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Optimal parameter selection is a crucial step in improving the quality of electronic
packaging processes. Traditional approaches usually start with a set of physical experi-
ments and then employ Design of Experiment (DOE) based response surface methodol-
ogy (RSM) to find the parameter settings that will optimize a desired system response.
Nowadays deterministic computer simulations such as Finite Element Analysis (FEA) are
often used to replace physical experiments when evaluating a system response, e.g., the
stress level in an electronic packaging. However, FEA simulations are usually computa-
tionally expensive due to their inherent complexity. In order to find the optimal param-
eters, it is not practical to use FEA simulations to calculate system responses over a large
number of parameter combinations. Nor will it be effective to blindly use DOE-based
response surface methodology to analyze the deterministic FEA outputs. In this paper, we
will utilize a spatial statistical method (i.e., the Kriging model) for analyzing determin-
istic FEA outputs from an electronic packaging process. We suggest a sequential method
when using the Kriging model to search for the optimal parameter values that minimize
the stress level in the electronic packaging. Compared with the traditional RSM, our
sequential parameter selection method entertains several advantages: it can remarkably
reduce the total number of FEA simulations required for optimization, it makes the
optimal solution insensitive to the choice of the initial simulation setting, and it can also
depict the response surface and the associated uncertainty over the entire parameter
space. �DOI: 10.1115/1.2193551�
1 Introduction
With the increasingly competitive business environment, there

is a need to design and manufacture more technically complex
products, with assured product reliability in shorter time than the
current practice. In the mobile phones market, this translates into
better versatility, portability, and visual and ergonomic appeal
among other features. This in turn calls for continuous improve-
ment in electronic packaging.

A potential problem with electronic packaging for mobile
phones could be caused by the failure of the solder joints under
thermal and mechanical loading. Figure 1 shows the bending pro-
cess map, where the output response, denoted by y, is the von
Mises stresses generated in the joints. It is considered as the key
feature to assess solder reliability under bending. The input pa-
rameters, denoted by x’s, include geometry and material proper-
ties associated with the solder joint. Hence, our objective is to find
the optimal parameter setting of x that can minimize the stress
level in solder joints in an electronic packaging.

The process response y can be generally expressed as y= f�x�,
where x is a vector of the input parameters x’s. We suppose the
domain of y is � that is a fixed subset of Rd and x��, where d is
the number of input parameters under consideration. Given the
complexity of the packaging process, it is impossible in most
practical cases to express f�x� in closed form. In fact, Finite Ele-
ment Analysis �FEA� simulations have been widely used to nu-
merically evaluate this f�x� for electronic packaging mechanics
with a lot of success �1–3�. These FEA simulations entertain cer-
tain advantages over running physical experiments such as being
cost effective, easy to try out design alternatives, and thus have a
greater impact on product design and manufacturing.
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Here we consider a generic model of a second level packaging
design �electronic package to board� under bending loading. Fig-
ure 2 shows the Chip Scale Package �CSP�-Printed Wiring Board
�PWB� model used in this study. Engineers from our collaborating
company identified four potentially important parameters related
to the material properties of the PWB: PWB in-plane Young’s
modulus �x1�, component substrate in-plane Young’s modulus
�x2�, die attach Young’s modulus �x3�, and molding compound
Young’s modulus �x4�.

Table 1 provides the allowable parameter regions. The stress
conditions under bending load in the PWB are modeled and cal-
culated using a commercial FEA software, ANSYS �4�.

Once the FEA computer simulation is established, one may
want to include the FEA simulation as a part of an optimization
routine �such as any nonlinear optimization routine�. That is, to
find the optimal parameter settings to minimize the von Mises
stresses in solder joints so that the electronic packaging reliability
can be improved during a bending process. The difficulty is that
due to the complexity of the FEA codes, it is usually computa-
tionally expensive to calculate fFEA�x� �i.e., an evaluation of f�x�
using FEA� over a large number of parameter combinations,
which may be required to find the optimal parameter settings.

In light of this, people have suggested treating FEA simulations
as physical experiments, and then, following the response surface
methodology �5�, find the optimal system response by using an
economical number of experimental runs, or equivalently, FEA
simulations. As we will show in the latter comparison, the
experiment-based response surface methodology is not effective
to handle the complex FEA simulations in several aspects. One
key difference is that the model fitting methods need to be differ-
ent for treating deterministic FEA outputs and random physical
experimental data.

Figure 3 shows the difference in data analysis strategies for
physical and computer experiments. In physical experiments, ran-

dom errors are always present and hence the experimenters are
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encouraged to take replicates. The prediction from such replicated
data is done through the fitting of trend lines, e.g., from linear
regression. In computer experiments, linear regression can still be
used to get a trend line. However, it does not hold a clear meaning
in the absence of random errors. Recently spatial statistical meth-
ods like the Kriging model �6� have been used to analyze the
deterministic computer data. The Kriging model is an interpola-
tive model, that will fit a predictor to pass through all the observed
points because there is no uncertainty involved in the observed
value at a particular parametric level �refer to Fig. 3�b��. On the
other hand, we usually do not employ such an interpolative ap-
proach in the case of a physical experiment because each obser-
vation is associated with uncertainty and the interpolative ap-
proach will cause overfitting and thus poor prediction. The
Kriging predictor, as it passes through all the observed points, is
more complicated than a first or second order polynomial. For
other combinations of parameter levels where an observation �i.e.,
a computer output� is not available, the predicted value will be
obtained from interpolation using the Kriging model developed
from the observed points.

As is the case with most modeling approaches, an accurate
Kriging model over the entire parameter space may still require a
large number of FEA simulations. In this paper, we will devise a
sequential strategy to address the issue of how to reduce the num-
ber of FEA simulations when searching for the optimal parameter
settings. The basic idea is as follows. We are oftentimes more
concerned with a subregion or subregions of the parameter space
that contain the optimal settings, which suggests that collecting
data with the same density throughout the parameter space may be
unnecessary. In the sequential strategy, we choose in the initial
step to use a small number of FEA simulations, covering the
whole parameter space. Subsequently we keep zooming into a
smaller subregion of interest based on the predicted values and
prediction uncertainty calculated from the previous steps. More
FEA simulations will be conducted only for the small subregion
so that we can have additional information to fit a more accurate
model until a reasonably accurate optimum is found. The benefit
of our sequential parameter selection for improving the quality of
electronic packaging will be demonstrated by a comparison with a
traditional response surface methodology.

Our approach and conclusions are contained in the next four
sections. In Sec. 2 we present an overview of the spatial statistic
modeling �Kriging� method for handling deterministic computer
simulations. In Sec. 3 we present the details of the sequential
strategy for optimal parameter selection in an electronic packag-
ing process. In Sec. 4 we provide a comparison of the sequential
Kriging strategy with the traditional RSM. Finally, in Sec. 5 we
conclude the paper.

Fig. 1 Bendi
Fig. 2 The CSP-PWB model
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2 Review of Kriging Method
Sacks et al. �6,7� and Welch et al. �8� first proposed the use of

Kriging models for analyzing computer experiments or computer
simulation data. The idea of Kriging model for computer simula-
tions was extended from geostatistics �6,9�. Since we are inter-
ested in obtaining the response surface of function fFEA�x� based
on a set of spatially dispersed simulation outputs, our case is very
similar to the problem of establishing correlations among spatially
distributed locations in geostatistics. Such spatial correlations are
modeled using techniques of spatial statistics, which views the
spatial response function as a realization of a random field. As-
sume that y�x� is a response function of a d-dimensional vector of
inputs x over domain �. The notation Y�·� is used to distinguish
the random function from its realizations y�·�. Y�x� is most com-
monly given by

Y�x� = fT�x�� + Z�x� �1�

where �= ��1 �2 . . .�k�T is the vector of unknown regression co-
efficients, f�x�= �f1�x� f2�x� . . . fk�x��T is a vector of known regres-
sion functions, and Z�x� is a zero mean stationary Gaussian ran-
dom field over �. The intuition behind the model in Eq. �1� is that
while the regression portion of the model approximates the re-
sponse surface globally, the local deviations are captured by the
Z�x� component. In other words, Z�x� tries to capture the system-
atic departure from the global regression part. For this goal, Z�x�
is assumed to have covariance,

�2R�w,x� �2�

between Z�w� and Z�x� at two vector-valued inputs w and x in �,
where �2 is the process variance and R�w ,x� is the correlation
function. A common assumption in the Kriging modeling ap-
proach is that Z�x� is second-order stationary, i.e., the mean is
constant and Cov�Z�x1� ,Z�x2�� is independent of x and depends
only on the distance h. This is not a restrictive assumption be-
cause the nonstationary part of a system response, i.e., the global
trend, has already been modeled by the regression terms in Eq.
�1�.

This covariance structure of a Kriging model is in contrast to its
counterpart in the traditional RSM for physical experiments,
where the covariance matrix is assumed to be �2I. The �2I cova-
riance matrix is introduced to represent the randomness associated
with the replications at the same input. It, however, fails to capture
the spatial correlation between two different inputs. Therefore, the
new covariance structure of Z�x� provides the Kriging predictor
interpolative capability, as desired for analyzing deterministic
computer simulations.

In order to use the Kriging predictor in a practical setting, re-
searchers parametrize the correlation matrix. The most popular
family of correlation models in the computer experiments litera-
ture is the power exponential correlation family �10�. The product
of stationary one-dimensional correlations gives us

R�w,x� = �
j=1

d

exp�− � j�wj − xj�pj� �3�

where � j �0, 0� pj �2 and w ,x�� , with wj being the jth com-
ponent of w and xj being the jth component of x. In particular, we
will use pj =2, because R�w ,x� will then be infinitely differen-

process map
ng
tiable at zero.
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To realize a Kriging model, we need to estimate unknown pa-
rameters �2, �, and �= ��1 , . . .�d� from the FEA simulation data
�in our case we take pj =2 for all j�s�.

We first introduce the following notations. The n parameter
combinations used to compute the system response are denoted by
D= �x1 , ¯ ,xn� and the observed response vector corresponding to
D is yD= �y�x1�¯y�xn��T. Define RD as the n�n matrix of cor-
relations between Z’s at the input parameter combinations, where
RD�i,j�=R�xi ,x j� for 1� i , j , �n. The n�k regressor matrix is de-
noted by F= �fT�x1�¯ fT�xn��T.

We will employ the maximum likelihood estimation method to
estimate �2, �, and �. Under a normality assumption, the log-
likelihood function of �2, �, and � is

l��,�2,��yD� = −
1

2
�n log �2 + log�det�RD�� + �yD − F��TRD

−1�yD

− F��/�2� . �4�
The above equation is seldom directly used for obtaining the

maximum likelihood estimates �MLE� of �2, �, and �. It is usu-
ally simplified as follows. Assuming that � is known, we can get
the MLE of � and �2 as

�̂ = �FTRD
−1F�−1FTRD

−1YD and �̂2 =
1

n
�yD − F�̂�TRD

−1�yD − F�̂� ,

�5�
respectively. Substituting them in Eq. �4�, we can get a simplified
log-likelihood function with � as the only unknown parameter
vector,

l���yD� = −
1

2
�n log �̂2 + log�det�RD�� + n� . �6�

This equation is usually solved by numerical algorithms such as
the Newton-Raphson �11�, Nelder-Mead’s simplex search �12� or
the E-M algorithm �11�. In our implementation, we used the sim-
plex search, which is readily available in MATLAB, to solve Eq. �6�
for �̂, the MLE of �. Then, substitute �̂ back to Eq. �5� for �̂ and

�̂2. Given �̂2 and �̂, the covariance matrix for �Z�xi��i=1
n is �̂2R̂D,

where R̂D is the correlation matrix, with �̂ j’s in the place of � j’s.

Table 1 Allowable parameter regio

PWB in-plane Young’s
modulus �x1�

Component subst
plane Young’s mod

High 35 36
Low 20 12
Fig. 3 Difference between „a… physic
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Since it is not an option to exhaust the responses for all possible
parameter combinations using expensive FEA simulations, we
would like to predict y0 using the Kriging model developed from
the observed data yD. Because we are using Gaussian random
fields, both observed and unobserved values can be pooled to-
gether in a multivariate Gaussian vector. Thus the joint distribu-
tion of Y0 and YD is

	 Y0

YD

 � N1+n�	f0

T

F

�,�2	 1 r0

T

r0 RD

 �7�

where f0= f�x0� and r0
T= �R�x0−x1� , . . . ,R�x0−xn�� is the n�1

vector of correlations of Z’s at the simulated input xi �i
=1,2 , . . . ,n� and the untried input x0. Substituting �2, �, and �

with their MLEs and assuming R̂D as positive definite, Santner
et al. �10� derives the best empirical mean square error �EMSE�
predictor of y0 as

Ŷ0 = f0
T�̂ + r̂0

TR̂D
−1�YD − F�̂� . �8�

The prediction in �8� can be thought to be a sum of the gener-

alized least squares predictor f0
T�̂ and the second term r̂0

TR̂D
−1�yD

−F�̂�, which is the smooth of the residuals �yD−F�̂�. It has also
been demonstrated that when predicting the value for an existing
parameter combination, i.e., let x0=xi, i=1, . . . ,n, one will have

Ŷ0=y�xi� �10�. This result verifies that the Kriging model indeed
interpolates the existing simulation data, as shown in Fig. 3�b�. In
other words, the choice of Kriging model is better suited for de-
terministic FEA simulations.

Finally, we present the mean square error �MSE� for the Krig-
ing predictor as

MSE�Ŷ0� = �2�1 − �fT�x0� r̂0
T�x0��	0 FT

F R̂D


−1	 f�x0�
r̂0�x0�


 .

�9�

For details of the derivations leading to �9�, please refer to �6� or
�10�. The subsequent section will develop a sequential strategy,
using a Kriging predictor and evaluating its uncertainty
recursively.

for material properties „Unit: GPa…

in-
s �x2�

Die attach Young’s
modulus �x3�

Molding compound
Young’s modulus �x4�

5 30
1 15
n

rate
ulu
al and „b… computer experiments
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3 A Sequential Strategy for Electronic Packaging
Design

3.1 Overview of the Sequential Strategy. Suppose we are
searching for the maximal value over a response surface, as
shown in Fig. 4, where multiple peaks �or valleys for a minimi-
zation problem� are present. If we employ a traditional RSM, its
success in finding the global maximum depends on the starting
point. That is to say, the traditional RSM will be easily entrapped
in a local maximum �or minimum� by ascending �or descending�
the wrong hill �or valley�. This brings us to the important issue of
the lack of prior knowledge of the response surface. Before the
first simulation, we usually have no information about the re-
sponse surface and the current operating condition is often chosen
as the starting point. Such a starting point has no guarantee to take
us to the optimal setting.

The Kriging model does not depend on any starting point. It
tries to have an approximating envelope pass through a sample of
response outputs. Obviously, in order not to miss the optimal ar-
eas, we should choose the input parameter combinations to be
spread as evenly as possible in the parameter space, i.e., we need
to employ a so-called space filling design. Suppose to model the

Fig. 4 An illustration of a c
Fig. 5 An illustration of t
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above surface we choose a 16 simulation Latin hypercube sam-
pling design �this design will be described in detail later�, then
using a Kriging model we can fit a response surface. Figure 5�a�
shows the contour plot of the response surface generated by the
Kriging model. This fitted response offers a reasonably good rep-
resentation of the overall surface and captures the peak area.

Intuitively it appears that if we run more simulations in a sub-
region and then revise our Kriging model based on the modified
design, it should be able to represent the true surface better than
the previous one. The major decision is to select an appropriate
zooming-in subregion. There are two primary considerations. One
is to zoom in to the areas of interest, i.e., a sub-region where we
find large values of the response function �in a maximization
problem�. Another is to consider the uncertainty associated with
the Kriging prediction and add new simulations to the subregions
with high uncertainty values. The second consideration is to re-
duce the likelihood that an initial rough estimation may miss po-
tential optimum areas—for example, other peaks in Fig. 5�a� are
not very clearly identified. One can certainly choose to add new
simulations at subregions to satisfy both considerations.

For the example in Fig. 4, we choose to use the first criterion.
Figure 5�a� shows the sub-region selected and Fig. 5�b� shows the

plicated response surface
om
he sequential strategy
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contour plot after we have added nine simulations in the zoom-in
subregion. Together with the initial 16 simulations, the 25 simu-
lations make the prediction in that selected subregion more accu-
rate. Actually, the region outside the subregion is also benefited,
as can be seen through the clearer boundaries that have started to
form for the other peak area. The procedure can be iteratively
carried out until we see no significant improvement.

The general idea of sequential experiments has also been ap-
plied to other applications, such as in integrated circuit design by
Bernardo et al. �13� and artificial joint design by Chang et al. �14�.
The details of our sequential strategy will be illustrated using the
electronic packaging process. Also note that all variable values
are reported coded �0 for low and 1 for high�, unless indicated
otherwise.

3.2 Initial Step. The first step in the sequential strategy is
very important, as all our subsequent decisions are based on the
model we get after this step. Thus, we want to ensure that this
model is as good a representation of the response surface as pos-
sible. In this step we need to do the following.

�1� Choose a Kriging model, i.e., the regression polynomial
and the covariance structure, that will model the functional
response.

�2� Choose an experimental design plan to obtain a sample of
simulation outputs from the parameter space.

�3� Construct the Kriging model using the FEA simulation
outputs.

The regression polynomial and the covariance structure for the
Kriging model are often chosen based on the experimenter’s ex-
perience or prior knowledge about the process. Different from
ordinary regression analysis, the Kriging model is largely a non-
parametric method and thus the prediction result does not rely
heavily on the choice of regression polynomials. For this reason,
we choose a constant for the global regression part in Eq. �1� for
our electronic packaging problem. The constant is selected in lieu
of any polynomial equation just as a starting expression. Our aim
in this procedure is to keep the number of unknowns as low as
possible. Based on the first step analysis, we will have a better
sense if we should add polynomial terms �the first order or the
second order�. If we find that satisfactory results are not obtained
from just a constant regression component, then we will have to
add the appropriate polynomial terms. In fact, we will observe
from the latter analysis, the Kriging model with a constant poly-
nomial term is rather capable of capturing a complicated surface
topology with deterministic trends. Thus, for this electronic pack-
aging problem, we have f1�x�=1 and �1.

As for the covariance function, we choose the one given in Eq.
�3�, and for reasons discussed in Sec. 2 we assume pj =2. Thus, for
the electronic packaging model we have six unknown parameters,
namely �2, ����1 ,�2 ,�3 ,�4�, and �1.

Once the Kriging model structure is chosen, we need an experi-
mental plan to indicate how many FEA simulations will be per-
formed and at what parameter combinations. In comparison to the
design of physical experiments, where the data points are often
discrete factorial combinations and replicates are used to account
for the random variation, the design for deterministic computer
simulations should be spread throughout the design space without
any replications—since the output is deterministic, it does not
make a difference with or without replication. Such spread-out
designs are known as space-filling design, �10�.

Introduced by McKay et al. �15�, Latin Hypercube Sampling
�LHS� design is one of the most commonly used space-filling
designs. An LHS design yielding n design points involves strati-
fying the parameter space into n equal probability intervals for
each dimension, randomly selecting a value in each stratum and

combining them to get a design point. In a high parameter space
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�more than one dimension�, LHS design itself may not be neces-
sarily space filling. Researchers introduced other criteria such as
minimizing the maximum distance between design points �the
minimax criterion� or maximizing the minimum distance between
design points �the maximin criterion� to improve the space-filling
property �10�. These two criteria are considered equivalent but the
maximin criterion is more popular because it puts a direct restric-
tion on the minimum distance so that any two design points will
not be too close to each other. Hence, in our simulation plan, we
adopt the maximin LHS design, where a design point is a specific
parameter combination.

One critical question for running time-expensive FEA simula-
tions is how to decide the number of simulations �i.e., the number
of design points�. We would always like to run a lesser number of
FEA simulations, while keeping in mind not to affect the fidelity
of the model appreciably. The least number of simulations we
need to perform is the number of unknown parameters in the
Kriging model; we will otherwise have a singular problem. Ber-
nardo et al. �13� suggested as a rule of the thumb choosing the
number of design points to be three times the number of unknown
parameters for superior prediction performance. This means for a
case like ours, where we have six unknown parameters, we need
to run at least 6, but could have as many as 18 simulations, de-
pending on the prediction requirement.

We will have subsequent simulations to revise the first step
model, yet the first step should provide a good global view. We
recommend choosing the number of simulations in the initial step
to be 1.5 times the number of unknown parameters in our sequen-
tial simulation procedure. This implies that we will run 9 FEA
simulations in the initial step and we choose a 9�4 �d=4� maxi-
min LHS design; the design matrix is shown in the Appendix.
Simulations corresponding to this design were carried out in AN-
SYS and the corresponding simulated von Mises values �y� are
included in the Appendix as well. A Kriging model was con-

structed after calculating �̂2, �̂, and �̂ as �̂2=37.81, �̂

= �2.5341,0.6286,0.4502,1.0967�, and �̂=170.47.
Finally, the Kriging model is used to generate predicted values

over the parameter space. We can also use Eq. �9� to calculate the
uncertainty associated with the model. In order to have a rough
idea of what the response surface looks like, we display the con-
tour plot of the response and its MSE value in Fig. 6 using two
input variables x1 and x2 �other variable pairs can be used in the
same way�, where the black dots indicate the locations of the nine
parameter combinations.

We use this Kriging predictive model to explore the four-
dimensional design surface. Optimization routines such as the
simplex search are often employed to find the optimal region. In
order to avoid being entrapped into local optima, random search
based algorithms �genetic algorithm or simulated annealing� are
also used. In our case, since we have a relatively low dimension,
we simply choose to generate predicted values over a lattice of the
parameter space for obtaining the minimum. The predicted and
actual minima together with the corresponding parameter values
are given in Table 2.

3.3 Subsequent Steps. Naturally, we will add more simula-
tions in the following steps to improve our model prediction and
find the minimal response value. The key question is on which
parameter combination should we run additional simulations. We
will use both zoom-in criteria: �i� run more simulations over a
region of interest and �ii� run extra simulations in a region of high
uncertainty. The selection of zoom-in region is subjective in na-
ture, depending on design objectives and the designers’ under-
standing of underlying physics. We recommend using graphic
tools such as main effect plots or response contour plots to facili-
tate designers in selecting a region of interest.

3.3.1 Reduce The Overall Uncertainty Level—The 2nd Stage.

The next step is to reduce the prediction uncertainty because the

AUGUST 2006, Vol. 128 / 709



existence of a high uncertainty will mislead us to a region where
the true response value is not small at all, and thus will taint our
efforts in finding the minimum region. Figures 7�a�–7�f� show
MSE contour plots for pairwise design variables; given four de-
sign variables, we have six such plots.

We can certainly observe some regions with high uncertainty.
For instance, given the true response around 170, an MSE of 17
accounts roughly for 10% of the response value. We thus identify
zoom-in subregions with a 10% error, which translates to a bound-
ary with a MSE value between 15 and 20. Following this thought
and also utilizing our graphic plot, we marked �with a thicker dash
line� on each contour plot our zoom-in sub-region, e.g., it is 0.8
�x1�1.0 and 0�x2�0.3 in Fig. 7�a�. A similar procedure ap-
plies to other plots in Fig. 7, and we eventually take the union of
all the subregions as the region to be zoomed in.

0.8 � x1 � 1.0; 0 � x2 � 1.0; 0 � x3 � 1.0; 0 � x4 � 1.0

�10�
We then choose a six-simulation �six is the number of unknown

parameters� LHS design over the zoom-in region and concatenate
the data points to our previous design to get a modified 15-
simulation design. Please refer to the Appendix for the design
matrix.

With the 6 additional simulations, a new Kriging model was
developed using the FEA outputs from a total of 15 simulations.

The updated model parameters are �̂2=27.2614, �̂

= �4.1054,0.5849,0.3153,0.8876�, and �̂=171.82. The prediction
of the minimum from the second stage model is ŷ=157.57, cor-
responding to the same design parameters as in Table 2 and the
true response value of y=154.44. Obviously, the minimum point
has not changed, but we have successfully reduced the prediction
uncertainty to be much less than 5% in the majority of the regions,
as evidenced by the MSE plots in Fig. 8. With this small level of
uncertainty, the minimal value region indicated by the prediction
model can be deemed trustworthy.

3.3.2 Refine the Location of the Minimum Point—The 3rd
Stage. The second stage Kriging model predicts that the minimum
response value is about y=154.44, which sets a target for our

Table 2 Results after the initial step „in G

x1 x2 x3

20.0 �0.0� 16.8 �0.2� 3.0 �0.5�

Fig. 6 Contour plots of the re
710 / Vol. 128, AUGUST 2006
zoom-in effort. Also noticing that among the first 15 simulations,
the minimum y is 158.62, we decide to set the subregion boundary
to be the contour line of 158. We select the subregion by using
interaction contour plots between a pair of variables, as shown in
Fig. 9. In those graphic plots, we are slightly conservative in
drawing the region so that the 158 line is included.

As done earlier, we get the zoom-in region from Fig. 9 by
taking the union of subregions from each of the contour plots. The
following region is obtained as the region to be zoomed in.

0 � x1 � 0.1; 0 � x2 � 0.5; 0 � x3 � 0.8; 0 � x4 � 0.5

�11�
We again choose a 6-simulation LHS design over this region

�the design matrix is also in the Appendix� and concatenate the
data points to our previous design to get a modified 21-simulation
design. A new third stage Kriging model was fitted using these 21
simulation outputs and the updated model parameters are �̂2

=56.89, �̂= �2.2029,0.1449,0.8688,4.7316�, and �̂=167.83. This
Kriging model finds a smaller value of the response function and
the corresponding design variables are different. The results are
given in Table 3.

3.4 Final Step and Stopping Rule. The “zooming-in” proce-
dure as described above will usually be continued repeatedly until
the model so obtained is sufficiently accurate and the area of
interest �e.g., a minimum region� is located. We will use the MSE
plot to characterize the model accuracy and use the change in the
minimum response values in two consecutive steps to benchmark
if an area of interest is located. If the increment/decrement in the
response values is not significant and the MSE plot shows no large
uncertainty value, then we can stop the sequential strategy.

For the problem at hand, the decrease in the minimum response
values found by the third stage model is only 1% from the second
stage model. The largest MSE value is only about 7% �the MSE
plot for x1, x2 is shown in Fig. 10�b��. Both criteria are satisfied.
Therefore, we choose to stop at this stage. Up to now, we have
established an adequate Kriging model to represent the FEA simu-
lation model. The optimal parameter settings in Table 3 are our
final solution.

a units, coded values for x’s in brackets…

x4 y ŷ

16.5 �0.1� 154.44 157.53

nse „a… and its MSE value „b…
P

spo
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Figure 10 shows the contour plot of the response function and
the MSE value for the final Kriging model �only the one for x1, x2
are shown�. The Kriging contour provides a global view of the
response surface over the design space; the whole response sur-
face has a decreasing trend along its reverse diagonal direction
and the minimum region can be easily located to be around the
left-bottom corner. Recall that the Kriging model we used in this

Fig. 7 MSE plots for p
example only has a constant polynomial term �1. However, it

Journal of Manufacturing Science and Engineering
appears that we do not have to include a first order term because
the resulting Kriging model �mainly through its correlation term
Z� is able to capture the surface change over the design space
adequately.

4 Comparison With Classical Designs
Traditional response surface methodology also follows a se-

wise design variables
quential strategy. It usually starts with a first order fractional fac-
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torial design, then finds the probing direction based on the steep-
est decent method, and finally switches to a second order design
�such as a Central Composite Design� to locate the optimal point
when it approaches an optimum �likely a local one� �5,16�.

We employ the traditional RSM for the electronic packaging

Fig. 8 MSE plots for pairwise des
problem. Because of the lack of prior knowledge of where to start

712 / Vol. 128, AUGUST 2006
our search, we simply choose the starting point as the current
operating conditions, i.e., the center point of our parameter space.
A linear model was fitted around this starting point. Because the
assumption of linearity will hold only over a small region, we will
have to limit the first step design to a smaller hypercube whose

variables after the second stage
edge size is one-fourth the size of the design range. This choice of

Transactions of the ASME



Fig. 9 Pairwise interaction plots

Journal of Manufacturing Science and Engineering
one-fourth is empirical since there is no established rule in the
literature. Given four design parameters, we use a 24−1 fractional
factorial design, which will guarantee that the main effects can be
reasonably estimated, since the aliased three-factor interactions
are usually not significant. From this experiment, a first order
model is obtained as

ŷ = 118.3 + 1.4788x1 + 0.122 085x2 − 0.0955x3 + 0.442x4.

from the second stage model
Table 3 Results after the third step „in GPa units, coded val-
ues for x’s in brackets…

x1 x2 x3 x4 y ŷ

20.0 �0.0� 12.0 �0.0� 2.2 �0.3� 16.5 �0.1� 153.47 154.31

�12�
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The coefficients of the first order model indicate the steepest
direction. Following the direction, we will change the settings of
design variables by taking a few sequential steps. Since the coef-
ficient of x1 is the greatest, we can see that the greatest decrease
will occur if we change the values with respect to x1. If we take
the step sizes relative to x1 �when coded a unit step corresponds to
1.875 of x1� then, the steepest descent vector is �−1.875, −0.3963,
+0.0086, −0.5604�, which will be added to the current design
setting sequentially. For each step, we get the corresponding simu-
lation value, as shown in Fig. 11�a�, which gives us an idea of the
validity. We go along this direction unless we either hit the bound-
ary of the parameter space or the simulation values start increas-
ing instead of decreasing �i.e., we encounter an inflection point�.
In our case after five steps, we reach the parameter space bound-
ary.

Then, we fit a second order model around this point using a
Small Composite Design �5�, one of the second order design
methods similar to Face Centered Design. Its design settings for
three variables are illustrated in Fig. 11�b�. This Small Composite
Design is based on a 24−1 fractional factorial but includes eight
more design points at the centers of each hyper-surface and one
design point at the center of the hypercube �Fig. 11�b� is an illus-
tration for three design variables�. The edge size of the hypercube
for the Small Composite Design is also chosen as one-fourth the
size of the design range. After performing FEA simulations ac-
cording to this second order design, we fit a second order model
as

Fig. 10 Contour plots: „a… response surfa

Fig. 11 Traditional response surface

problem

714 / Vol. 128, AUGUST 2006
ŷ = 66.85 + 4.83x1 + 1.0x2 + 1.267x3 + 0.0466x4 − 0.0067x1x2

− 0.0012x1x3 + 0.0242x1x4 − 0.03091x2x3 − 0.017x2x4

− 0.0236x3x4 − 0.0738x1
2 − 0.004x2

2 + 0.0059x3
2 + 0.0054x4

2

�13�

Based on the above model, we can find the minimum value of the
response function and the corresponding design parameters; they
are shown in Table 4.

Compared with the minimum response value found by the
Kriging model in Table 3, the difference is negligible, meaning
both methods can successfully find the optimal region for our
electronic packaging problem. However, the sequential Kriging
method, as presented in this paper, takes 22 simulations �1st stage:
9; 2nd stage: 6; 3rd stage: 6; and the final solution: 1�. The tradi-
tional RSM, on the other hand, requires 31 simulations �8 for a
24−1 design, 5 for the steepest descent, 17 for the Face Centered
Design, and 1 simulation at the final solution�. The number of
FEA simulations required by the sequential Kriging model is 41%
less than the traditional RSM, which is a remarkable reduction.

In this electronic packaging example, the response surface of
the von Mises stress is actually not complicated—it has a global
descending trend toward its left-bottom corner and it has only one
minimum point. That is the reason why the traditional RSM gives
us the same optimum values as the Kriging model. Should we
have a complicated surface as in Fig. 4, the chance of RSM to

, „b… MSE value for the third stage model

ethodology for electronic packaging
ce
m
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locate the global optimum successfully is in fact not high. How-
ever, our sequential strategy will not be bounded by the complex-
ity of the surface due to its space filling nature at each stage.

The advantages of the proposed sequential strategy also mani-
fest in other aspects. One is that the final Kriging model will
provide a global view of the response surface over the parameter
space. By contrast, the traditional RSM will fall short of doing so
since it fits polynomial models to a few small areas. It will be
difficult to piece together the global response surface of the von
Mises stress.

Another advantage is the uncertainty evaluation. The Kriging
model provides an uncertainty evaluation of the von Mises stress
prediction over the entire parameter space. For the traditional
RSM, uncertainty can be evaluated based on linear regression
theory. However, with the absence of random errors, the uncer-
tainty evaluation from linear regression is not guaranteed to be the
interpolation uncertainty in a FEA simulation. Once again, those
uncertainty evaluations are only available for a few small areas in
the design space. A high uncertainty could exist elsewhere without
being detected simply because the steepest descent method does
not lead our FEA simulation there.

5 Concluding Remarks
A sequential Kriging approach is presented in this paper to find

the optimal parameter setting for electronic packaging. The se-
quential strategy will conduct additional FEA simulations in the
region where more information may be needed to revise the sub-
sequent Kriging models for prediction. The sequential strategy
demonstrates a superior performance by finding the minimum von
Mises stress in an electronic packaging process with 40% less
FEA simulations compared to a classical RSM approach. It also
provides the global view of the response surface and the uncer-
tainty level over the entire region, of which the traditional RSM
falls short.

Despite the current advancements in optimization methodolo-
gies using deterministic computer simulations, we would also like
to point out the challenges ahead of us. One is the way we are
deciding the zoom-in subregions. Currently we are dependent on a
visual technique that assesses the interaction contour plots to gain
information. This visual technique is intuitive and easy to use for
practitioners. However, it can become less effective when the pa-
rameter space is high dimensional. It would be desirable to de-
velop a searching procedure to locate the area of interest in a high
dimension parameter space.

That naturally leads us to the issues of screening out the impor-
tant factors. In this study, our collaborating industrial partner has
already identified the four key parameters for investigation. In
other circumstances, however, screening itself could be an issue,
especially considering that a computer simulation often has many
more input factors, each of which could possibly take multiple
levels. The idea of sequential simulations would be a natural
choice for such a screening task, while the detailed procedure is
yet to be developed.
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Appendix
Design table for the sequential simulations in Sec. 3 �param-

eters and responses are expressed in their actual physical units�

Runs x1 �GPa� x2 �Gpa� x3 �GPa� x4 �GPa� y �GPa�

First
stage

1 21.58 20.37 3.50 17.64 158.62
2 25.85 25.44 4.66 22.79 169.37
3 30.74 22.91 4.52 24.39 176.75
4 23.31 18.65 2.70 26.03 165.25
5 33.90 35.65 1.21 20.52 180.24
6 31.75 32.90 3.08 19.22 176.60
7 29.56 16.25 3.88 26.74 175.45
8 24.56 12.63 1.73 29.21 167.88
9 27.48 29.99 2.33 15.24 168.63

Second
stage

10 34.93 23.94 3.77 23.29 181.38
11 32.39 13.013 2.65 29.05 179.08
12 33.40 34.22 1.53 17.92 178.09
13 32.69 16.27 1.89 21.24 176.49
14 34.36 26.14 4.44 25.73 182.02
15 33.90 30.33 3.65 16.43 177.14

Third
stage

16 21.47 17.97 3.22 19.15 158.78
17 20.20 12.51 2.32 22.03 156.82
18 20.70 23.11 1.43 16.46 156.61
19 20.35 14.14 1.71 18.12 155.59
20 21.18 19.07 3.75 20.36 158.89
21 20.95 21.16 3.12 15.71 156.35
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