overall framework is illustrated
in Figure 3, as a modification to Figure 2. In the following sec-
tions we present the considerations and procedures for realizing
each component of the data-mining–aided optimal design.

2.2 Candidate Design Space

Before getting into the details of the proposed design method,
we first describe the design space for candidate locators (called
the “candidate design space”). The candidate design space im-
posed by G(·) in (1) is different from the natural boundary of
each panel. The boundary of the candidate design space should
be at least 35 mm away from the edge of a panel due to an engi-
neering safety requirement, because a locating hole that is too
close to the edge may not be able to ensure the load exerted dur-
ing fixturing. In addition to this, we know that a part-positioning

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

DATA–MINING–AIDED OPTIMAL DESIGN 339

Figure 3. Modified Data-Mining–Aided Design Optimization Proce-
dure.

deviation is more sensitive to locating deviations when both lo-
cators are close to each other than when they are farther apart.
This rule suggests that two locators on the same panel should
be located sufficiently far away from each other, which rules
out the neighborhood around a panel’s geometric center (GC)
from consideration for the candidate design space.

The determination of this neighborhood is illustrated in Fig-
ure 4(a). Distances from the GC to the vertex points of a panel
are calculated, and their median value is chosen to represent
the size of the panel, denoted by d0. A hypothetical circle is
drawn on the panel with the GC as its center and d0/2 as its
radius. The area inside this hypothetical circle is considered
the neighborhood of a panel’s geometric center. Using the me-
dian of all GC-to-vertex distances in determining d0, rather than
their mean value, makes the resulting d0 less sensitive to a very
large or a very small GC-to-vertex distance on panels with an
irregular shape. (Recall that a median is a more robust statistic
than a mean value.) The value of d0/2 is an empirical choice.
Our experience indicates that the choice is actually quite con-

servative; that is, after removing candidate locations using d0/2
as the neighborhood radius, we did not see much difference in
terms of the best found sensitivity value of fixture layouts (Kim
and Ding 2004). One can certainly decrease the neighborhood
radius to be safer. The resulting candidate design space imposed
by G(·) is shown as the shaded areas in Figure 4(b), to which
all of the latter optimal design methods will be applied and their
performances compared.

If the candidate design space of each panel is discretized us-
ing the same 10-mm resolution, then the numbers of candi-
date fixture locations are n1 = 239,n2 = 707,n3 = 200, and
n4 = 3,496. After eliminating the locator pairs of which dis-
tances are smaller than d0/2 on each panel, we still have as
many as 1.09 × 1021 possible combinations of locator layouts.
This number is still too large to be computationally affordable
for design optimization.

2.3 Uniform Coverage Selection of
Design Representatives

The first component of the proposed method is to select de-
sign representatives from the original design alternatives. Un-
less one has profound knowledge of which part in the candidate
design space (after the neighborhood of a geometric center has
been ruled out) is preferred, a safer way of selecting good rep-
resentatives of the original design set is to select them from a
design space as evenly as possible. Igusa et al. (2003) suggested
randomly selecting design representatives, based on a uniform
distribution, from the set of design alternatives. The problem
with random selection is that probabilistic uniformity does not
guarantee an even geometric coverage in a design space. When
the design space is of a high dimension and the sample size is
relatively small (e.g., 2,000 chosen from 8.5 × 108 alternatives
in Igusa’s case), the selected sample could cluster in a small
area and fail to cover large portions of the design space (Fang
and Wang 1994).

A space-filling design, widely used in computer experi-
ments (Santner, Williams, and Notz 2003), aims to spread de-
sign points evenly throughout a design region and appears to
fit well into our purpose of design-representative selection.

(a) (b)

Figure 4. Neighborhood of a GC (a) and Candidate Design Space on SUV Side Frames (b).

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

340 PANSOO KIM AND YU DING

A space-filling design is usually devised by using latin hyper-
cube sampling (LHS) (McKay, Bechman, and Conover 1979),
a stratified sampling method, or using a uniformity criterion
from the number-theoretic method (NTM) (Fang, Lin, Winkle,
and Zhang 2000).

These methods can be easily implemented over a hyperrec-
tangular design space in experimental designs. In engineering
system designs, accompanied by complicated geometric and
physical constraints, the design space is often nonrectangular or
even highly irregular, such as the candidate design space shown
in Figure 4(b). Another constraint also comes into play in this
fixture layout design; that is, once a locator’s position is cho-
sen on a panel, the second locator on the same panel should
not be located near the first one, following the same physical
intuition related to positioning variability explained previously.
This is different from the factor-level selection in experimen-
tal designs, where there is usually no clear prior knowledge to
indicate the dependency among factors.

Given the complexity in the design constraints, we have not
seen a generic method for translating an LHS- or NTM-based
space-filling design to an engineering system design problem.
We here devise a heuristic procedure for the fixture layout de-
sign, attempting to provide a uniform-coverage selection of de-
sign representatives from the original fixture layouts:

Step 1. Uniformly discretize the candidate design space on
each panel plane using the same resolution. (In our
implementation, the resolution is 10 mm between
two adjacent locations.) Associate a probability p
to each candidate location, with p initially set to be
equal for all locations.

Step 2. On each panel, choose the first locator sequen-
tially to be at those locations from the discretization
process. Once the first locator is selected, gener-
ate a subset of locations containing those with a
distance from the first locator greater than half of
the panel size (d0/2). The second locator is se-
lected according to the probability associated with
all of the locations in that subset. Once a location
is chosen, update the probability for this location,
pnew = γ · pold, 0 < γ < 1; namely, reduce the prob-
ability of selecting this location by a factor γ . De-
note by �

(0)
j the resulting candidate locator set for

panel j. Then nj equals the number of locator pairs

included in �
(0)
j .

Step 3. For i = 1, . . . ,maxj(nj),

(a) randomly select one locator pair from each of
�

(i−1)
j for j = 1,2,3,4 without replacement;
(b) combine these four locator pairs as one design

representative; and
(c) whenever a �

(i−1)
j becomes empty, reset

�
(i−1)
j = �

(0)
j ; otherwise, set �

(i)
j = �

(i−1)
j , j =

1,2,3,4.

End of the loop.

Figure 1(e) shows that two different types of locators are
used as a locator pair on each panel. In the foregoing selec-
tion procedure, the four-way locator restraining 2 df is con-

sidered more important, so it is selected as the first locator in
Step 2; its uniformity is a result of the uniform discretization.
The two-way locator is treated as the second locator and is cho-
sen to be at least d0/2 away from the first locator because of
the aforementioned constraint on the between-locator distance.
The threshold of d0/2 is again chosen empirically, following
the same spirit as in Section 2.2. The reason that we associate
a probability with each location and subsequently reduce the
probability for a selected location is to ensure that the second
locator is more likely to be evenly spread out. Had we used a
simple random selection for choosing the second locator, then
there would be a greater chance that values of the second lo-
cator position would form clumps or clusters of values. With
the discount factor γ set to be .1 in our implementation, once
a location is selected, the probability of choosing it again will
be 10% of the original probability, and choosing it the third time
will be very unlikely (1% of the original probability).

After Step 2, the set �
(0)
4 has the largest number of loca-

tor pairs, n4 = 3,496. Step 3 performs a stratified sampling to
generate locator combinations. The stratified sampling will go
over �

(0)
4 once but will have to go over �

(0)
j for panel j = 1,2,3

multiple times. Step 3 can be thought of as being equivalent to
what will be achieved by the following procedure: First, aug-
ment �

(0)
j for j = 1,2,3 to be the same size as �

(0)
4 , then per-

form a LHS on this four-dimensional rectangular region. Hence
this step can be considered a generalization of LHS to nonreg-
ular regions.

Eventually, a total of 3,496 combinations of locators is gen-
erated as design representatives. We denote this number by Nr .

2.4 Feature Definition and Feature Function Selection

To avoid direct and frequent evaluations of objective func-
tion S(·), we use a set of feature functions to characterize the
system performance. A feature function maps an engineering
system to a feature that is tied to the design objective. For exam-
ple, the distance between two locators in the fixture design can
be considered a feature. Generally, any physical quantity that is
potentially tied to the design objective can be used as a feature.
The set of feature functions is actually a surrogate for the design
objective function. Features are often selected based on prior
experience, engineering knowledge, or physical intuition. The
advantage of such a feature definition/selection is that vague
experience, knowledge, or understanding of a complicated en-
gineering system can be more systemically integrated into the
optimal design process.

What follows feature selection is a clustering method acting
on the set of the chosen feature functions. If the feature function
does not form well-separated clusters, then the subsequent clus-
tering step will not be effective when it attempts to form a de-
sign library with smaller number of designs. This problem may
very well be avoided if the feature functions are chosen to be the
actual surrogate for the objective function. If the objective func-
tion forms a lot of local optima on the response surface, then
the feature functions also will be likely to form clusters, corre-
sponding to those local optimum areas. Therefore, although the
selection of a feature in the proposed method is rather flexible,
we actually need to do so with care.

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

DATA–MINING–AIDED OPTIMAL DESIGN 341

We have the following generic considerations for an effective
selection of features and feature functions. First, when choos-
ing the feature functions, we need to make sure that they are di-
rectly related to the objective function instead of making them
the replacements of design variables in θ . In particular, we need
to avoid choosing feature functions that are just subsets of θ or
are linearly related to θ . Second, because features are used to
replace the direct evaluation of an objective function, a feature
function should be computationally simple; otherwise, it will
not serve our purpose. Third, because a feature is usually not
connected to the design objective with mathematical explicit-
ness, too few feature functions may generate a serious bias in
the latter selection of design representatives. On the other hand,
too many feature functions will increase the computation bur-
den. A trade-off will depend on specific applications, where be-
tween 5 and 15 feature functions may be selected. Finally, it is
desirable to select scalable features; that is, a feature definition
will remain the same when the size of a system has increased.
For the example of the multistation fixture design, a scalable
feature means that it can be used to characterize the system
performance whether the multistation system has 3 stations or
10 stations.

Keeping in mind the foregoing guidelines, we choose a set
of feature functions for the fixture layout design as follows. We
know that the distance between locators is an important factor
related to the variation sensitivity of a fixture layout. We select
the between-locator distance on a panel as one feature relevant
to our design objective. We select the following five functions
to characterize the feature of between-locator distance (the five
feature functions actually approximate the distribution of the
set of the between-locator distances):

F1(θ), the largest value of the same-panel
between-locator distances

F2(θ), the second largest value of the same-panel
between-locator distances

F3(θ), the mean of the same-panel between-locator distances

F4(θ), the second smallest value of the same-panel
between-locator distances

F5(θ), the smallest value of the same-panel
between-locator distances.

For a larger-scale assembly system with more parts and stations,
these feature functions can still be used; namely, they are scal-
able. The approximation of the distribution could be improved
by augmenting the number of feature functions so that they will
give more refined percentile values of the set of between-locator
distances.

If we are concerned only with a single part that is posi-
tioned by a pair of locators at a single station, then the between-
locator distance may be the only factor that matters. However,
complexity results from the fact that locating holes on a panel
are reused, but usually in a different layout. For the multista-
tion assembly process in Figure 1, the A-pillar and B-pillar
are positioned on station I by {P1,P2} and {P3,P4}. After the
assembly operation is finished, the subassembly becomes one
single piece, which is transferred to station II and positioned
by {P1,P4}. This assembly transition across stations and the

reuse of fixture-locating holes complicate the sensitivity analy-
sis for a multistation system. Kim and Ding (2004) showed that
a larger between-locator distance on one station may not neces-
sarily produce a lower sensitivity for the whole process. In order
to capture the across-station transition effect, we select a second
feature, which is the ratio of between-locator distances on two
adjacent stations. Denote by L1,L2, . . . ,Lm the between-locator
distance for m locator pairs on a station. After those parts are as-
sembled, they are transferred to the next station and positioned
by a locator pair with a between-locator distance L(m). The ratio
of distance change r is then defined for this transition as

r ≡ L(m)

(
∑m

i=1 Li)/m
. (2)

Here we include three more feature functions related to the fea-
ture of distance change ratio as:

F6(θ), the largest value of distance change ratios

F7(θ), the mean value of distance change ratios

F8(θ), the smallest value of distance change ratios.

Similarly, the three feature functions approximate the distri-
bution of the set of r. We do not include five functions as we
did for the between-locator distances, because four stations in
this example produce only three distance change ratios.

We have defined eight scalable feature functions for two
physically intuitive features relevant to the variation sensitiv-
ity of a multistation assembly process. Note that the calculation
of the foregoing feature functions is very economical even for
a large-scale system.

2.5 Clustering Method

Clustering aims to segment a heterogeneous population into
a number of more homogeneous subgroups (Hastie, Tibshirani,
and Friedman 2001). When using feature functions as the sur-
rogate for a design objective to benchmark the dissimilarity
criteria in a clustering procedure, design representatives in a
resulting cluster will have a more similar distribution profile for
the two physical features, namely the between-locator distance
and the across-station distance change ratio. Empirical evidence
(Igusa et al. 2003) shows that resulting clusters are associated
with a local response surface and that its center will likely be
around a local optimum. For this reason, a design library for
classification can then be created by selecting a few designs
from each cluster around the cluster center, which results in
fewer designs. The generation of a design library is illustrated
in Figure 5.

For the ith fixture layout represented by θ i,Fi ≡ [F1(θ i) · · ·
F8(θ i)]T is the vector of its feature functions and c(i) denotes
the cluster to which it belongs. In our solution procedure we
use a standard K-means clustering method (Hastie et al. 2001).
Namely, for K clusters we find the mean value of cluster k, mk,
as the cluster center and the association of a fixture layout to
cluster k [represented by c(i) = k] so that

min
c,{mk}K

1

K∑

k=1

Nk

∑

c(i)=k

‖Fi − mk‖2, (3)

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

342 PANSOO KIM AND YU DING

Figure 5. Generation of a Design Library.

where Nk is the number of elements in cluster k and ‖ · ‖ is a
vector 2-norm. The K−means method minimizes the dissimi-
larity measure, defined as the Euclidean distances of the ele-
ments within the same cluster. With different values of K, the
minimization in (3) will yield different clustering results, that
is, different cluster centers and cluster associations. We defer
the discussion of how to choose K to Section 2.7.

Once the design representatives are clustered (i.e., each fix-
ture layout is labeled with a cluster identification), we choose a
few designs around the cluster center to form a design library,
as illustrated in Figure 5. We call the selected designs from each
cluster center seed designs and let Jk denote the number of seed
designs chosen from cluster k. For the sake of simplicity, we
use the same seed number for all clusters, that is, Jk = J for
all k’s. Then the design library contains KJ data pairs {Fi,Si}
for i = 1,2, . . . ,KJ, where Si is the sensitivity value of the ith
fixture layout.

Finally, the clustering step is briefly summarized as fol-
lows. We are given Nr design representatives from the uniform-
coverage selection; then:

Step 1. For each design, determine F = (F1, . . . ,F8).
Step 2. Cluster the F values into K clusters using some clus-

tering method (e.g., K-means clustering). The clus-
tering method should be one where the measure
of similarity is consistent with the assumption that
when two values of F are similar, the corresponding
values of the objective function S are similar. Usu-
ally, this will mean Euclidean distance is the measure
of similarity.

Step 3. For each of the K clusters, choose the J designs that
are closest to the center of the cluster. This yields KJ
designs, and one typically wants KJ � Nr .

2.6 Classification Method

We perform classification on the dataset in the design library
to generate the design selection rules. This step is similar to
what has been implemented before (Schwabacher et al. 2001,
also refer to Fig. 2). Local optimization methods can be used to
evaluate a few designs chosen by the selection rules and yield
the final optimal design. Many times, as we discuss in Section 3,
a local optimization method may no longer be necessary; that is,
a direct comparison among all the selected designs could have
given us a satisfactory result.

Schwabacher et al. (2001) and other authors fulfilled the clas-
sification step using a tree-based method, including a C4.5 de-
cision tree (Quinlan 1993) and a classification and regression
tree (CART). To make the proposed method well connected to
the relevant work in literature, we first discuss how to use a tree-
based method for the classification step. According to Hastie et
al. (2001, p. 273), the later version of Quinlan’s decision tree is
very similar to a CART; here we focus our discussion on CART,
because it is widely accessible through a commercial software
program; such as MATLAB.

In our problem we choose to apply a CART model to {Fi,Si}
in the design library. The paths in a CART can be expressed as a
set of “if –then” rules in terms of the feature functions. One re-
sulting classification tree is shown in Figure 6. A decision con-
dition such as F6 < 1.15 is indicated at each node. One takes

Figure 6. Part of the Classification Tree for the Fixture Layout Design.

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

DATA–MINING–AIDED OPTIMAL DESIGN 343

the left-side path if the answer to this condition is “yes,” and
the right-side path if the answer is “no.” An end node in the
tree represents a set of designs associated with a narrow range
of sensitivity values; the value indicated in Figure 6 beside an
end node is the average sensitivity value of the corresponding
design set. If a certain combination of feature function values
leads us to a set of designs whose expected sensitivity value is
the lowest among all end nodes, then the corresponding path
(one of which is highlighted in Fig. 6) constitutes a design se-
lection rule that we are looking for. The resulting selection rule
will be applied to the whole set of Nr design representatives.
The designs finally selected constitute a so-called “good de-
sign” subset, as indicated in Figures 2 and 3. Note that because
of the random selection of the second locator on a panel, the
resulting tree is not exactly the same each time that we start the
design process over. But our results show that this difference
does not cause much difference in the final optimal design.

One critical question is how to select the final tree structure.
What we need to achieve here is to find a tree that not only
has reasonably good predictive power, but also can generate a
substantially small good design subset when it is applied to Nr

design representatives. These two objectives are somewhat con-
flicting. A simple tree structure will usually have a better pre-
dictive power but will cause the good design subset undesirably
large. In contrast, a full-structure tree without pruning will lead
to a smaller good design subset but may lack predictive capa-
bility for a new dataset. During our research, we found that ap-
plying an existing criterion, such as the one-standard-error rule
(Hastie et al. 2001, p. 57) or the cost-complexity index (Hastie
et al. 2001, p. 270) in selecting a tree structure usually will lead
to a tree that is too simple for our application. This is not sur-
prising, because both criteria attempt to find the simplest tree
with a small prediction error; the size of good design subset
does not come into consideration. Here we propose a revised
cost-complexity index, C, more suitable for our problem,

C ≡
KJ∑

i=1

L(Si, Ŝi) + Nf

αNr − KJ
, (4)

where L(Si, Ŝi) is the squared-error loss function, Ŝi is the
predicted sensitivity value using the resulting tree, Nf is the
number of designs in the good design subset, and 0 < α < 1
is a prechosen constant. In (4), the cost part (i.e., the loss func-
tion) is the same as the one used in the cost-complexity index
by Hastie et al. (2001); it characterizes a tree’s predictive power
and will be evaluated based on a 10-fold cross-validation. The
complexity part is replaced by a ratio tied to the size of the
good design subset. The αNr represents the level of how many
designs that one would like to evaluate. After subtracting KJ,
the number of designs used to generate the design library, the
denominator αNr − KJ provides a reference level for the size
of the good design subset. We recommend choosing α = .1 or
smaller, so that the computation for evaluating those designs
will remain affordable. In our problem, the choice of α = .1
translates to 350 overall designs, and the final tree structure is
selected by applying the one-standard-error rule on this new in-
dex C.

An obvious motive for us to use a CART model in this
classification step is its common applications in the previous

research of data-mining–aided design. It is not merely a coin-
cidence that a CART model has been commonly chosen; it in-
deed has several advantages over competitive methods. Hastie
et al. (2001, p. 313) compared the tree-based method with other
methods, including the support vector machine (SVM) and the
neural net. The tree-based method is better than other meth-
ods in terms of its capability of handling data of mixed types,
dealing with irrelevant inputs, being robust to outliers, and also
being computationally scalable. These are all desired proper-
ties when we are trying to establish a connection between the
feature function and the sensitivity function. For example, its
better capability of handling irrelevant inputs is important, be-
cause feature functions are usually selected based on rough
engineering knowledge and we might have selected a few ir-
relevant ones. Computational scalability is also important, be-
cause we may need to select more feature functions to avoid
bias when dealing with a large system. In engineering applica-
tions, the tree-based method is also popular because it can be
easily implemented and the resulting decision rule has an intu-
itive interpretation. For this reason, Hastie et al. (2001) consid-
ered the tree-based method to be one of the best candidates for
an off-the-shelf data-mining method.

One disadvantage of a tree-based method is its relatively poor
predictive power. In our optimal design procedure, however, we
do not use the resulting tree to directly predict the optimal so-
lution. Instead, we end up with a subset of designs with a good
likelihood of containing the best design of the Nr design repre-
sentatives. Evaluations of those designs will make the predic-
tive power of a tree less critical to our finding of an optimal
solution. But the poor predictive power of a tree does take a toll
on the total number of designs that are eventually evaluated. In
addition to the KJ designs in the design library, we must evalu-
ate extra Nf designs in the good design subset.

Had we used a method with a better predictive power, we
may have been able to find a nearly optimal design without eval-
uating a good design subset. During our research, we explored
two methods with better predictive power: the boosting tree and
the kriging model. The boosting tree is a natural extension of
the tree-based method with a usual regression tree as the base
learner. We adopted a gradient tree boosting for multiple addi-
tive regression tree (MART), a detailed procedure for which has
been given by Hastie et al. (2001, p. 322). The kriging model is
a popular predictive model that has been broadly used in com-
puter experiment research (Santner et al. 2003). Through our
investigations, we found that the MART and kriging models
are able to find a reasonably good design from design repre-
sentatives without evaluating the good design subset. (The nu-
merical comparisons are given in Table 3 in Sec. 3.) For the
fixture layout design at hand, these two predictive methods per-
form similarly, and the best designs found are somehow worse
than the one found by using the procedure of a CART model
plus subsequent subset evaluation. Nonetheless, for the situa-
tions when any saving in objective function evaluation would
be appreciated, using these high-predictive-power methods may
be preferred over a simple CART model. Because of the sim-
ilar performance of the MART and kriging models, we are in
favor of MART in our application because it inherits the advan-
tages of tree-based methods and it is easier for practitioners to
implement.

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

344 PANSOO KIM AND YU DING

One may wonder whether we could use the aforementioned
methods to fit a model for {θ i,Si} and then find the values of θ
that (nearly) minimize the sensitivity. We generally discourage
using a CART model for connecting θ to S. The response sur-
face of S(θ) is presumably complicated and nonlinear, and it
is usually unlikely that the surface is well approximated by a
binary partition procedure, which tree-based methods use. Us-
ing feature functions will cause less problems. If the feature
functions, as the surrogate for the sensitivity, can be sensed
by human experts, it is more likely to be well modeled by a
tree structure, because a tree mimics the way a human expert
(e.g., an engineer or a medical doctor) thinks. Predictive meth-
ods such as a kriging model, an SVM, or a neural net can fit a
much more complicated response surface and may be more suit-
able in fitting a model for {θ i,Si}. However, we are not in favor
of using a kriging model or the like to fit a model for {θ i,Si},
either, because of two obvious difficulties. One problem is that
the dimension of θ usually grows much faster than that of F.
For instance, given a 10-station 2-D assembly process, the di-
mension of θ will be 40 (vs. 16 in the four-station process in
Fig. 1), whereas the dimension of F could very well remain 8.
For a design space with a high dimension, the efficiency of the
abovementioned methods is problematic. Another problem is
related to the optimization of the predictive model. Suppose that
we had a predictive model S̃(θ) that represents the true surface
of S(θ) quite well. Then the S̃(θ) will be as nearly complicated
as S(θ) and, as such, optimization of S̃(θ) will not be an easy
job. A random search method (SA or GA), which we are trying
to avoid, very likely may be necessary. Of course, there are still
benefits, because S̃(θ) would be cheaper to compute than the
original S(θ). However, the benefit usually hinges on how well
S̃(θ) represents the true surface and how computationally ex-
pensive the original S(θ) is. For our fixture design problem, we
did not find that the kriging model for {θ i,Si} presents a clear
advantage over the kriging model using feature functions.

2.7 Selection of K and J

One issue that we left out in Section 2.5 is how to select K
(cluster number) and J (seed design number). The importance
of these two values, K and J, is obvious because they determine
the number of designs in the resulting design library. Appar-
ently, these two factors are related to both the optimal sensitiv-
ity value that our method can find and the computation time that
it consumes.

Unfortunately, a theoretical tie between the clustering result
and the behavior of a response surface has not yet been estab-
lished. Using the multistation fixture design at hand, we further
investigate this issue using an experimental design approach.
For a given combination of K and J, we choose two response
variables, the smallest sensitivity value (before a local optimiza-
tion method is applied) and the computation time. For this data-
mining–aided optimal design, the overall computation time can
be calculated by T0 + KJ · T + Nf · T , where T0 is the time com-
ponent in addition to that for evaluating the objective function,
known as the “overhead time” due to the uniform-coverage se-
lection and clustering/classification processes. The second and
third components are directly related to the times that the objec-
tive function is evaluated. For a given engineering design prob-
lem and a given choice of K and J, the first and second time

Table 1. Results for Different Design Conditions

The number of designs in the
Sensitivity value (S) good design subset (Nf)

J J

K 5 10 15 5 10 15

3.8870 3.8870 3.8870 1,361 186 624
3 3.9082 3.8821 3.9335 592 628 138

3.9488 3.9512 3.9024 938 497 142

3.9134 4.0080 3.9582 881 56 58
6 3.8824 3.9082 3.8821 380 249 152

3.9024 3.9024 3.9275 299 410 65

3.8870 3.8870 3.8934 258 136 46
9 3.9335 3.9083 3.9082 210 47 112

3.9024 3.9225 3.9244 315 270 53

components will be largely fixed, with T also a constant. Hence
we use Nf as the second response variable.

We conduct a 32 factorial experiment, with three levels of
K and J chosen at 3, 6, and 9 and 5, 10, and 15. We limit our-
selves to the cases with K < 9, because a large K will easily
result in a large KJ, a situation less likely to be computationally
advantageous. Because of the previously mentioned random se-
lection of the second locator on a panel, for a given combination
of K and J, the sensitivity and Nf are in fact random variables.
Then three replications are performed at each combined level
of K and J. A total of 27 computer experiments are conducted,
each of which will go through the procedure as outlined in Fig-
ure 3 (before applying the local optimization). The lowest sen-
sitivity value and the value of Nf are recorded in Table 1.

From Table 1, we see that the sensitivity value S is not signif-
icantly affected by the choice of K and J. But the value of Nf is
significantly affected, ranging from over 1,000 to less than 100,
depending on the choice of K and J. An ANOVA using the
S and Nf data confirms this finding. K and J are significant in
the case of Nf at the 5% level, and their interaction has a p
value of .067, suggesting that Nf is much more sensitive than S
to variations in K and J.

The reason that a choice of K and J will not have much ef-
fect on the sensitivity value is related to the fact that Nf changes
accordingly for different K and J. When K and J are small
(i.e., the designs in the library are fewer), the partition of design
sets corresponding to different levels of sensitivity is rough, and
thus the resulting selection rule generated by the design library
is not very discriminating. As a result, when the rule is applied
to the entire set of design representatives, there will be a large
number of designs that will satisfy it (e.g., the average of Nf
is 964 for K = 3, J = 5). Evaluation of the large number of
the selected designs, however, will circumvent the limitation
brought about by the nondiscriminating selection rule, and the
whole design process is still able to yield a low sensitivity value
eventually. On the other hand, when a relatively large number
of designs is chosen to constitute the design library, the result-
ing selection rule will be discriminating and is able to select a
small number of good designs, evaluation of which will give
us a comparably low sensitivity value. Apparently, the adaptive
nature of Nf makes the eventual sensitivity value insensitive to
the initial choice of K and J.

Therefore, the choice of K and J will mainly affect the algo-
rithm efficiency, benchmarked by how many times the objec-
tive function is evaluated. The case with both small K and J is

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

DATA–MINING–AIDED OPTIMAL DESIGN 345

not an efficient choice because of a large Nf . However, a large
K and J is not a good choice either, because KJ will be large
even though Nf will decrease. Define the total number of func-
tion evaluations as Nt ≡ KJ + Nf . Using the data in Table 1,
we can fit a second-order polynomial, expressing Nt in terms of
K and J as

N̂t = 2,220.1 − 254.0 · K − 163.9 · J

+ 8.9 · KJ + 9.0 · K2 + 3.7 · J2. (5)

Based on the foregoing expression, it is not difficult to show
that the combination of K = 8 and J = 13 will give the lowest
value of Nt. This combination of K and J is optimal only within
the experimental range. But the benefit of a decreasing Nf does
not appear to be much beyond the point of K = 9 and J = 15,
where KJ = 135 is already more than the average value of Nf

(which is 70). Any further increase in KJ is likely to outnumber
the decrease in Nf .

Using the following approximation, we provide a guideline
for choosing K and J, which is independent of the specific re-
lation in (5). Recall that the good design subset is generated
by passing Nr design representatives through the design selec-
tion rule. To have a meaningful design selection rule, the corre-
sponding end node in the classification tree must have at least
one design point. Suppose that there is only one design in the
end node. Then the percentage of good designs selected from
KJ designs in the library is 1/KJ. If the same percentage applies
to all of the entire design representatives, then Nf = Nr/KJ. The
total number of function evaluations can be approximated as

Nt ≈ KJ + Nr

KJ
. (6)

The foregoing equation suggests that Nt is minimized when
KJ = √

Nr . In our problem, given Nr = 3,496, KJ is roughly 60.
A reasonable choice of K and J would be K = 6 and J = 10.

In actual cases, a classification tree pruned by cross-
validation usually keeps more than one element in its end nodes.
We also observe that the percentage of good designs selected
from the design representatives may be higher than that from
the design library. These factors make the actual value of KJ
minimizing Nt larger than what is estimated from (6). We could
treat KJ = √

Nr as the lower bound for choosing K and J. As a
rule of thumb, we recommend choosing the cluster number K
from 6 to 9 and the number of seed designs J per cluster from 10
to 15.

Decisions regarding cluster number is a major research topic
in statistics. Tibshirani, Walther, and Hastie (2001) proposed
a gap statistic for determining cluster number and also pro-
vided a comparison of several available statistical rules, in-
cluding Milligan’s method, Krzanowski’s method, Hartigan’s
method, Kaufman’s silhouette statistics, and their own gap sta-
tistic method. (For the details of these criteria and computa-
tional procedures, see Tibshirani et al. 2001 and references
therein.) Using these criteria for our fixture design problem,
the cluster number selected ranges from 2 to 5, as shown in
Table 2. According to our previous discussion, these resulting
cluster numbers appear to be too small and will likely cause a
large Nf . Because those criteria are originally devised for a dif-
ferent purpose, it is not really surprising that directly applying
them here may not serve our optimal design well enough.

Table 2. The Number of Clusters Suggested by the Other Methods

Kaufman’s
Milligan’s Krzanowski’s Hartigan’s silhouette Tibshirani’s
method method method statistics gap statistic

K 5 5 2 3 3

2.8 Overall Description of the Proposed Method

Finally, we provide a generic description of the proposed
method as follows:

A. Choose a collection of Nr designs � that are evenly
spread out in the design space using the method described in
Section 2.3.

B. Identify a relatively small number of feature functions
F1, . . . ,Ff that are believed to be related to the objective func-
tion and are easy to compute.

C. For each design in �, compute the corresponding values
F = (F1, . . . ,Ff) of the feature functions.

D. Cluster the values F of these feature functions into K
clusters using K-means clustering.

E. For each of these K clusters, identify the J designs that
correspond to the J values of F that are closest to the center of
the cluster. This is the design library. Note that KJ should be
� Nr .

F. For each of the KJ designs in the design library, compute
the objective function S.

G. Using the KJ values of F and S corresponding to the de-
signs in the design library, use CART to classify F1, . . . ,Ff into
values leading to “optimum” values of S.

H. Compute the values of F for all designs in � and apply
the classification rule resulting from CART to these values. The
result is a small subset δ of � that contains designs likely to
produce “optimum” values of S.

I. Apply some local optimization algorithm to the designs
in δ to determine the one that optimizes S.

J. As an alternative to steps G, H, and I, instead of fitting
a CART model to {F,S} in the design library, fit a MART or a
kriging model. Then use the MART or kriging model to select
the best design in �. Some local optimization algorithm can be
applied to the selected design to further improve the “optimal”
solution.

3. PERFORMANCE COMPARISON
AND DISCUSSION

In this section we compare the performance of our data-
mining–aided optimal design algorithm (before a local op-
timization is applied) with other optimization routines. Our
design algorithm is implemented with the choice of K = 8 and
J = 13, the optimal combination found in Section 2.7. Three
versions of the data-mining aided optimal design are realized,
using a CART, an MART, and a kriging model.

The other optimization algorithms in this comparison include
simulated annealing, simplex search, and a direct evaluation of
all design representatives selected by the uniform coverage se-
lection procedure described in Section 2.3. The performance
of a simulated annealing is largely determined by parameter
kB ∈ [0,1], known as the Boltzmann’s constant. A larger kB

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

346 PANSOO KIM AND YU DING

(close to 1) will cause the algorithm to converge quickly, but
probably to a local optimum. In contrast, a smaller kB will aid
in finding the global optimum or a solution closer to the global
optimum, but at the cost of a long computing time. A general
guideline given by Viswanadham, Sharma, and Taneja (1996)
is to choose kB between .85 and .95. We include the cases with
kB = .9 and kB = .95 in our comparison.

The performance indices for comparison include the lowest
sensitivity value that an algorithm can find and the time that
it consumes. The objective function for the assembly process
in Figure 1 is not really an expensive one, because of various
simplifications that we made in variation modeling (e.g., a 2-D
assembly, rigid part assumption, only four stations); the T is
only .018 seconds on a computer with a 2.20-GHz P4 proces-
sor. In this study we purposely use this objective function so that
we can afford to perform the explorations in Section 2. When
a computationally inexpensive function is used, the overhead
computing cost T0 kicks in, which may blind us to the benefit of
the proposed method for a complicated system with a more ex-
pensive objective function. To show the potential benefit for ex-
pensive objective functions, we also include for comparison the
number of times that the objective function is evaluated; when
T is large, the time of function evaluation essentially dominates
the entire computation cost.

We implemented the aforementioned optimization algo-
rithms to solve the multistation fixture-layout design in the
MATLAB environment; for example, the MATLAB function
“kmeans” is used for the K-means clustering method, the func-
tions “treefit” and “treeprune” are used for the tree generation,
and the function “fminsearch” is used for the simplex search.
All optimization methods are executed on the same computer,
and the average performance data of 10 trials are presented in
Table 3. Based on the comparison, we have a few remarks:

1. The best design is found by the simulated annealing with
kB = .9 at the cost of 542.8 seconds of computation time, or
more than 28,000 times of function evaluation. In comparison,
the data-mining–aided design using CART reaches a very close
sensitivity value (only 2.2% higher than what the SA found) but
uses one-tenth of the computation time. We also notice that the
data-mining–aided design using CART evaluates the objection
function only one-hundredth the number of times that the SA
did. The SA with a larger kB is not advantageous; the comput-
ing time is still long (five times the data-mining–aided method
for kB = .95), but the resulting sensitivity value increases con-
siderably.

2. Because of our current choice of objective function, the
time that a data-mining–aided method takes is dominated by

its overhead time, close to 50 seconds when using a CART
model. Because we used scalable feature functions, these over-
head time components will not change much even for a system
with an expensive objective function. But computation for other
algorithms, such as SA and simplex search, is mainly the result
of evaluating the objective function. Therefore, the benefit of
our data-mining–aided design method will be more obvious—
28,503T for SA versus 192T for our method—for a larger, more
complicated system, where the evaluation of the objective func-
tion will dominate the overall computation cost.

3. The solutions found using MART and the kriging model
are on average the same. The optimal designs that they found
are not as good as the one found by using CART followed by
an evaluation of the good design subset. However, these high-
predictive-power methods do not have to evaluate the extra de-
signs in the good design subset and thus would be valuable tools
if the extra saving in objective function evaluation is highly de-
sirable. The foregoing optimal values are obtained when the
same design library used for CART is used to establish the
MART or the kriging model. The MART and the kriging model
can usually find a better design when using a larger design li-
brary (i.e., a larger KJ). If we increase the size of the design
library to the level corresponding to the combination of the de-
sign library for CART and the subsequent subset (i.e., a total
192 designs or, equivalently, K = 12, J = 16), then the MART
or the kriging model can find designs as good as S = 3.9468
and S = 3.9450.

4. Another competitive solution for this fixture-design prob-
lem is to directly evaluate all 3,496 design representatives and
select the best design among them. This provides a simple
method of optimization. In the foregoing example, for instance,
this direct comparison method finds the second-best design
among the chosen optimization methods. The direct compari-
son method based on a uniform selection is also robust; that is,
its performance is less sensitive to the properties of response
functions, the properties of constraints, or the choice of initial
conditions. The same philosophy of optimization was advo-
cated by Fang and Wang (1994) using their NTM-based uni-
form number generation. The limitation of this solution is that it
may need to evaluate a rather large number of design represen-
tatives and thus becomes computationally unaffordable when
the objective function is expensive (3,496T vs. 192T or 105T
in the case of fixture layout design). Determining how to re-
duce the number of function evaluations is exactly where a data-
mining method can help.

In summary, the advantages of the data-mining–aided design
are noteworthy. For the multistation fixture layout design, it

Table 3. Comparison of Optimization Methods

Time for evaluating the
Optimization method S Time (sec) objective function

Simplex search 6.825 73.8 3,200T
Simulated annealing (kB = .9) 3.831 542.8 28,503T
Simulated annealing (kB = .95) 3.979 259.5 13,606T
Direct evaluation of design representatives 3.892 79.3 3,496T
Data-mining–aided design using CART model 3.913 52.3 192T
Data-mining–aided design using MART model 4.025 35.8 105T
Data-mining–aided design using kriging model 4.020 41.8 105T

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

DATA–MINING–AIDED OPTIMAL DESIGN 347

yields a solution with a sensitivity value as low as a random
search method can find while taking a shorter time than a local
optimization method (the simplex search takes 73.8 seconds).
Local optimization can be applied to the best design found by
the data-mining method. It will lead to a small improvement by
reducing the sensitivity value further down to 3.868. It is our
observation that the data-mining–aided design can often pro-
duce a satisfactory design result without the need to apply a
local optimization method.

Regarding the design selection rule found by the CART
shown in Figure 6, we find that for the feature of between-
locator distance, only the extreme values (the largest one, F1;
the smallest one, F5; and the second-smallest one, F4) matter. In
fact, the restriction on F1 is F1 > 177.28 mm, which will be sat-
isfied in most designs. Hence more insights come from the rules
associated with F4 and F5, which provide nontrivial conditions,
leading us to a design with low sensitivity values. For the fea-
ture of distance change ratio, all three related feature functions
play a role, that is, F6 > 1.15, F7 > 1.85, and F8 < 2.43. Basi-
cally, this set of rules suggests that a good design will probably
have a distance change ratio between 1.15 and 2.43. But the
average ratio should be more than 1.85. The set of design selec-
tion rules makes our original intuitions about the across-station
transition effect more quantitatively understandable. This un-
derstanding can be extended to facilitate the design of a larger
system with many more stations.

The best fixture layout found by our data-mining–aided
method is shown in Figure 7, where a fixture location is de-
noted by “+.” The fact that both locators on the rear quarter
panel are on the same side of the panel’s gravity center does
not cause problems here, because the panels are positioned on a
horizontal platform in our application. If the panels are actually
vertically positioned, then a force closure constraint in addition
to the geometrical constraint G(·) should be included in the op-

timization scheme [i.e., in eq. (1)] to ensure that the resultant
force and moment will be zero. In that situation, the resulting
optimal fixture layout is different, but there is almost no change
in the design procedure.

4. CONCLUDING REMARKS

This article presents a data-mining–aided optimal design
method. The method is applied to facilitate the optimal de-
sign of fixture layout in a four-station SUV side panel assembly
process. Compared with other available optimization methods,
the data-mining–aided optimal design method demonstrates
clear advantages in terms of both the sensitivity value that it
can find (only 2.2% higher than what a SA found) and the com-
putation time that it consumes (shorter than a simplex search
and one-tenth of what a SA takes). The benefit could be more
obvious for a larger system with a computationally expensive
objective function. This method, although demonstrated in the
specific context of fixture layout design, is actually rather flex-
ible. It can be applied to a broad variety of objective functions
and design criteria. It can also easily handle complicated geo-
metric and physical constraints.

The reason that data-mining methods can facilitate optimal
engineering design lies in its capability in knowledge discovery,
knowledge transfer, and knowledge encapsulation. The cluster-
ing method actually connects, without performing direct evalu-
ation of an objective function, vague human knowledge about
an engineering system to design parameters and objectives that
are mathematically defined. The reduction in evaluating an ob-
jective function will eventually generate a remarkable benefit in
terms of algorithm efficiency. Meanwhile, the knowledge about
the performance of an engineering system will become more
explicit and numerical once the set of design selection rules is

Figure 7. Optimal Fixture Layouts With the Lowest S Value.

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

348 PANSOO KIM AND YU DING

formed from a classification method. The accumulated knowl-
edge, expressed in design rules and the optimal design condi-
tions, can be translated into the optimization of a similar, yet
larger system.

Finally, we would like to add one more note on the use of
feature functions, which transfer engineering knowledge for
statistical treatments. Such an integration of engineering knowl-
edge and statistical methods is considered an important way
of improving statistical solutions when solving messy engi-
neering problems. Traditional ways of transferring engineering
knowledge include expert systems (Jackson 1999) and phys-
ical modeling. The former method is usually too qualitative,
and the latter is highly quantitative but less flexible; in many
sophisticated physical systems, accurate physical modeling of
the system is almost impossible. We feel that the inclusion of
feature function strikes a balance between being more quantita-
tive, and also sufficiently flexible in incorporating engineering
knowledge and understanding into the process of design opti-
mization.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from
National Science Foundation grants DMI-0217481 and DMI-
0348150 and from the State of Texas Advanced Technology
Program grant 000512-0237-2003. The authors also thank the
editor and referees for their valuable comments and sugges-
tions.

[Received September 2003. Revised November 2004.]

REFERENCES

Bertsimas, D., and Tsitsiklis, J. (1993), “Simulated Annealing,” Statistical Sci-
ence, 8, 10–15.

Camelio, A. J., Hu, S. J., and Ceglarek, D. J. (2003), “Modeling Variation Prop-
agation of Multi-Station Assembly Systems With Compliant Parts,” Transac-
tions of the ASME, Journal of Mechanical Design, 125, 673–681.

Ding, Y., Ceglarek, D., and Shi, J. (2000), “Modeling and Diagnosis of Multi-
Station Manufacturing Processes: State Space Model,” in Proceedings of the
2000 Japan/USA Symposium on Flexible Automation, July 23–26, Ann Ar-
bor, MI, 2000JUSFA-13146.

Fang, K. T., Lin, D. K. J., Winkle, P., and Zhang, Y. (2000), “Uniform Design:
Theory and Application,” Technometrics, 42, 237–248.

Fang, K. T., and Wang, Y. (1994), Number-Theoretic Methods in Statistics,
New York: Chapman & Hall.

Gen, M., and Cheng, R. (2000), Genetic Algorithms and Engineering Optimiza-
tion, New York: Wiley.

Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Element of Statistical
Learning, New York: Springer-Verlag.

Hillier, F. S., and Lieberman, G. J. (2001), Introduction to Operations Research
(7th ed.), New York: McGraw Hill.

Igusa, T., Liu, H., Schafer, B., and Naiman, D. Q. (2003), “Bayesian Classifi-
cation Trees and Clustering for Rapid Generation and Selection of Design
Alternatives,” in Proceedings of 2003 NSF Design, Service and Manufactur-
ing Grantees and Research Conference, Birmingham, AL, January 4–9.

Jackson, P. (1999), Introduction to Expert System (3rd ed.), Reading, MA:
Addison-Wesley.

Jin, J., and Shi, J. (1999), “State-Space Modeling of Sheet Metal Assembly
for Dimensional Control,” Transactions of ASME, Journal of Manufacturing
Science & Engineering, 121, 756–762.

Kim, P., and Ding, Y. (2004), “Optimal Design of Fixture Layout in Multi-
Station Assembly Process,” IEEE Transactions on Automation Science and
Engineering, 1, 133–145.

McKay, M. D., Bechman, R. J., and Conover, W. J. (1979), “A Comparison
of Three Methods for Selecting Values of Input Variables in the Analysis of
Output From a Computer Code,” Technometrics, 21, 239–245.

Nelder, J. A., and Mead, R. (1965), “A Simplex Method for Function Minimiza-
tion,” The Computer Journal, 7, 308–313.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, San Mateo, CA:
Morgan Kaufmann.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003), Design & Analysis of
Computer Experiments, New York: Springer-Verlag.

Schwabacher, M., Ellman, T., and Hirsh, H. (2001), “Learning to Set Up Nu-
merical Optimizations of Engineering Designs,” in Data Mining for De-
sign and Manufacturing, ed. D. Braha, Boston, MA: Kluwer Academic,
pp. 87–125.

Tibshirani, R., Walther, G., and Hastie, T. (2001), “Estimating the Number of
Clusters in a Data Set via the Gap Statistic,” Journal of the Royal Statistical
Society, Ser. B, 63, 411–423.

Viswanadham, N., Sharma, S., and Taneja, M. (1996), “Inspection Allocation in
Manufacturing Systems Using Stochastic Search Techniques,” IEEE Trans-
actions on Systems, Man and Cybernetics—Part A, 26, 222–230.

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1083-4427()26L.222[aid=6768669]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1083-4427()26L.222[aid=6768669]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0040-1706()21L.239[aid=523156]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1545-5955()1L.133[aid=6768670]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1545-5955()1L.133[aid=6768670]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1087-1357()121L.756[aid=5590466]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1087-1357()121L.756[aid=5590466]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1050-0472()125L.673[aid=6768671]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1050-0472()125L.673[aid=6768671]

