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Fault Diagnosis of Multistage
Manufacturing Processes by
Using State Space Approach
This paper presents a methodology for diagnostics of fixture failures in multistage m
facturing processes (MMP). The diagnostic methodology is based on the state-
model of the MMP process, which includes part fixturing layout geometry and se
location. The state space model of the MMP characterizes the propagation of fixture
variation along the production stream, and is used to generate a set of predeterm
fault variation patterns. Fixture faults are then isolated by using mapping procedure
combines the Principal Component Analysis (PCA) with pattern recognition appro
The fault diagnosability conditions for three levels: (a) within single station, (b) betw
stations, and (c) for the overall process, are developed. The presented analysis inte
the state space model of the process and matrix perturbation theory to estimate the
bound for isolationability of fault pattern vectors caused by correlated and uncorrela
noises. A case study illustrates the proposed method.@DOI: 10.1115/1.1445155#
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1 Introduction
Dimensional quality, represented by product dimension v

ability, is one of the most critical challenges in industries whi
use multistage manufacturing processes such as assembly an
chining for automotive, aerospace, or appliance products.
complexity of a manufacturing process puts high demands on
cess modeling, design optimization, and on fault diagnosis to
sure the dimensional integrity of the product.

In general, part fixturing, which determines the positions
parts during manufacturing~assembly or machining!, directly af-
fects the dimensional quality of final products. During the laun
of a new automobile, for example, fixture faults accounted for
percent of all the dimensional faults@1#.

Recent advancements in fixture design have resulted in sig
cant improvement of fixturing accuracy and repeatability@2–4#.
Nevertheless, design-oriented methodology alone cannot gua
tee the desired quality of the product due to the complexity
random nature of uncertainties and disturbances in manufactu
processes. Therefore, an effective method for detecting and d
nosing dimensional faults during production, based on in-l
measurements, is highly desirable.

The aforementioned factors have led to modeling and diagn
of manufacturing processes to emerge as a new research ar
ing within the boundary of engineering and statistics research,
has grown rapidly during the last few years. Methodologies p
posed include pattern recognition of single fixture fault throu
Principal Component Analysis~PCA! @5#, and the identification of
multiple simultaneous faults, using least estimation followed
statistical testing@6,7#. These approaches were also applied to
diagnostics of compliant assembly processes@8,9#. These diagnos-
tics require the pattern vectors to be obtained through off-
modeling~d( i )’s in @5#, ai ’s in @6#, andci ’s in @7#!. Such pattern
vectors are relatively easy to obtain for a fixture fault on a sin
manufacturing station, and is the case discussed in the above
tioned papers.

The modeling of pattern vectors for all potential fixturing fau
in a multistage manufacturing process~MMP! is much more chal-
lenging due to the complex interrelations that exist between
tions, thus causing, for example, fixture fault patterns result
from operations at upstream stations that can be affected by do
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stream operations. Further, the transfer of a part and/or inter
diate product between stations may introduce variation not incl
by single station modeling. Thus, it is insufficient to generate fa
pattern vectors for an MMP by simply grouping together the p
tern vectors obtained separately from individual stations. Rath
process-level model is required to characterize such propaga
and accumulation of variation, and to relate the fixture variation
the dimension quality of the final product. Such process-le
models did not exist until recently@10–13#. Among these pro-
posed models, tooling variation, including fixture variation,
only explicitly considered by Jin and Shi@13#, where a state spac
modeling approach is used to recursively describe variation pro
gation at the process level of a multistage process.

The state space model is a different form of the standard k
matic analysis model, also utilized in such software as Variat
Simulation Analysis@14#, which is widely used and commerciall
available. The state space model provides analytical tools for
tem evaluation and synthesis thus going beyond numerical si
lation; the commercial software is mostly based on pure numer
analysis and trial-and-error synthesis approach. Although Jin
Shi @13# presented expressions for model parametric matrices o
for simplified assembly processes, the modeling framework
fairly general and can be extended to more complex situation
assembly, and also to other manufacturing processes such a
machining process@15#. Thus, we think that a state space mod
can be a good modeling framework for fixture fault diagnosis
MMPs.

This paper proposes a diagnostic approach for diagnosing
ture faults in a given MMP system. A systematic method of mo
eling variation propagation and fault pattern vectors is develo
by using the state space model. A PCA-based algorithm simila
the one proposed in@5# is employed for single fault diagnosis
Analytical upper bounds of the perturbation in pattern vectors
to the correlated noise are found using matrix perturbation the
Although certain assumptions imposed in the current paper he
to set up a complete approach for the fixture diagnostics
MMPs, neither the framework of the state space modeling nor
diagnostics approach is bound by these assumptions. Thus
think that the proposed diagnostic method provides a better
derstanding of the process and creates analytical foundation
further optimization and control of MMP systems.

This paper is divided into five sections. Section 2 derives
variation propagation model from the state space model of
MMP. Section 3 presents the diagnostic method for the sin

e
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fault situation in an MMP, followed by the perturbation analys
In Section 4, fault patterns of an assembly process are first
erated and then interpreted. Computer simulation is used to i
trated and verify the proposed method. Finally, this work is su
marized in Section 5.

2 Variation Propagation Model
The variation propagation model, which will be used for dia

nostic methods is based on the model developed by Jin and
@13#. The propagation of deviation in anm-station MMP can be
represented in the form of state space equations

X~ i !5A~ i 21!X~ i 21!1B~ i !U~ i !1V~ i !, i P@1,2, . . . ,m#

(1)

Y~ i !5C~ i !X~ i !1W~ i !, $ i %,$1,2, . . . ,m% (2)

whereA( i 21) corresponds to the termI1T( i 21) in Eq.~36! in
@13#. The state space model is extended from its previous ver
@13# to accommodate more general manufacturing processes.
difference is briefly discussed in Appendix II.

In Eqs.~1! and~2!, X represents the part deviation at stationi,
U is the fixturing deviation contributed from stationi, andY is the
deviation vector containing all measurements at the Key Prod
Characteristics~KPC! points.V andW are process noise such a
background disturbance and unmodeled error, and sensor n
respectively.V and W are assumed to be mutually independe
These definitions follow the same notation as used in@13#. Matri-
cesA, B, and C encode the design information of process co
figuration.A is the dynamic matrix, determined by the deviatio
change due to part transfer among stations.B is the input matrix,
depending on the fixture layout at each station.C is the observa-
tion matrix, corresponding to the information of the sensor nu
ber and locations.

Equation~1!, known as the state equation, implies that the p
deviation at stationi is influenced by two sources: the accum
lated part deviation up to stationi 21, and the deviation contrib
uted at the current station. Equation~2! is the observation equa
tion. If sensors are installed at one or more stations in
production line, the index for the observation equation is actu
a subset of$1,2, . . .m%, whereas the index for the state equati
is the complete set.

This paper employs the end-of-line sensing strategy, whic
the most commonly used sensor installation scheme in indu
End-of-line sensing means that observation is only available a
last stationm, that is,i 5m for Eq. ~2!, and

Y5CX~m!1W (3)

whereYPRk31 indicates thek measurements are obtained at s
tion m. The indices forY, C, andW are dropped since they are a
‘m’s.

State transition matrixF(•,•) is adopted from linear contro
theory @16# and is defined as

F~m,i !5A~m21!A~m22!¯A~ i !for m. i and F~ i ,i !5I .
(4)

The input-output relationship can then be represented as

Y5(
i 51

m

CF~m,i !B~ i !U~ i !1CF~m,0!X~0!1«, (5)

whereX~0! corresponds to the initial condition~for instance, the
fabrication imperfection of product components in an assem!
and « is the summation of all modeling uncertainty and sen
noise terms, where

«5(
i 51

m

CF~m,i !V~ i !1W. (6)

Defineg~i! andg~0! as
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g~ i !5CF~m,i !B~ i ! and g~0!5CF~m,0!. (7)

where m is dropped from the indices ofg for this end-of-line
sensing scheme. Then, Eq.~5! can be simplified as

Y5(
i 51

m

g~ i !U~ i !1g~0!X~0!1« (8)

Here,X(0), W, V i 51
m ( i ) are the basic random variables in a st

chastic process and thus usually assumed to be independent
assumption can be partially released to include the situation wh
the basic random variables are dependent by enlarging the
vector@17#. Moreover,Ui 51

m ( i ), the fixturing deviations at station
i, are independent with those basic random variables as well s
only an open loop system is considered now. Given the indep
dent relationships between these variables, the input-output c
riance relationship could be obtained from Eq.~8! to characterize
the variation propagation in a production line,

KY5(
i 51

m

g~ i !KU~ i !gT~ i !1g~0!K0gT~0!1K « , (9)

whereKY represents the covariance matrix of random vectorY,
and K0 is given as the initial variability condition.K « can be
estimated from the data during which no fixture fault was prese

Jin and Shi@13# assumed that only the lap joint is involved i
the current model, implying that the fabrication imperfection
parts will not affect the propagation of variations. Thus, it is re
sonable to set the initial conditionK0 to zero. The process can
then be approximated as follows:

KY5(
i 51

m

g~ i !KU~ i !gT~ i !1K « . (10)

This equation suggests that, while being contaminated by no
the variation of the final product is mainly the contribution o
variations of fixturing errors at all stations.

3 Diagnosis of Fixture Fault in MMPs

3.1 The Overall Concept. The overall concept of the diag
nostic methodology is shown in Fig. 1. If a fixturing eleme
~locator! does not function properly, a symptom will be reflecte
in the final product or downstream intermediate products. Fr
off-line CAD information and the created earlier state spa
model, the set of all possible fault patterns can be generated. M
surement data are collected in-line and analyzed using one of
multivariate statistical methods, for example, the Principal Co
ponent Analysis@18#, to extract the fault feature patterns. Fau
isolation can then be conducted by mapping the feature pattern
real production data with the pre-determined fault patterns gen
ated from the analytical model.

Fig. 1 Outline of the diagnostic methodology
Transactions of the ASME
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Fig. 2 Angle between two fault patterns
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For the sake of simplicity and better illustration, the diagnos
methodology for the MMP systems is presented in the contex
automotive body assembly process. However, the proposed
proach and analysis are not limited to a specific automotive ma
facturing process. The presented methodology can be used
class of MMPs which can be modeled by using the state sp
framework.

3.2 Single Fault Patterns Without Noise Consideration.
A detailed description of an autobody assembly process can
found in @19#. Suppose there areni subassemblies on each statio
in an m-station assembly process. Each of the subassemblie
supported by the 3-2-1 fixture layout, which consists of a pair
locating pinsP4way andP2way and three NC blocks. An illustrative
picture is included in Appendix I for reference. Due to the mo
eling assumption used in@13#, the currently developed state spa
model only includes the fixturing deviation from the 4-way a
2-way locating pins. Each of the pins could be faulty in two o
thogonal dimensions. A simple calculation reveals that the num
of potential single faults in the process is( i 51

m 4ni .
Let p be the index of fixture~locating pin! fault at theith sta-

tion, which could be one of the 4ni potential single faults (p
51,2, . . . ,4ni). Assuming that all pin deviations at stationi are
uncorrelated with each other,KU( i ) is a diagonal matrix. When
only fault p occurs at stationi, matrix KU( i ) appears as follows:

KU~ i !5F 0

�

sp
2

�

0

G (11)

where only the~p, p! entry is a non-zero valuesp
2, the variance of

the fault. The pattern vectors of potential fixture faults are fi
obtained without considering the noise term,K « , i.e. from the
covariance matrixKY

0, which is not contaminated by noise.KY
0 is

obtained by substituting Eq.~11! into Eq. ~10! and dropping the
term K « to yield

KY
05sp

2gp~ i !gp
T~ i !, (12)

where the superscriptT denotes vector transpose andgp( i ) is the
pth column of matrixg( i ). Equation~12! implies that the rank of
KY

0 is one, that is, one eigenvalue is non-zero and all others
zero. It is also known thatgp( i ) is the eigenvector correspondin
to the only non-zero eigenvaluel ip ~fault p at stationi!, that is,

KY
0gp~ i !5l ipgp~ i ! (13)

resulting in

gp~ i !$sp
2gp

T~ i !gp~ i !2l ip%50 (14)

which indicates,

l ip5sp
2gp

T~ i !gp~ i !5ispgpi2
2 (15)

wherei•i2 is the Euclidean norm. The eigenvaluel ip represents
the variance of the principal component. In a single fault situati
it indicates the variation level of a product. The eigenvector is
pattern vector of a fixture fault, manifesting the fixturing variati
cturing Science and Engineering
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by generating a mode shape of measurement vectorY. If one
repeats this for the entire range of single fault candidates,
eigenvalue-eigenvector pairs$l ip ,gp( i )% will constitute the set of
candidate fixture fault patterns. In the rest of this paper, ass
gp( i ) as a normalized eigenvector using the Euclidean norm.

3.3 Fault Isolation and Diagnosability With the Presence
of Noise. Given any two fault patternsgp( i ) andgq(k), which
are the symptoms of faultp at stationi and faultq at stationk,
respectively, the similarity between the two faults can be
pressed in the acute angle formed by fault pattern vectors,

upq~ i ,k!5cos21^gp~ i !,gq~k!&, 0<u<
p

2
, (16)

where^•,•& represents the inner product of two vectors. Consi
two special cases,u50 andu5p/2.

If u50, the two vectors are collinear. The fault patterns a
identical and, therefore, the corresponding faults are undis
guishable in this case~Fig. 2~a!!.

If u5p/2, the two vectors are perpendicular to each other.
this situation, the two faults are called orthogonal. It is obvio
that orthogonal faults ensure maximum diagnosability~Fig. 2~b!!.

If u has a value between 0 andp/2, as long asu is not zero, the
two faults are distinct~Fig. 2~c!!. However, smallu implies that
two fault patterns are close to each other. Under the influenc
noise, fault patterns might be undistinguishable. Thus, the largu
is, the easier are the faults that can be distinguished.

With the presence of noise,

KY5KY
01K « . (17)

Denote the eigenvalue and eigenvector ofKY as $l, g% and
those ofKY

0 as $l0,g0%. The pattern vectors obtained from E
~12! are actuallyg0’s. The difference betweeng andg0 due to the
additive noiseK « is studied by Ceglarek and Shi@20# for the case
whereK « is diagonal. Although this is a reasonable assumption
a single station case, it is not valid for an MMP. Consider Eq.~6!.
Even if all V’s are assumed mutually independent, elements i«
may be correlated in general after being filtered byCF(m,i ). In
fact, the evaluation of pattern perturbation under the influence
correlated noisemay not be adequately handled by the diagnos
algorithms proposed for the single station situation, which
usually employed for cases ofuncorrelatednoise.

Matrix perturbation theory@21# is employed to evaluate the
upper bound on the perturbation of pattern vectors due to
influence of correlated noise. Theorem 8.1.12 in@21# derives an
upper bound of eigenvector perturbation for a symmetric matriS
under the influence of another symmetric perturbation matrixE.
This theorem is stated in Appendix III for the reader’s referen

Since the covariance matrixK is always symmetric, the result
of this theorem apply here. Noting thatKY

0 only has one non-zero
eigenvaluel0, therefore, there exists an orthogonal matrixQ
5@g0 Q2# such that

QTKY
0Q5Fl0 0

0 0G and QTK «Q5F ~g0!TK «g0 ~g0!TK «Q2

Q2
TK «g0 Q2

TK «Q2
G .

(18)
MAY 2002, Vol. 124 Õ 315
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Following the definition ford in Theorem 8.1.12, we may con
clude thatd5l0.0. Furthermore, if the conditioniK «i2<l0/4 is
also satisfied, the upper bound of the angle betweeng0 andg is

Du<sin21S 4

l0 AiK «g0i2
22~g0T

K «g0!2D
<sin21S 4

l0 Almax
2 ~K «!2lmin

2 ~K «! D , (19)

wherel~•! is the eigenvalue of a matrix. The proof of this result
presented in Appendix IV.

Remark 1. The conditioniK «i2<l0/4 required for Eq.~19! is
not restrictive in practice. Notice thatiK «i25lmax(K «) is the
largest variance of noise, andl0 is the variance of a fixture fault
lmax(K «)<l0/4, suggesting that the standard deviation of noise
less than one half of the standard deviation of a fixture fault. T
condition is usually satisfied. If the noise in the MMP is seve
than this level, the eigenvector will be distorted to the point wh
this PCA-based recognition approach will no longer be effecti

Remark 2. There are two upper bounds given in Eq.~19!, that is

b1~g0!5sin21S 4

l0 AiK «g0i2
22~g0T

K «g0!2D and

b25sin21S 4

l0 Almax
2 ~K «!2lmin

2 ~K «! D .

The boundb1 is different for individual eigenvectors and pre
ferred since it is tighter thanb2 . However, it requiresK « to be
known or estimable. The boundb2 only requires the knowledge o
the extreme eigenvalues ofK « , which may be more easily esti
mated from production data. For instance, Apley and Shi@22#
estimated the variance of noise~equivalent to the eigenvalue o
K «! from KY . The tightness ofb2 depends on the difference be
tween the extreme eigenvalues ofK « . Since the noise normally
exists in process uniformly and any outstanding deviation aw
from the nominal is grouped into the termKY

0 as fault condition,
K « is fairly well-posed. Thus, the recognition result will not b
very conservative whenb2 is used.

Remark 3. According to the upper boundb2 , it is not the vari-
ance of noise associated with each measurement point but
difference~lmax

2 (K «)2lmin
2 (K «)) that accounts for the distortion

in fault pattern vectors. IfK «5s«
2I , i.e., the noises are uncorre

lated and have the same variances for all KPCs, thenb250,
meaning that the fault pattern vectors will not be altered. T
above conclusions are consistent with those presented in@20# for a
single-station manufacturing process. But the boundsb1 and b2
provide general analytical expression for the robustness eva
tion of the PCA-based approach in pattern recognition.

By using the upper bounds, conditions for the diagnosability
an individual station, between stations, and of the entire proc
are presented here on the single fault assumption.
„1… Diagnosability within an individual station

If it is known on which station a fault occurred, the question
then under what condition we can tell which fixture~locator or
clamp! on the specific station causes the fault. Given that the f
patterns at stationi are represented by the column vectors of m
trix g( i ), the smallest angle between any two pattern vectorp
andq at stationi can be defined as

umin~ i !5min
p,q

upq~ i ,i ! (20)

Then, a single fixture fault on stationi can be diagnosed if and
only if

umin~ i !.2b2 (21)

If b1(gp( i ))’s are known, the following condition will be les
conservative
316 Õ Vol. 124, MAY 2002
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p,q

$upq~ i ,i !22b1~gp~ i !!∨2b1~gq~ i !!%.0 (22)

wherea∨b[max(a,b) for any real numbera andb.

„2… Diagnosability between stations
The second scenario asks whether we could tell on which

tion the fault occurred based on the end-of-line measurem
With the fault pattern angle between stationi and stationk defined
as

u~ i ,k!5min
p,q

up,q~ i ,k!, (23)

the between-station diagnosability is ensured if and only if

min
i ,k

iÞk

u~ i ,k!.2b2 or

min
i ,k

iÞk

min
p,q

$upq~ i ,k!22b1~gp~ i !!∨2b1~gq~k!!%.0. (24)

„3… Diagnosability of the entire process
If the above two conditions are satisfied, the fixture fault c

first be localized at a certain station and then identified right
that station. Diagnosability of the entire process is equivalen
the combination of two previous equations,~21! and ~24!:

min
i ,k

u~ i ,k!.2b2 or

min
i ,k

min
p,q

$upq~ i ,k!22b1~gp~ i !!∨2b1~gq~k!!%.0. (25)

4 A Case Study

4.1 Single-Fault Patterns and Geometric Interpretation.
In this section, a multistage assembly process is set up. This
cess is abstracted from a side aperture assembly line in the a
motive industry, including three assembly stations and one m
surement station. The final product is made of four parts, as sh
in Fig. 3.

The assembly sequence and datum shift scheme regarding
assembly process are shown in Fig. 4.$$P1 ,P2%,$P3 ,P4%% de-
notes the locating pairs used at station 1, where$P1 ,P2% is for the
first workpiece and$P3 ,P4% for the second one. The others a
similarly defined. At station 4, which is the measurement stati
one pair of locating pins$P1 ,P8% is used since there is only on
piece of the assembly to measure.

In the fixture layout indicated in Fig. 3~b!, a 4-way pin~one of
P1 , P3 , P5 , andP7! controls part motion in bothX andZ direc-
tions and a 2-way pin~one ofP2 , P4 , P6 , andP8! controls part
motion only in theZ direction. It is also assumed that the locatin
pins at the measurement station are much more accurate
those at assembly stations, which implies that fixture error at
measurement station can be neglected. Hence, the total numb
all single fault patterns isnf5( i 51

3 (4ni22)518 with ni52 for
i 51, 2, and 3. The relationship between fault indices and r
causes on each station is shown in Table 1.

As indicated in Fig. 3~b!, there are two sensors on each part
the last station~end-of-line sensing!. Each sensor can measu
part deviation in bothX and Z directions. Two sensors are suffi
cient to detect the deviation in position and orientation of a 2
rigid part.

Following the derivation of the previous sections, a state sp
model can be set up for this side aperture assembly process

H X~1!5B~1!U~1!1V~1!

X~ i !5A~ i 21!X~ i 21!1B~ i !U~ i !1V~ i !, i 52,3
X~4!5A~3!X~3!1V~4!

Y5CX~4!1W

(26)

whereA’s, B’s, and C can be obtained through Eqs.~38!, ~39!,
and ~45! in @13#.
Transactions of the ASME
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Fig. 3 Geometry of the assembly
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Based on this state space model, matrixg( i ) is equal to
CA(3)¯A( i )B( i ) by substituting the state transition matrixF
into Eq.~7!. Then the total of 18 potential single fault patterns c
be generated from the column vectors ofgi 51

3 ( i ). The fault pat-
terns are shown in Table 2~a!, ~b!, and ~c!, whereLi j represents
the distance between pinPi and pin Pj , that is, Li j

5A(Xpi
2Xpj

)21(Zpi
2Zpj

)2, andDXi , DZi , andDa i represent
the deviation in position and orientation of each part. Beca
m

al of Manufacturing Science and Engineering
n

se

the pattern vectors listed in Table 2~a!, ~b!, and ~c! are not
normalization, in order to be consistent with the current algorith
normalization should be conducted before doing any numer
calculation.

The fault patterns in Table 2~a!, ~b!, and~c! have a clear geo-
metric interpretation. For example, if the 4-way pin at the fi
subassembly is faulty in theZ direction at the second station, tha
is p52 andi 52, then
g2~2!5F0 0
L142L16

L13L14
] 0

L142L16

L14

L142L16

L13L14
] 0

2L56

L13

1

L13
] 0 0 0GT

. (27)
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The counter-clockwise is the positive rotation direction as d
fined in @13#. Thus,Da15Da2,0 suggests that part 1 and part
rotated the same amount in a clockwise direction. This can
justified because part 1 and part 2 have already been welded
gether in the previous station, thus behaving as one rigid p
SinceP1 is free of deviation at the measurement station,DX1 and
DZ1 are always zeros. The fact thatDZ2 is less than zero is
consistent with the part rotation.Da3.0 implies that part 3 ro-
tates in the counter-clockwise direction. This seems counterin
tive, because part 3 should not have a deviation at the 2nd sta
if there only exists one fixture fault. However, the new subasse
bly ‘‘1 1213’’ has a reorientation-induced deviation at the 3
station, where it appears that part 3 rotates relative to subasse

Fig. 4 Assembly sequence and datum shift scheme
e-
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‘‘1 12’’ in the counter-clockwise direction~Fig. 5!. Part 4 is not
affected by faultp52 at station 2 since it has not yet come in
the stream of assembly.

All six fault manifestations at the 1st station are listed in Tab
3. The fault manifestations at the 2nd and 3rd stations look v
similar except that the first subassembly consists of more than
part. However, they behave like one rigid part in the single fa
situation.

Consider the satisfaction of diagnosability conditions of th
process using Eqs.~21!–~25!. At every station, the patterns o
faults p51 andp54 are identical, and thusumin(i,i)i51,2,350. As
a result, the conditions in Eqs.~21! and~22! are both invalidated,
meaning that the single fixture fault cannot be completely di
nosed on each station. No matter which pin is faulty inX direc-
tion, the symptom is only reflected in the deviation of the seco
part or subassembly. Only the relative deviation between two p
in the X direction can be detected.

However, faultsp51 ~or 4! andp52, 3, 5, and 6, on the othe
hand, have distinct fault patterns within each station. There is
identical between-station fault pattern found among the three
tions. But whether these non-identical fixture faults are guarant
distinguishable depends on the noise level, i.e. boundsb1 or b2 .
Table 1 Fault indices and their root causes
MAY 2002, Vol. 124 Õ 317
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Table 2 „a… Pattern vectors of single fault for the 1st station

Table 2 „b… Pattern vectors of single fault for the 2nd station

Table 2 „c… Pattern vectors of single fault for the 3rd station
AY 2002 Transactions of the ASME
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This is discussed further in the following section on the numeri
simulation.

It is obvious that diagnosability of the entire process is n
ensured since there are identical fault patterns within individ
stations. In order to obtain the process diagnosability, extra s
sors have to be added directly on the assembly stations.

4.2 Simulations. Although a full diagnosability of the entire
process is not ensured with the current sensor installation sche
faults of p52, 3, 5, 6 do have distinct patterns, which could
correctly identified when one of them occurs. In reality, the c
rect identification of a fixture fault in the set of$p52,3,5,6% also
depends on the severity of the perturbation due to noise. Du
this simulation study, one of the faults$p52,3,5,6% will be as-
signed, together with noise and process disturbance, to the as
bly process discussed in Section 4.1. The developed techniqu
used to analyze the data and isolate the faulty fixture.

Fig. 5 Geometric interpretation of fault p Ä2 at the 2nd station
Journal of Manufacturing Science and Engineering
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Before simulation, the CAD information was assigned to t
assembly process in Fig. 3. The coordinates of locating and s
ing points are listed in Table 4 and 5, respectively.

During simulation, two kinds of additive noises were include
process noiseV i 51

m ( i ) and sensor noiseW, and these were as
sumed to be normally distributed. The severity of both no
sources is defined as

Np5
sV

s f
and Nm5

sW

s f
, (28)

wheres f is the standard deviation of faulty fixture,sV andsW are
the standard deviations of each element inV i 51

m ( i ) andW, respec-
tively, on the assumption that their standard deviations are
same.

The simulation was conducted withNp55 percent andNm
51 percent. First, we evaluated the perturbation in fault patt
vectors when the noise was present. Similar to experiment
conducting the calibration of the process, a simulation ran w
no fixture fault was present. The resulting perturbation boundb1’s
for fault pattern vectors on three stations are listed in Table 6.
maximumb1 for all pattern vectors is 2.83 deg. The value ofb2 is
more conservative. Simulation revealed thatlmax(K «)50.035 and
lmin(K «)50.001. Thenb258.04 deg.

The angles~in degree! between fault pattern vectors at stationi
are listed as follows, wherep, q51, 2, 3, 4, 5, 6. Since thes
matrices are symmetric, only the upper half is listed.
Table 3 Geometric manifestation of six single faults at the 1st station

Table 4 Coordinates of locating points in Fig. 3 „b… „Units: mm …

Table 5 Coordinates of sensing points in Fig. 3 „b… „Units: mm …

Table 6 Perturbation angle of fault pattern vectors „degree ° …
MAY 2002, Vol. 124 Õ 319



e
e
7

a

o
n

e

ria-
The
le

for
les
we

ed.

itly
cess
end

d to
ion
e

et of
tern
, the
by
the
tion
the
lues

pro-
ess,
om
duct

nos-
ither
a
ere
tly
ing.
nu-
he

si-
ept
ns
n in
rth-
for

the
eral
del.
the

alysis
@upq~1,1!#5S - 64.0 90 0 45 53.4

- 38.3 64.0 51.7 19.3

- 90 90 57.6

- 45 53.4

- 32.4

-

D
@upq~2,2!#5S - 53.8 90 0 33.1 48.6

- 44.9 53.8 45.1 7.27

- 90 90 52.2

- 33.1 48.6

- 37.8

-

D
@upq~3,3!#5S - 82.5 90 0 71.1 76.7

- 23.6 82.5 66.4 21.7

- 90 90 45.3

- 71.1 76.7

- 44.7

-

D (29)

It was known that faults ofp51 andp54 at each station are
identical. Hence the angles between faultsp51 and p54 on
three stations are zeros. Moreover, the minimum angle formed
the faults ofp51 ~or 4!, 2, 3, 5, 6 isu2.6(2,2)57.27 deg, which
is the angle between faultsp52 andp56 at station 2. This mini-
mum value is larger than 23max(b1)55.66 deg, suggesting tha
these two fault patterns are still distinct under the current no
level. Hence, the other fault patterns on three stations are
distinguishable by using boundb1 . If bound b2 is used in the
situation that only the eigenvalues ofK « are estimable, then thos
fixture faults within three stations are still distinguishable, exc
for the faults ofp52 andp56 at station 2 with the angle of 7.2
deg less thanb258.04 deg, which are not guaranteed distinguis
able in the presence of noise.

Similarly, the smallest between-station angles~as defined in Eq.
~23!! are given in Table 7. Those values are large enough so
between-station fault patterns are distinct under noise. The l
between-station fault angles imply stronger robustness in loca
ing fixture fault to a certain station, while the smaller in-stati
angles in Eq.~29! suggest that the isolation of fixture fault withi
each station is more sensitive to the influence of noise.

Suppose faultp56 occurred at the 1st station. The samp
covariance matrixKY is calculated by using 500 samples gen
ated by the VSA@14#. The principal component analysis is pe
formed to get the eigenvalue/eigenvector pairs. The fi
eigenvalue/eigenvector pair is

Table 7 Angle of fault pattern vectors between stations
„degree ° …
320 Õ Vol. 124, MAY 2002
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l150.6011

g15@0.2302 20.0713 0.217820.4484 20.4054 20.5858

20.4230 0.073620.0062 0.0068 0.0151

20.0164 0.0257 0.0084 0.0132 0.0051#T (30)

The first eigenvalue accounts for 53 percent of the total va
tion and is 8.5 times larger than the second largest eigenvalue.
angles betweeng1 and potential fault patterns are listed in Tab
8. All units are in degrees.

The smallest angle indicates the fault. Here it is 2.76 deg
p56 at the 1st station. By using within-station fault pattern ang
in Eq. ~29! and between-station fault pattern angles in Table 7,
know the angle between fault pattern ofp56 at station 1 and its
closest pattern vector is 19.3 deg, which is larger than 2b2
516.1 deg. Thus, the fault is considered to be correctly identifi

5 Conclusions
This paper developed a fixture fault diagnosis method explic

for multistage manufacturing processes based on product/pro
design parameters and in-line measurements obtained at the
of production line. The developed state space model was use
describe propagation of fixturing variation throughout product
line, and to relate the product quality to fixturing variability. Th
state space model provided a systematic way to model the s
fault pattern vectors, which are needed for PCA-based pat
recognition. Given the existence of correlated process noises
upper bound of the perturbation in fixture fault pattern is given
matrix perturbation theory and can be expressed in terms of
eigenvalues of noise covariance matrix. Furthermore, perturba
in fault pattern due to the influence of noise depended on
difference of variances of noises rather than on the absolute va
of individual noise variances.

An assembly process was used as an application for the
posed methodology. The single fault patterns of the proc
which have a clear geometric interpretation, were obtained fr
the state space model and interpreted in terms of process/pro
information. For this specific process, the entire process diag
ability was not ensured because there existed fault patterns e
identical or too close to the other fixture fault patterns within
station. However, the between-station fault pattern angles w
fairly large, suggesting that the fixture fault could be confiden
localized to a certain station based on the end-of-line sens
Using this process with CAD data from an assembly plant,
merical simulation was conducted to illustrate and verify t
method.

Extension of the current work to the diagnosis of multiple
multaneous faults is being investigated by following the conc
of observability in control theory. As the total number of statio
and involved product components increases, the computatio
model development and application could be a burden. It is wo
while to explore effective ways leading to a reduced model
implementation in practice.

Despite assumptions made for sake of simplicity during
course of modeling and diagnosis, the approach is fairly gen
for MMPs since it is based on the standard state space mo
When more complex variation factors are accommodated in
state space form, the same method can be applied and the an
will remain valid.
Table 8 Angle between g1 and fault patterns for single fault
Transactions of the ASME
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Appendices

Appendix I 3-2-1 Fixture Layout „Fig. 6…

Appendix II Extension of State Space Model of MMP Sys-
tem Developed in †13‡. First, the definition of DP( i ) is
expressed as

DP~ i !5~DxP1
~ i ! DzP1

~ i ! DxP2
~ i ! DzP2

~ i !!T (a1)

This definition differs from that in@13# because thisDP( i ) is
measured in a global body coordinate system, whileDP( i ) in @13#
is measured in a local part coordinate system. The modifica
offers more convenience in using actual measured data s
CMM or OCMM readings are based on the global coordina
system. Accordingly,QP1 ,P1

( i ) is changed to

QP1 ,P1
~ i !

5F 1 0 0 0

0 1 0 0

sina

Lx~P1,P2!
2

cosa

Lx~P1,P2!
2

sina

Lx~P1,P2!

cosa

Lx~P1,P2!

G
334

(a2)

wherea is the nominal orientation of a workpiece measured in t
global coordinate system. This value cannot be assumed to
small since a workpiece could be positioned at an arbitrary an

The modeling assumptions used in@13# can be summarized as

~i! 2-D rigid body part;
~ii ! 3-2-1 fixture layout for rigid part;
~iii ! Lap joint only so that part fabrication error does not affe

variation propagation.
~iv! There are only two workpieces on each station and

second piece should be a single-piece part rather tha
multiple-piece subassembly.

Fig. 6 A layout of 3-2-1 fixture
Journal of Manufacturing Science and Engineering
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The first three assumptions are still kept in the current mode
development. The rigid body assumption is made and 3-2-1
ture layout is employed as a primary fixture set up. However,
model will also apply ton-2-1 nonrigid body fixturing@23# if the
fixture faults being considered cause panel motion only in
plane of rigidity. The simplification of joints used in the assemb
model enables us to decouple the stamping variation and the
turing variation, and thus we can focus on the latter one.

The fourth assumption, however, limits the scope of applicat
of the state space model, and thus model revision is conducte
eliminate it. In order to expand the model to accommodate
assembly process with many workpieces joined at a station,
selecting matrixW1(s) is defined as

W1~s!5@d1sI
434 d2sI

434
¯ dnsI

434#

dks5H 1 if k5s

0 if kÞs
is the Kronecker Delta, (a3)

such that

F DP~ i !
DP8~ i !G5W1~s!U~ i !, (a4)

wheres is the index of the workpiece directly supported by a s
of fixture, U( i ) can be multiple sets of fixtures asU( i )
5@DP1( i ) DP2( i ) ¯ DPni

( i )#T and @DP( i ) DP8( i )#T is the
U( i ) defined in@13#.

Another W2( i ) is defined to pick up the right reorientatio
term.

W2~ i !5Fw11
333 w12 ¯ w1N

w21 w22 ¯ w2N
G , (a5)

where

wpq
3335H I333 if ~p,q!5~1,k! or ~2,j !

0333 otherwise
, (a6)

such that

FXAk
~ i !

XAj
~ i ! G5W2~ i !X~ i !, (a7)

whereXAk
( i ) andXAj

( i ) are defined in Eq.~22! in @13# andN is
the total number of workpieces in the assembly.

Appendix III Theorem 8.1.12 in †21‡ „p. 399–400…. Sup-
pose matricesS andS1E aren3n symmetric matrices and tha
Q5@q1 Q2# is an orthogonal matrix such thatq1 is a unit 2-norm
eigenvector forS. Partition the matricesQTSQ and QTEQ as
follows

QTSQ5Fl1 0

0 D2
G and QTEQ5Fd eT

e E22
G . (a8)

If d5 min
mPl(D2)

ul12mu.0 andiEi2<d/4, then the unit 2-norm ei-

genvectorq̂1 of S1E is different fromq1 in such a way that

dist~span$q1%,span$q̂1%!5A12~q1
Tq̂1!2<

4

d
iei2 , (a9)

wherel(D2) is the set of eigenvalues ofD2 andl1 is the eigen-
value of S associated with eigenvectorq1 . In this theorem,
dist~span$q1%, span$q̂1%! is equal to the sine of the angle betwee
q1 and q̂1 , i.e., Du15sin21 ~dist~span$q1%, span$q̂1%!!.

Appendix IV Proof of Equation „19…. Following Theorem
8.1.12, the upper bound of the angle betweeng0 andg is

Du5sin21~dist~span$g0%,span$g%!!. (a10)

Becaused5l0 ande5Q2
TK «g0, according to Eq.~18!,
MAY 2002, Vol. 124 Õ 321
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Du<sin21S 4

l0 iQ2
TK «g0i2D5sin21S 4

l0 Ag0T
K «Q2Q2

TK «g0D
SinceQ2Q2

T1g0g0T
5I , then

5sin21S 4

l0
Ag0T

K «~ I2g0g0T
!K «g0D

5sin21S 4

l0
Ag0T

K «K «g02g0T
K «g0

•g0T
K «g0D

5sin21S 4

l0 AiK «g0i2
22~g0T

K «g0!2D .

Notice that iK «g0i2<iK «i2•ig0i25iK «i25lmax(K «) and

lmin(K «)<g0T
K «g0<lmax(K «),

[ Du<sin21S 4

l0 Almax
2 ~K «!2lmin

2 ~K «! D . (a11)
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