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In-process optical coordinate measuring machines offer the potential to diagnose the sources of the variations that are responsible for
product quality defects. Such a sensor system can thus help manufacturers to improve product quality and reduce process downtime.
The effective use of sensor data in the diagnosis of the sources of variations depends on the optimal design of the sensor system,
which is often also called the problem of sensor placement. This paper addresses coordinate sensor placement for the diagnosis of
dimensional variation sources in assembly processes. Sensitivity indices for the detection of the process mean and variance components
are defined as the design criteria and are derived in terms of process layout and sensor deployment information. Exchange algorithms,
originally developed for optimal experimental design, are revised and then used to maximize the detection sensitivity. A sort-and-cut
procedure is proposed, which is able to significantly improve the algorithm efficiency of the current exchange routine. The resulting
optimal sensor layout and its implications are illustrated in the specific context of a panel assembly process.

1. Introduction

Dimensional integrity is a major quality concern in many
discrete-part manufacturing processes. In the automotive
and aviation industries, for instance, dimensional problems
contribute to about two-thirds of the total quality problems
during a new product launch (Shalon et al., 1992; Ceglarek
and Shi, 1995).

Coordinate Measuring Machines (CMMs) are widely
used in discrete-part industries to ensure the dimensional
quality of a product. The mechanism of a CMM is illus-
trated in Fig. 1(a). A CMM usually consists of a spatial
frame that provides the coordinate reference (not shown in
the figure), a mechanical arm that can move along guided
tracks, and a probe that retrieves the coordinate infor-
mation when its tip touches the surface of a manufac-
tured workpiece. One disadvantage of CMMs is their low
throughput. Performing the measurement jobs sequentially,
a CMM with a single mechanical arm and touch probe will
usually take hours to finish all measurements on a compli-
cated product. For instance, a CMM can measure only six
to eight automotive bodies per day in an automotive body
shop which can fabricate 1000 units daily. In addition the
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high manufacturing costs of a CMM often limits the use of
multiple CMMs measuring jobs in parallel.

Recent advances in sensor technology have led to the
development of the optical CMM (OCMM). An OCMM
replaces the mechanical arm and the touch probe in a CMM
with an optical sensor unit (Fig. 1(b)), which consists of
a laser source and two CCD (Charged-Coupled Device)
image sensors. The laser source sends a light beam to the
surface of a workpiece and the CCD sensors detect the
reflected laser beam. The sensor unit is also installed within
a spatial frame and is able to calculate the coordinates of
the measured point relative to the frame reference using
triangulation.

The OCMM frame and sensor unit are much less expen-
sive than the CMM frame and the CMM’s touch probe. It
is therefore much cheaper than CMMs and it is possible
to deploy multiple optical sensor units and/or build more
OCMM stations, to perform the parallel measurement of
multiple product characteristics. An OCMM station with
multiple sensor units is capable of measuring as many as
150 product features on a car body within 1 minute (re-
fer to Fig. 1(c)). This high throughput capability enables
OCMMs to be built into the production process and ob-
tain 100% inspection of dimensional quality characteristics
(Apley and Shi, 2001).
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Fig. 1. Mechanism of a CMM and an OCMM.

The use of OCMMs results in a change in the quality
control philosophy. With CMMs, dimensional measure-
ments are taken offline and sampled from a large product
population. In this manner the CMMs are used to inspect
the key dimensional product features and ensure that they
are statistically acceptable. However, the implementation
of in-process OCMMs allows the continual dimensional
monitoring of every manufactured product and creates the
possibility of determining the underlying process variation
sources that are responsible for product defects; this process
is known as “root-cause diagnosis”. Root-cause diagnosis
is critical because the identification of variation sources will
lead to corrective actions, restoring the manufacturing sys-
tem to its normal condition in a timely manner.

Recent research efforts have advanced the state-of-the-
art of root-cause diagnosis in complicated manufactur-
ing systems: one focused application area is the automo-
tive assembly process. Statistical methods employed in that
area include: (i) in estimation methods (Apley and Shi,
1998; Lawless et al., 1999a, 1999b; Carlson et al., 2000);
(ii) pattern recognition using principal components (Hu
and Wu, 1992; Ceglarek and Shi, 1996; Ding et al., 2002a);
and (iii) factor analysis (Apley and Shi, 2001; Apley and
Lee, 2003).

The effective use of product measurements in root-cause
diagnosis depends to a great extent on the design of the
sensor system. A poorly designed sensor system may not
be able to provide the desired diagnosability or sensitiv-
ity in identifying variation sources. The design of the sen-
sor system is realized through the design or determination
of: (i) an individual sensor unit; (ii) the number of sensors
needed; (iii) sensor locations; and (iv) operational strate-
gies such as how many and how often measurements will be
taken. In this paper, we consider the use of a commercially
available optical sensor unit as described in Fig. 1(b). The
high measurement throughput of the chosen optical sen-
sor units makes their operations simple because in-process
data are automatically collected from every product. The
sensor system design considered in this paper focuses on

the determination of the number and locations of the coor-
dinate sensors; this is usually called the problem of “sensor
placement” in engineering practice.

To some extent, coordinate sensor placement is equiva-
lent to the selection (of the number and locations) of di-
mensional measurement features on a product. Relevant
research on the selection of dimensional measurement fea-
tures can be classified into two categories: (i) inspection-
oriented; and (ii) diagnosis-oriented. Inspection-oriented
feature selection is mainly based on the study of Key
Product Characteristics (KPCs) because the purpose of in-
spection is to ensure that the KPCs meet their designed
tolerances. KPCs may be decided through an empirical
analysis of the product/process flow (Ceglarek et al., 1994;
Soderberg and Carlson, 1999) or through a more quanti-
tative sensitivity-based design evaluation (Whitney et al.,
1994; Thornton, 1999; Ding et al., 2002b).

Product inspection involves performing a statistical in-
ference from the measured product features. Root-cause
diagnosis, on the other hand, involves making inferences
from process variation sources that are correlated with the
product measurements. For this reason, diagnosis-oriented
measurement feature selection aims at choosing those fea-
tures that can lead to a desired optimal condition (e.g., max-
imum separation) to enable the identification of variation
sources. This means that a criterion that characterizes the
distinction between variation sources needs to be defined
and then an optimization routine needs to be employed to
optimize the chosen criterion. Prior research on this ob-
jective includes the papers by Khan et al. (1998), Khan
et al. (1999), Wang and Nagarkar (1999), and Khan and
Ceglarek (2000). The methods developed by Khan and his
colleagues involve the maximization of the minimum dis-
tance between variation patterns that are computed as the
eigenvectors of a measurement covariance matrix. How-
ever, due to the fact that their diagnostic procedure as-
sumes the occurrence of a single variation source at a time,
their sensor placement strategy only ensures that this indi-
vidual variation source is optimally distinguished from the
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others. Another limitation is that their strategy is based on
a specific way to define and construct the variation patterns.
Their results may no longer be optimal if a different type of
variation pattern is defined and used. Wang and Nagarkar
(1999) developed a sensor placement strategy for a more
generic situation in which multiple simultaneous variation
sources may exist. A D-optimal criterion is used, the same
as that in the optimal experimental design (Fedorov, 1972;
Atkinson and Donev, 1992), and Powell’s direct search
(Powell, 1992) is employed to find the optimal sensor
placement.

In contrast with Wang and Nagarkar (1999), this paper
will investigate the use of an E-optimality instead of the
D-optimality as the design criterion for sensor placements.
The E-optimality characterizes the minimal sensitivity of a
coordinate sensor system in detecting the mean and vari-
ance components of variation sources. Optimization of such
a sensitivity criterion is equivalent to ensuring a maximum
separation of variation sources. This paper will develop an
inequality relationship so that a unified criterion can be
found for both mean-detection and variance-detection sen-
sitivities. Exchange algorithms, initially developed for opti-
mal experimental designs, were employed in optimizing the
chosen sensitivity criterion. Following an idea proposed by
Lam et al. (2002) in a molecule selection application, we
devise a sort-and-cut procedure to address specific prob-
lems relevant to sensor system design, which considerably
improves the algorithm efficiency.

This paper is structured as follows. In Section 2, we use
an automotive assembly process as a case in point to ex-
plain the procedure for root-cause diagnosis and present a
linear diagnostic model that links the product dimensional
measurements to the process variation sources. Design cri-
teria, i.e., the mean- and variance-detection sensitivity, and
their relationship, are discussed in Section 3. The optimiza-
tion algorithm and the suggested revision are presented in
Section 4. We discuss the resulting optimal sensor layouts

Fig. 2. Illustrative example: variation sources in panel assembly processes: (a) the assembly; and (b) the variation detection.

as well as a few practical issues in Section 5. Finally, we
conclude the paper in Section 6.

2. Formulation for root-cause diagnosis

In this section, we consider the dimensional measurements
taken in the auto-body assembly processes with the presence
of fixture-related process variation sources.

Figure 2(a) shows the side panel assembly of the Sport
Utility Vehicle (SUV) in Fig. 1(c). This side panel assembly
is made of four components: an A-pillar panel, a B-pillar
panel, a rail roof side panel, and a rear quarter panel. We
simplify each panel component in the assembly as a two-
dimensional (2-D) polygonal workpiece (Fig. 2(a)). In a 2-D
panel assembly process, each workpiece is usually held by a
set of fixtures during the assembly operation, illustrated in
Fig. 2(b). A set of fixtures constitutes of a four-way locator
(P1) that controls motion in both the x and z directions
(δP1(x, z)), and a two-way locator (P2) that controls motion
only in the z-direction (δP2(z)). The fixture location for the
whole assembly is indicated in Fig. 2(a) as P1 − P8. Optic
coordinate sensors are used to monitor the dimensional
integrity of the eventual assembly.

The workpiece should have a small positional perturba-
tion if all locator-contacts function properly within their
designed tolerances. If there is damage to the pinholes or
wear on the locators, the workpiece will then undergo a
larger random deviation, as compared to the designed tol-
erance, from its nominal position and thus cause a mean
shift or excessive dimensional variability on the final as-
sembly. In Fig. 2(b), for instance, sensors M1 to M3 could
detect a mean shift or excessive panel variability caused by
a large z-direction deviation δP2(z). In this case, the process
variation source is the low locator positioning repeatability.
After detecting a large mean shift or variability in the prod-
uct, we would like to identify the malfunctioning fixture
locator responsible for the dimensional quality defect.
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In order to perform root-cause diagnosis, the first step
is to establish a diagnostic model that links the product
measurements to the process variance sources. We here use
the simple example in Fig. 2(b) to get the flavor of how the
model is developed.

Denote by u the deviations at fixturing points such as
P1 and P2 and by y the deviations measured by coor-
dinate sensors. In Fig. 2(b), u = [δP1(x) δP1(z) δP2(z)]T ,
where δ is the perturbation operator. When a coordinate
sensor measures the position of a point, it generally re-
turns three coordinate values of that point in space. In
the 2-D assembly process discussed above, only two of
the three coordinates, i.e., those of x and z directions,
are of interest to us, and thus, the product measurements
are y = [δM1(x) δM1(z) δM2(x) δM2(z) δM3(x) δM3(z)]T .
However, whenever one more sensor is installed, two more
measurements will be added to the vector y in the 2-D as-
sembly process.

For dimensional control, the relationship between y and
u can be obtained by a standard kinematics analysis (Paul,
1981). In quality control, since the deviations in product
features, even when they are beyond their tolerances, are
still much smaller than the distances between locators, the
angles of the part rotations are in fact very small. Hence, a
linear model structure or a linearization of originally non-
linear systems is often acceptable for discrete-part man-
ufacturing processes. The linear diagnostic model can be
generally expressed as:

y = Au + v, (1)

where v is the additive sensor noise. Matrix A constitutes
multiple row blocks, i.e., AT = [AT

1 · · · AT
s ] with the ith

block as:

Ai =




1
Mi(z) − P1(z)
P2(x) − P1(x)

P1(z) − Mi(z)
P2(x) − P1(x)

0
P2(x) − Mi(x)
P2(x) − P1(x)

Mi(x) − P1(x)
P2(x) − P1(x)


, i = 1, . . . , s,

(2)

where s is the number of sensors, P1(x), Mi(z) etc are the
nominal coordinates of the locators and the sensors, respec-
tively. The number of variation sources (i.e., the dimension
of u) is denoted by p and the number of measurements (i.e.,
the dimension of y) is denoted by n. In this particular pro-
cess p = 3 and n = 2s that is the product of the number
of sensors and the measurements retrieved per sensor. For
the assembly in Fig. 2(a), where more parts with compli-
cated shapes and different orientations are involved, the A
matrix is more complex. However, it still follows the same
process as the simple example to develop the more complex
linear diagnostic model. For a detailed derivation of rele-
vant kinematic models, please refer to Jin and Shi (1999),
Mantripragada and Whitney (1999) and Ding et al. (2000)
for assembly processes or Djurdjanovic and Ni (2001) and
Zhou, Huang and Shi (2003) for machining processes.

In root-cause diagnosis, one will make inferences about
u based on a sample of measurements of y. The following
assumptions are usually made for this kind of problem:

Assumption 1. The p variation sources are independent so
that u has a diagonal variance-covariance matrix.

Assumption 2. Sensor noise v is independent of u. It is of
zero-mean and has the variance-covariance matrix σ 2

v In,
where In is an n × n identity matrix and σ 2

v is the variance
of the sensor noise.

A sensor system that satisfies assumption 2 is known as
a homogeneous sensor system. A coordinate sensor system
using sensor units from the same manufacturers and in the
same stage of their service lives qualifies as a homogeneous
sensor system. On the other hand, a sensor system con-
stituted by different types of sensors or the same type of
sensors but with different accuracies is a heterogeneous sen-
sor system. In this paper, we limit our discussion to the
design of a homogenous sensor system and include a dis-
cussion on how to deal with a heterogeneous sensor system
in Section 3.3. Additionally, we also assume in this paper
that all sensor units function properly and thus no sensor
fault is considered.

Model (1) appears to be similar to a traditional linear
regression model, e.g., y = Xβ + ε. The differences are as
follows. In regression, X is a data matrix containing mea-
surements of predictors, oftentimes determined through a
designed experiment. In model (1), A is not a data matrix
of predictors. Instead it is determined by system design pa-
rameters such as locator and sensor locations. The design
to determine A is not to design an experiment but instead
an engineering system. The A matrix is called a system ma-
trix in engineering system designs. Also, u is not the vector
of parameters but a vector of unknown random inputs. By
contrast, β in the above regression model is often a constant
unknown vector equivalent to the fixed effect in statistical
inference. In fact, our model (1) fits better to a mixed lin-
ear model with both fixed effects and random effects (please
refer to McCulloch and Searle (2000) for mixed linear mod-
els). If we write model (1) as:

y = Aµ + Aũ + v, (3)

where µ is the mean vector of u and ũ is its zero-mean
random part, then µ corresponds to the fixed effects and
ũ corresponds to the random effects. For root-cause di-
agnosis, one needs to detect abnormal variations of the
mean components µ ≡ [µ1 · · · µp]T and the variance com-
ponents θ ≡ [σ 2

1 σ 2
2 · · · σ 2

p ]T . Please note that we will assume
in this paper that knowledge about sensor noise variance,
σ 2

v , is available from the sensor vendor’s calibration and
specification.
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3. Design criteria for root-cause diagnosis

3.1. Diagnosability and sensitivity indices

In the theory of mixed linear models, Rao and Kleffe
(1988) defined parameter identifiability as the ability to ver-
ify whether or not the differences between input parameters
lead to differences of the corresponding distributions of the
observations y. Following this concept and also noting that
the distribution of y is usually specified up to the first- and
second-order moments in many engineering applications,
Zhou, Ding, Chen and Shi (2003) defined the diagnosabil-
ity for the mean and variance components as: a linear para-
metric function pTµ is said to be mean-diagnosable if:

pTµ1 �= pTµ2 ⇒ my|µ=µ1
�= my|µ=µ2

, ∀µ1, µ2, (4)

and a linear parametric function fTθ is said to be variance-
diagnosable if:

fTθ1 �= fTθ2 ⇒ vec(Σy)|θ=θ1 �= vec(Σy)|θ=θ2, ∀ θ1, θ2,

(5)

where my and Σy are the mean vector and covariance ma-
trix of y, respectively; vec(·) is an operator to stack the
columns of a matrix on top of one another, e.g., vec(Σ) =
[σ11 σ21 σ12 σ22]T for a 2 × 2 Σ.

The above definition characterizes whether or not the
sensor system provides enough information to ensure that
the mean and variance components of variation sources
can be separated. We can view it as: if a variation source
is diagnosable, no matter how small a change it under-
goes, we can theoretically find an algorithm to estimate
it provided that we have a large enough amount of sam-
ples. If a sensor system does not ensure the diagnosability,
no matter how much a variation source changes, we can-
not uniquely pinpoint which variation source undergoes the
change.

Diagnosability itself can be used as a design criterion
for sensor system design. In fact, a sensor placement strat-
egy leading to a full diagnosability was studied by Ding
et al. (2003). On the other hand, the diagnosability con-
dition does not make any distinction among diagnosable
systems even though some sensor systems may have a supe-
rior performance to others in the sense that it could easily
detect a small change in the variation sources. This differ-
ence of detection capability is characterized by the con-
cept of “sensitivity”, which may be interpreted as follows:
a sensor system that has a zero sensitivity to any one of
the variation sources provides no diagnosability, whereas
a sensor system with a nonzero sensitivity to all variation
sources possesses a certain level of diagnosability. It is desir-
able that a sensor system not only has a full diagnosability
but also that it is sensitive to the underlying changes of
variation sources. This paper will go beyond diagnosabil-
ity, aiming to achieve a maximum separation of variation
sources via the maximization of sensitivity indices defined
below.

In this paper, we consider a discrete-part manufacturing
process in the same setting as considered in Zhou, Ding,
Chen and Shi (2003). Then, based on model (3), we can
have:

my = Aµ, (6)

and

vec(Σy) = π(A)θ + σ 2
v vec(In), (7)

where π(·) is a matrix transform defined as:

π(A) = [(a1∗a1)T · · · (a1∗an)T · · · (an∗a1)T

· · · (an∗an)T ]T , (8)

and a j is the jth row vector of A, j = 1, . . . , n, and ∗ repre-
sents the Hadamard product (Schott, 1997).

Following the same spirit in defining diagnosability, the
sensitivity for detecting changes in mean and variance com-
ponents can be defined as the ratio of the change in the mean
or variance of y over a perturbation of the mean or variance
of the input sources. We define the detecting sensitivity of
mean and variance components as follows.

Definition 1. Given measurement y, the mean-detecting sen-
sitivity, denoted as Sm, is defined as:

Sm ≡ min
δµ �=0

(δmy)T (δmy)
(δµ)T (δµ)

, (9)

and the variance-detecting sensitivity, denoted as Sv, is de-
fined as:

Sv ≡ min
δθ�=0

tr
(
δΣ̃

T
y δ�̃y

)

(δθ)T (δθ)
, (10)

where Σ̃y is the covariance matrix contributed from the
process variation sources, i.e., vec(Σ̃y) = π(A)θ.

Given the linear relation in Equations (6) and (7) and
utilizing the eigenvalue property of a symmetric matrix
(Schott, 1997, p. 105), we can express the above-defined sen-
sitivity indices in terms of the eigenvalue of AT A as follows
(the proof is fairly straightforward and is thus omitted):

Sm = λmin(AT A) and Sv = λmin(π(A)Tπ(A)), (11)

where λmin(·) denotes the smallest eigenvalue of a matrix.
In deriving Sv, the relation that tr(δΣ̃

T
y δΣ̃y) = vec(δΣ̃y)T

vec(δΣ̃y) is used.

Remark 1. The squared summations of the elements in the
input/output vectors are used in the above definition so that
we can have a scalar sensitivity index that is easy to interpret.
The squared summations are equivalent to the Euclidean
norm of the corresponding vector/matrix; tr(δΣ̃

T
y δΣ̃y) is

the Euclidean norm of matrix δΣ̃y.

Remark 2. In the variance sensitivity definition, we use Σ̃y
rather than Σy because it is assumed that the sensor noise
variance σ 2

v is known.
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Remark 3. Without the minimum, the ratios in Equations
(9) and (10) are input dependent. Using input-dependent
indices, we will have to design a sensor system for individ-
ual changes of the input variation source and it would then
be inconvenient. The minimum operator defines the sen-
sitivity indices to be the smallest ratios given all possible
combinations of input changes. Equation (11) shows that
the above defined sensitivity indices are in fact input inde-
pendent; they are solely determined by the system matrix A.

Remark 4. The above definition is also consistent with the
intuitive relation between sensitivity and diagnosability,
which we noted before the definition. The diagnosability
conditions obtained in Zhou, Ding, Chen and Shi (2003)
are: the mean components are diagnosable if AT A is of
full rank and the variance components are diagnosable if
the matrix {(aT

i aj)2}p
i,j=1 is of full rank, where ai is the ith

column vector of A and {·}p
i,j=1 is a p × p matrix. It can

be shown that {(aT
i aj)2}p

i,j=1 = π(A)Tπ(A); the proof is in-
cluded in Appendix 1. It is then apparent that a full diagnos-
ability is guaranteed if the corresponding sensitivity index
is nonzero and a system with a zero sensitivity is equivalent
to the one that is not fully diagnosable.

The mean- and variance-component sensitivity indices
Sv and Sm are also related to the estimation variance of the
mean and variance components. To see this, consider the
following. For Equation (7), if the variance components
in θ are estimated using a maximum likelihood estimator,
the variance-covariance matrix of θ̂ is approximated by the
inverse of Fisher information matrix as

cov(θ̂) ∝ [{
tr

(
Σ−1

y

(
aiaT

i

)
Σ−1

y

(
ajaT

j

)}p
i,j=1

]−1
. (12)

A constant is omitted from the right-hand side in Equa-
tion (12), thus we used “∝” instead of “=”. This expression
suggests that cov(θ̂) depends on the true value of θ be-
cause vec(Σy) = π(A)θ + σ 2

v vec(In). Under a normal pro-
cess condition when there are no outstanding variation
sources, we can assume that θ = 0 and then Σy = σ 2

v In.
Then Equation (12) becomes:

cov(θ̂)|θ=0 ∝ σ 4
v

[{
tr

(
aiaT

i ajaT
j

}p
i,j=1

]−1

= σ 4
v

[{(
aT

i aj
)2}p

i,j=1

]−1 = σ 4
v [π(A)Tπ(A)]−1. (13)

Thus, the variance of the linear parametric function fT θ̂

under a normal process condition is:

cov(fT θ̂)|θ=0 ∝ σ 4
v fT [π(A)Tπ(A)]−1f (14)

Then, the maximum variance of fT θ̂ for any unit vector f is
the maximum eigenvalue of [π(A)Tπ(A)]−1. In other words,
Sv, the smallest eigenvalue of [π(A)Tπ(A)], represents the
maximum variance of fT θ̂, ∀‖f‖ = 1, under a normal pro-
cess condition. The criterion to maximize Sv is then equiv-
alent to selecting an A to minimize the maximum variance
of fT θ̂ under a normal process condition.

Similarly, it is not difficult to show that maximizing Sm
is equivalent to minimizing the maximum variance of the
linear parametric function pT µ̂, ∀‖p‖ = 1, under a normal
process condition.

Since Sm and Sv are different functions of A, a sensor
system design may end up with different results, depend-
ing on which one of the objectives is chosen, either achiev-
ing the maximum mean-detection sensitivity or the maxi-
mum variance-detection sensitivity. One can define certain
weighted criteria, for instance, c1S2

m + c2Sv as the objective
function, where constants c1 and c2 determine the trade-off
between mean- and variance-detection sensitivities.

However, further investigation found an inequality rela-
tionship between Sm and Sv; S2

m is a lower bound for Sv for
the same A. The result is stated in Lemma 1 and its proof
can be found in Appendix 2.

Lemma 1. For the same A, Sv ≥ (Sm)2

Based on Lemma 1, we choose to use Sm, i.e., λmin (AT A),
as the unified criterion for optimal sensor placement in or-
der to simplify the design process. In other words, we op-
timize Sm, while regulating Sv. Nonetheless, the optimiza-
tion routines presented in the subsequent section should
be equally applicable to the maximization of Sv or other
combination using Sm and Sv.

3.2. Formulations for sensor system optimization

With the unified sensitivity index Sm = λmin (AT A), the
problem of optimal sensor placement will be formulated
as follows. The design parameters are the number and lo-
cations of sensors, denoted by ϕ(s) ≡ [X1 Z1 · · · Xs Zs ]T .
Also, certain constraints should be satisfied. One constraint
is that a sensor location has to be a point on the product (ge-
ometrical constraint), represented by G(·) > 0, where G(·)
represents the appropriate geometry function of a manu-
factured product. Also, in order for OCMMs to be able to
perform parallel measurements, we require a second con-
straint to avoid any possible optical interference among
laser beams when taking measurements. Our engineering
knowledge indicates that it would be sufficient to enable
parallel measurements if we keep the sensor locations at
least 100 mm apart from one another. For a given number
of sensors, we try to find the optimal sensor locations that
maximize Sm, namely:

max
ϕ(s)

Sm ≡ λmin(AT A), (15)

subject to G(ϕ(s)) ≥ 0 and the 100 mm apart rule.
The criterion for maximizing λmin (AT A) is the same as

the E-optimality in optimal experimental design, initially
proposed by Ehrenfeld (1955), when the A matrix is con-
sidered to be mathematically equivalent to X in a regression
model. Other optimality criteria have also been proposed
for optimal experimental design, such as the D-optimality
(max det(AT A)), the A-optimality (max tr(AT A)), where
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tr(·) and det(·) are the trace and the determinant of a ma-
trix, respectively. These three measures are related to one
another through the eigenvalues of AT A, {λi}p

i=1:

Dopt : det(AT A) = �
p
i=1λi;

Aopt : tr(AT A) = �
p
i=1λi; and Eopt : λmin(AT A). (16)

The D-optimality criterion is the most widely used in
experimental designs mainly due to its attractive mathe-
matical properties (Fedorov, 1972, p. 138; Atkinson and
Donev, 1992, p. 107). It possesses an invariant property un-
der scaling, i.e., optimal experiments can be designed using
a group of standardized dimensionless variables instead of
the original physical variables.

Those optimality criteria were also used in observer de-
sign for control systems (Muller and Weber, 1972; Patton
et al., 1989) as well as other engineering systems designs
(e.g., the D-optimality was used by Kiridena and Ferreira
(1994) and by Wang and Nagarker (1999)). In sensor system
design, D-optimality may be interpreted as: if an eigen-
value of AT A is considered as the sensitivity index for
the canonical model with a diagonalized A matrix, the D-
optimality corresponds to the multiplication of sensitivi-
ties for all input/output pairs. Likewise, the A-optimality
is the sum of those sensitivities. These two criteria at-
tempt to optimize an aggregated (multiplication or sum-
mation) sensitivity when designing a sensor system. By
contrast, the E-optimality is more conservative because it
optimizes the smallest sensitivity. Our experience indicates
that the E-optimality criterion is more easily accepted by
practitioners.

Also, the invariant property of the D-optimality may be
inapplicable to an engineering system design because engi-
neering system designs are often accompanied by complex
constraints, e.g., the geometric constraints imposed by the
shape of the rear quarter panel (refer to Fig. 2(a)). Applying
a standardization process will distort the design space and
render the final design meaningless. So it is usually impossi-
ble to design a general engineering system based on a group
of dimensionless standardized variables such as those used
in the design of experiments.

The optimization in Equation (15) does not determine
the number of sensors. Noting that an increase in sensor
number will generally result in a larger Sm, people usually
try to determine the appropriate sensor number by trading-
off between the benefit gained from an increase in Sm and
the cost of more sensors. However, in engineering practice,
it is not easy to quantify the monetary saving associated
with an increase in Sm. It is thus difficult to define an ac-
curate cost function to attain this trade-off. Alternatively,
we can specify a lower bound for Sm. Then, the second op-
timization formulation is to minimize the sensor number,
while satisfying a lower bound constraint on Sm in addition
to other constraints previously specified, i.e.,

min
ϕ

s, (17)

subject to

Sm ≥ c, G(ϕ(s)) ≥ 0, and the 100 mm apart rule.

where c is the lower bound, decided based on engineering
requirements.

In the next section, we will mainly study the optimization
of Equation (15), which is equivalent to the “exact” design
problem in optimal experimental designs. The optimiza-
tion of Equation (17) can be achieved using the resulting
exact design algorithm with a gradually increasing sensor
number. In Section 5, we will briefly discuss other consid-
erations in the solution of Equation (17) as well as how to
select constant c.

3.3. Alternative assumptions on sensor noises

It has been assumed in this paper that the sensors are ho-
mogeneous, that is, the variance-covariance matrix of the
sensor noise is σ 2

v In. A general covariance structure for sen-
sor noise has also been studied in the literature (Apley and
Shi, 1998; Djurdjanovic and Ni, 2003, 2004). Suppose that
in Equation (1), v is of zero mean and has the variance-
covariance matrix Σv. Following a similar treatment that
presented in the aforementioned literature and also being
consistent with our assumption on σ 2

v in Section 2 (after
Equation (3)), Σv is assumed to be known from the sen-
sor vendor’s specifications or it can be estimated from a
gauge repeatability study. As such, Equation (1) can be
transformed by pre-multiplying Σ−1/2

v as:

y∗ = A∗u + v∗, (18)

where y∗ = Σ−1/2
v y, A∗ = Σ−1/2

v A, and v∗ = Σ−1/2
v v. Ap-

parently, this transformed v∗ has an identity variance-
covariance matrix, meaning that we transform the origi-
nal equation into a format conforming to the homogeneity
assumption. Thus, the established design criteria and the
subsequent algorithm should be applied to the transformed
form of Equation (18).

4. Exchange algorithm and its revision

4.1. Exchange algorithms from optimal experimental design

The optimization problems formulated in Section 3 are non-
linear in the design parameter ϕ. Standard nonlinear pro-
gramming approaches (such as quadratic programming)
are usually based on a derivative calculation and they will
be easily trapped in a local optimum. The derivative-based
approaches will be ineffective for a nonconvex design space,
imposed by the geometry of panels involved, not to men-
tion those design spaces in the assembly that are not simply
connected, for instance, the rear quarter panel, since the
window-opening area is not a candidate area for sensor
placement.

In the literature on optimal experimental design, ex-
change algorithms have been proposed to optimize the
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D-, A-, and E-optimality design criteria; please see Cook
and Nachtsheim (1980) and Atkinson and Donev (1992)
for reviews and comparisons of exchange algorithms.
According to Meyer and Nachtsheim (1995), exchange al-
gorithms have more freedom to maneuver in a complicated
design space because each of its exchanges involves only a
section of the design parameters (associated with one design
point). Thus, exchange algorithms can be more effective in
escaping from local optima than derivative-based nonlin-
ear programming. Additionally, exchange algorithms have
other advantages that favor their use in engineering system
designs and these include: their procedures are intuitive and
implementation is easy; the algorithms are flexible and can
easily handle complicated constraints in engineering system
design; they can also be used for a wide variety of design
criteria.

To use exchange algorithms, we first discretize the con-
tinuous design space. We call the resulting discretized de-
sign space with Nc candidate sensor locations the candidate
space (denoted as Dc) and the space with s current sensor
locations the sensor space (denoted as Ds). The basic idea
of an exchange algorithm is to start with a set of s design
points (i.e., the sensor location) in Ds, usually randomly se-
lected, and exchange the current design points with those
points in the much larger Dc in order to improve the cho-
sen design criterion. In exchange algorithms, however, the
exchange action is not carried out for every single point.
However, every point in Ds is tested against a point in Dc,
meaning that any improvement in the design criterion is
recorded as if the point in Ds had been exchanged with a
point in Dc. There are different variants to the above basic
idea, depending on how often the action of exchange is ac-
tually carried out. One option is to perform the exchange
action after all points in Ds have been tested against the
entire set of points in Dc. It exchanges the pair of points,
one in Ds and one in Dc, which made the maximum im-
provement in the design criterion. This option is actually
the celebrated Fedorov exchange algorithm. Another op-
tion is to perform the exchange action for every point in Ds
after that design has been tested against all points in Dc. In
other words, point i in Ds will be exchanged with the point
in Dc that maximizes the improvement in the design crite-
rion and the same action is repeated in a sequential order
for i = 1, 2, . . . s. The second option is the modified Fe-
dorov exchange. In combinatorial optimization, these are
two extreme cases of a general k-exchange algorithm, with
k = s for the Fedorov exchange and k = 1 for the modified
Fedorov exchange (Aarts and Lenstra, 1997).

When applying them to the sensor placement problem,
we notice that exchange algorithms, especially the Fedorov
algorithm, can consume a great deal of CPU time for
cases containing a large number of sensors. This is not sur-
prising since the exchange algorithm was initially devel-
oped for experimental design with a relatively small num-
ber of factors and experiments (Cook and Nachtsheim,
1980).

In the following section, we will introduce and implement
a sort-and-cut procedure that will shorten the computation
time without sacrificing much of the optimal value it finds.
A similar procedure for the revised exchange algorithm has
been implemented in the application of fixture layout design
(Kim and Ding, 2004). In this paper, we need to tailor the
algorithm under the specific context of sensor placement;
more details are presented in the following.

4.2. Fast exchange algorithm with a sort-and-cut procedure

Let us first conceptually understand the factors that affect
the algorithm’s computation time. Define the process to
pass over the entire Dc set once as a “loop”. There are
two major factors that affect the run time: (i) the average
number of loops; and (ii) the size of the candidate space Nc.
In order to reduce the computation time, we will have to
reduce the average number of loops as well as the size of
the candidate design space Nc. The following sort-and-cut
procedure is employed to achieve both goals. The basic idea
is to perform multiple exchanges in each loop to reduce the
average number of loops, and after each loop, discard a
subset of the candidate design points to reduce Nc.

In a design for a uniform coverage design in molecule se-
lection, Lam et al. (2002) suggested that instead of exchang-
ing one design point per loop, one may want to exchange
multiple candidate points in the upper tail of the distribu-
tion of improvements in the design criterion among all the
candidates. This means that the number of design points
that will be exchanged during each loop will be more than
one so that the average number of loops required to replace
all random initial designs can be reduced.

Different to the modified Fedorov algorithm, which uses
a design point in Ds as the pivoting point in each exchange,
Lam et al. (2002) used a candidate point in Dc as the pivot-
ing pointing. Specifically, for each point in Dc, add this point
to Ds and augment an s-sensor Ds to an (s + 1)-sensor de-
sign. In order to maintain Ds as a s-sensor design, we will
put one sensor, which makes the smallest decrease in the
sensitivity index, from the augmented Ds back to Dc. The
above process constitutes an exchange action.

Following the algorithm in Lam et al. (2002), we will
record the improvement in design criterion that a candi-
date location can make if the corresponding exchange is in-
deed carried out. After each exchange action, denote by �

the improvement in the Sm criterion, i.e., � ≡ Snew
m − Sold

m .
Record all �js (j = 1, . . . , Nc) when we loop through the Nc
candidate locations. Sort the value of the �js in a descend-
ing order as �(1) ≥ �(2) ≥ . . . and so on. The distribution
of improvements is approximated by the sorted values �(j).
Then, we will set an integer number q so that the first q can-
didate locations in the upper tail of �(j) will be exchanged
in each loop.

However, we also want to reduce the total number of
candidate points Nc. The sorted values of the design im-
provement �(j) actually provide us with valuable informa-
tion about the potential of a candidate location. Those
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candidate locations with a low � value are less likely to be
picked up by the exchange algorithm in the next iterations.
Thus, we could remove a section of the candidate points
after each iteration. Denote by α the portion of candidate
points that will be kept after a cut.

To implement this sort-and-cut procedure, there are two
parameters to be determined: q and α. In our sensor system
design problem, the sensor number in Ds is usually only
a small percentage of that in the Dc space (for instance,
Ds = 10 but Dc = 10 000). We recommend an aggressive
choice of α, e.g., from 10 to 20% (for the above example, if
α = 10% for the first two iterations, the remaining locations
in Dc are still about 10 times of that in Ds).

For a sort-and-cut procedure to work, the assumption
is that the distribution of improvements approximated by
data from the previous exchange routine can represent well
enough the distribution in the next exchange. However,
whenever an exchange happens, the distribution cannot be
exactly the same since the Ds space generating that distribu-
tion is no longer the same. The common ground is actually
constituted by the design points that are not exchanged in
the last iteration. Thus, for the above assumption to hold,
q should be smaller than s, namely 1 ≤ q < s. When q is
close to s, however, almost all the sensors in Ds will be ex-
changed in one iteration and the distribution recorded in
�(j) from the previous loop does not truly represent the
distribution for the new Ds space. A subsequent exchange
based on the �(j) could make a poor choice that has to be
re-done in the following loops. On the other hand, too small
a q will result in too few exchanges per loop and thus miss
our original goal of having multiple exchanges to reduce the
average number of loops. We therefore recommend select-
ing q = s/2 to strike a balance so that half of the sensors
in Ds will not be exchanged to provide a common ground
for distribution and half of the sensors will be exchanged
to reduce the average loop number.

Here we are different to Lam et al. (2002). Instead of
using q as the direct control on the number of exchanges,
Lam et al. (2002) set �(q) as the threshold to control the
exchange, i.e., if there is an improvement greater than �(q),
then carry out the exchange. We find that using �(q) in our
application is not effective. The difference is due to our
inclusion of a subsequent cut action, which is not included
in the procedure of Lam et al. (2002). The effect of the cut
action, as explained in the above paragraph, requires us
to have more direct control over the number of exchanges,
which cannot be fulfilled by using �(q) .

The algorithm for an s-sensor exact design is summarized
as follows.

Step 1. The candidate design space Dc is discretized and
s locations are randomly selected to form Ds. Per-
form exchanges for all locations in Dc and establish
the initial distribution for �.

Step 2. In every iteration:
2.1 rank the sensor locations in Dc in a descending

order according to their �j values;

2.2 cut off those locations with low �j values and
keep the top α × 100% of candidate points inDc;

2.3 exchange the sensor locations in Dc, which sat-
isfy the constraint condition, with the sensor lo-
cations in the current Ds space in a sequential
order, starting from the one with the largest �j.
Repeat this exchange for the first q sensors in
the sorted Dc.

Step 3. Repeat Step 2 until the improvement in design cri-
terion for two successive designs is smaller than a
predetermined threshold (we used 0.1%).

4.3. Implementation and comparison

The algorithms described in the above sections were coded
in Matlab and compared on the same computer. We mea-
sure the algorithm efficiency by the time that it takes to find
the optimal value. We measure the algorithm effectiveness
by the average value of optimal solutions (i.e., the average
Sm) it finds when a group of random sensor layouts is used as
the initial design. In the literature on algorithm comparison
(e.g., Cook and Nachtsheim, 1980), a relative effectiveness
R is often used, which is defined as the ratio of the average
optimal value over the best optimal solution found by all
the algorithms in the comparison under the same setting.
We use both measures in this study.

For the SUV side panel assembly in Fig. 2(a), we dis-
cretize it with candidate points 10 millimeters apart. Our
engineering experience indicates that this resolution of dis-
cretization is sufficient to generate a fine enough grid on a
panel that has a size of over several thousands of millime-
ters. The discretization results in a total of Nc = 13,304
candidate positions in Dc. As for the sort-and-cut proce-
dure, we choose α = 0.1 and q = s/2. In this application,
we only implement the cut action in the first iteration.

The optimization results are summarized in Table 1. The
values in Table 1 are the average of 50 trials with randomly

Table 1. Comparisons of the resulting algorithms

Average
time computer Average

(seconds) maximal Sm R

s = 2 Fedorov 27.24 1.0044 0.9995
Modified Fedorov 19.12 0.9975 0.9926
Fast exchange 2.47 0.9300 0.9255

s =4 Fedorov 98.12 2.0105 0.9980
Modified Fedorov 50.61 2.0088 0.9972
Fast exchange 3.24 1.9794 0.9826

s =6 Fedorov 106.50 3.0145 0.9979
Modified Fedorov 63.50 3.0150 0.9981
Fast exchange 4.21 2.9715 0.9837

s = 8 Fedorov 187.95 4.0177 0.9972
Modified Fedorov 87.55 4.0188 0.9975
Fast exchange 4.29 3.9913 0.9907

s = 10 Fedorov 376.80 5.0214 0.9978
Modified Fedorov 142.04 5.0207 0.9976
Fast exchange 5.11 4.9965 0.9928
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Fig. 3. Optimal sensor layouts: (a) s = 2; (b) s = 4; (c) s = 6; (d) s = 8; (e) s = 10; (f) s = 2 using Sv; (g) s = 6 using sv, and (h) s = 10
using Sv.
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generated initial designs for a sensor number ranging from
s = 2 to s = 10. To save space, only those results for an
even s are displayed, however, the analysis can be gener-
ally extended to odd s values. We also tried the algorithm
on a problem containing a larger number of sensors; the
fast exchange can solve a 60-sensor design within a minute,
whereas the Fedorov algorithm will take hours. The re-
sults clearly demonstrate that the fast exchange algorithm
is more efficient than the other tested algorithms without
any significant loss of effectiveness.

5. Optimal sensor layout and discussion

The resulting optimal sensor layouts with an even sensor
number (s = 2, . . . , 10) are shown in Fig. 3(a–h), where a
“∗” mark indicates a sensor location. From the layouts, we
observe that the sensors are located in areas close to the
panel boundary and many of them are actually on an edge.
This raises the question that if we can reduce our num-
ber of candidate locations by limiting our search to the
geometry boundary of each part in the first place? The an-
swer is yes. However, we should also notice that not all
the sensor locations are on an edge (refer to the cases for
s = 8 and s = 10). Based on empirical knowledge alone, it
is nontrivial to determine a search area that contains all
the potentially good sensor locations. In this study, we used
the approximated distribution of design improvements in
the sort-and-cut procedure, which provides more reliable
information and quantitative evaluation to find the poten-
tially good sensor locations. The algorithm is fairly gen-
eral and it can be used together with a reduced candidate
pool to further improve the algorithm efficiency, had the
aforementioned intuitive rule been implemented before the
search.

The above exact design algorithm finds an optimal sen-
sor layout when the sensor number is specified. In order to
optimally solve Equation (17), one may wonder if we can
use a sequential routine, i.e., we start from an optimal two-
sensor design (which is easy to find), and then sequentially
add one more sensor from Dc to Ds which maximizes the
resulting Sm, until eventually Sm ≥ c. For such a sequen-
tial strategy to work well, the sensor layout for the (s − 1)
sensors should be a subset of the optimal layout for the s
sensors. This might be true when the sensor number is small
(s < 4) but it does not stay that way when the sensor num-
ber become larger. Although we did not show the sensor
layouts for odd sensor numbers, they actually agree with
the phenomenon demonstrated by the layouts displayed in
Fig. 3(a–h). Therefore, the sequential routine could miss the
optimal layout. Nonetheless, we can combine the sequential
probing and the exact design. That is, first use sequential
routine to probe and find a sensor number which can yield
Sm ≥ c and then switch to an exact design routine to find
the optimal sensor locations for sensor numbers around the
one found by the sequential routine. This way, we can skip

a number of time-consuming exact designs, especially when
the resulting sensor number is relatively large.

In the optimization of Equation (17) we specify a con-
stant c to stop the algorithm. Usually the choice of c de-
pends on engineering requirements and it is specified for
a particular context. In this study, we can choose c based
on the accuracy requirement. It is known that the OCMM,
although more agile and faster, is not as accurate as the me-
chanical CMM: the OCMM measurement repeatability is
five to 10 times lower than that of the CMM (Hu, 1990). Let
us be optimistic and consider that an OCMM is five times
less accurate than a CMM, namely, σ 2

v,OCMM = 5σ 2
v,CMM.

According to the arguments after Lemma 1, under a nor-
mal process condition, the maximum variance in estimating
process mean components, and also the lower bound for the
maximum variance in estimating the process variance com-
ponents, is:

σ 2
v,OCMM

Sm
.

In order to achieve the same variance level as that obtained
if a CMM was used to directly measure the process varia-
tion source, we require that σ 2

v,OCMM/Sm < σ 2
v,CMM, which

translates into Sm > 5. Thus, we will choose c = 5 in this
study. Certainly, this value may change when the accuracy
requirement is different. However, the above logic can still
be applied to determine an appropriate c. In choosing c = 5,
we find that 10 sensors will provide a sensing capability
equally as good as that of a CMM.

One may also wonder what happens if we use Sv instead
of Sm as our design criterion. Examples using Sv are shown
in Fig. 3(f–h) for s = 2, 6 and 10. Interestingly, the sensor
layouts using Sv bear a strong resemblance to those using
Sm, especially in terms of the areas where the sensors are
located. Of course, the resulting layouts using Sv deviate to
some extent from those using Sm and the deviation is less
obvious for s = 2 but is more appreciable for a larger s.

6. Conclusions

This paper presents statistical and optimization methods
for the coordinate sensor placement for the estimation of
the mean and variance components of variation root causes.
In an exclusion to previously defined diagnosability indices,
sensitivity indices of a sensor system are defined to charac-
terize the capability of the sensor system to detect the under-
lying process mean and variance changes. Mathematically,
they are equivalent to the E-optimality criterion proposed
in optimal experimental design studies. Optimization of the
design criterion is then fulfilled by revising the exchange al-
gorithm. We have presented a fast exchange routine with a
sort-and-cut procedure, which considerably reduces the al-
gorithm’s computation time while maintaining the optimal
value it can find.
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It is noted that the exchange algorithm, including its vari-
ants, has been intensively studied and broadly applied in ex-
perimental designs. However, its application to engineering
system design is not extensively explored. Given the flexibil-
ity of exchange algorithms and the empirical evidence that
the presented fast exchange algorithm is capable of han-
dling large-scale sensor system designs, much more needs
to be done to present theoretical justifications of the algo-
rithm’s performances.

Dimensional variation reduction is critical in ensuring a
high product quality in discrete-part manufacturing. The
effective use of sensor data to diagnose variation sources
depends to a great extent on the optimal design of a sen-
sor system with multiple sensors. The optimal design of
sensor systems will surely make the task of variation root-
cause diagnosis more meaningful and efficient. The criteria
and methods presented in this paper will find applications
beyond coordinate sensor placement since the approach is
based on a general linear system model.
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Appendices

Appendix 1

Proof of {(aT
i aj)2}p

i,j=1 = π(A)Tπ(A). Recall that (aT
i aj)2 =

tr(aiaT
i ajaT

j ) and tr(AB) = vec(A)T vec(B) for any symmet-
ric matrices A and B. The (i,j) element in {tr(aiaT

i ajaT
j )}p

i,j=1

is (vec(aiaT
i ))T vec(ajaT

j ). Actually, vec(aiaT
i ) is the ith col-

umn vector in π(A). This leads to the conclusion that
π(A)Tπ(A) = {(aT

i aj)2}p
i,j=1. �

Appendix 2

Proof of Lemma 1. We know that {aT
i aj}p

i,j=1 = AT A. Then,
{(aT

i aj)2}p
i,j=1 is actually (AT A) ∗ (AT A). From the above

proof, we know that {(aT
i aj)2}p

i,j=1 = π(A)Tπ(A), which
means that π(A)Tπ(A) = (AT A) ∗ (AT A). Theorem 7.28 in
Schott (1997, p. 276) states that λmin(A ∗ B) ≥ λmin(AB)

for any non-negative definite matrices A and B. The ma-
trix AT A is a non-negative definite matrix so that we
can have λmin((AT A) ∗ (AT A)) ≥ λmin((AT A)(AT A)). Since
λmin((AT A)(AT A)) = λ2

min((AT A)), the above inequality is
equivalent to λmin(π(A)Tπ(A)) ≥ λ2

min(AT A). �
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