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1 Introduction stream operations. Further, the transfer of a part and/or interme-
giate product between stations may introduce variation not include
Ry single station modeling. Thus, it is insufficient to generate fault
: : tern vectors for an MMP by simply grouping together the pat-
use multistage manufacturing processes such as assembly and@% vectors obtained separately from individual stations. Rather a

chining for automotive, aerospace, or appliance products. T . . . .
complexity of a manufacturing process puts high demands on p%ﬁocess level model is required to characterize such propagation

cess modeling, design optimization, and on fault diagnosis to €] qed gicn(;:rr?slﬂ)?lonuglfi'sl ag?t't%g' %rr‘]glto :ce)?ljﬁtthglj':;urerc\)'?é?st'_?gvtgl
sure the dimensional integrity of the product. q y P . p

In general, part fixturing, which determines the positions Orpodels did not exist until recentl{l0-13. Among these pro-

parts during manufacturin@assembly or machiningdirectly af- pﬁlsegx r?igﬁflSc'o;%?élggea/%rlaf]tilgr;{n:jngﬁd:;]n%v;ﬁ:rg S\;:tr:aazogéés
fects the dimensional quality of final products. During the launch 3(; I'p y hi dy vel d ib ale sp

of a new automobile, for example, fixture faults accounted for 7p0deling approach Is use to recursively describe variation propa-
percent of all the dirﬁensional fauim] gation at the process level of a multistage process.

cant improvement of fixturing accuracy and repeatabl&y-4]. Y ,

Nevertheless, design-oriented methodology alone cannot guar%hrgillj;%tlgn.rﬁgag;g14]"51:?'r%gésélv\”?g\ll)i/ d:?segnzrllcii(c:gmcrg?srcflgr”i S-
tee the desired quality of the product due to the complexity a ' P P y Y

- . . m evaluation an nthesis th in nd numerical simu-
random nature of uncertainties and disturbances in manufacturfﬁ e, aluation a d_sy thesis t_us going beyond numerica simu
-latlon; the commercial software is mostly based on pure numerical

processes. Therefore, an effective method for detecting and dmﬁ- vsi d trial-and- hesi h. Althouah Ji d
nosing dimensional faults during production, based on in-li gnalysis and trial-and-error synthesis approach. Although Jin an
' "Shi [13] presented expressions for model parametric matrices only

measurements, is highly desirable. for simplified assembly processes, the modeling framework is
The aforementioned factors have led to modeling and diagno#i)s P yp ' g

of manufacturing processes to emerge as a new research areaﬁ'r[gn?gr egrlw;r;?sgatg %?hi);t?;ﬁl?f;gtm%re c:)orgglsiéilguuaglhogss It?le
ing within the boundary of engineering and statistics research, aj Y 9p

has grown rapidly during the last few years. Methodologies pr(r)rjachlnlng procesplS5]. Thus, we think that a state space model

posed include pattern recognition of single fixture fault throug al\r)le: a good modeling framework for fixture fault diagnosis in
Principal Component Analysi®CA) [5], and the identification of This paper proposes a diagnostic approach for diagnosing fix-
multiple simultaneous faults, using least estimation followed bt re faults in a given MMP system. A systematic method of mod
statistical testing6,7]. These approaches were also applied to thB%'. - X ' . J
diagnostics of compliant assembly proced8]. These diagnos- eling variation propagation and fault pattern vectors is developed

tics require the pattern vectors to be obtained through off-lirfﬁleusmg the state space model. A PCA-based algorithm similar to

3 g D e one proposed if5] is employed for single fault diagnosis.
modeling(d(i)'s in [5], &’s in [6], andG’s in [7]). Such pattern nalytical upper bounds of the perturbation in pattern vectors due

vecto;s are.relativgly easyé to (r)]btain fo(rjla fixtured faulr: onba sing the correlated noise are found using matrix perturbation theory.
&il%%cggg?g station, and is the case discussed in the above g%ough certain assumptions imposed in the current paper helped
The modeling of pattern vectors for all potential fixturing fault 0 set up a complete approach for the fixture diagnostics of

in a multistage manufacturing proced$MP) is much more chal- .MPS’ n_either the framework of the state space mo_deling nor the
lenging due to the complex interrelations that exist between s agnostics approach is bound by these assumptions. Thus, we

tions, thus causing, for example, fixture fault patterns resultig"K that the proposed diagnostic method provides a better un-

from operations at upstream stations that can be affected by do _rstanding 9f t_he process and creates analytical foundation for
urther optimization and control of MMP systems.

Contributed by the Manufacturing Engineering Division for publication in the This paper is divided into five sections. Section 2 derives a
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fault situation in an MMP, followed by the perturbation analysis. Ai)=C®(m,i)B(i) and y(0)=Cd(m,0). (7)
In Section 4, fault patterns of an assembly process are first gen- ) . ) .
erated and then interpreted. Computer simulation is used to illfénere m is dropped from the indices of for this end-of-line
trated and verify the proposed method. Finally, this work is sun$€nSing scheme. Then, E§) can be simplified as

marized in Section 5.

Y=, HHU()+H0)X(0)+& 8)
2 Variation Propagation Model =1

The variation propagation model, which will be used for diagttere, X(0), W, ViLy(i) are the basic random variables in a sto-
nostic methods is based on the model developed by Jin and Shgastic process and thus usually assumed to be independent. The
[13]. The propagation of deviation in an-station MMP can be assumption can be partially released to include the situation where
represented in the form of state space equations the basic random variables are dependent by enlarging the state

. ) ) . ) . vector[17]. Moreover,U™ (i), the fixturing deviations at station

XM=A>G-DX(A-D+BMHOUM+V(), ie[l2,...m]  j areindependent with those basic random variables as well since

(1) only an open loop system is considered now. Given the indepen-
dent relationships between these variables, the input-output cova-
Y(i)=C(i)X(i)+W(i), {i}c{1,2,...m} (2) riance relationship could be obtained from E8). to characterize

whereA(i —1) corresponds to the teria-T(i —1) in Eqg.(36) in the variation propagation in a production line,

[13]. The state space model is extended from its previous version m

[13] to accommodate more general manufacturing processes. The Ky= 2 YHKy() Y (1) + n0)Koy (0)+K,, 9)
difference is briefly discussed in Appendix II. i=1

In Egs.(1) and(2), X represents the part deviation at station \yhereK, represents the covariance matrix of random vedtor
U is the fixturing deviation contributed from statigrandY is the gnq K, is given as the initial variability conditionk, can be

deviation vector containing all measurements at the Key Prodycdimated from the data during which no fixture fault was present.
Characterlstlc$KPC) points.V andW are process noise such aS Jin and Shi13] assumed that only the lap joint is involved in

background disturbance and unmodeled error, and sensor Noj&g, cyrrent model, implying that the fabrication imperfection of
respectively.V andW are assumed to be mutually independenpyts will not affect the propagation of variations. Thus, it is rea-

These definitions follow the same notation as useld 8]. Matri-  gonaple to set the initial conditiok, to zero. The process can
cesA, B, andC encode the design information of process conyen pe approximated as follows:
figuration. A is the dynamic matrix, determined by the deviation

change due to part transfer among statidhss the input matrix, m

depending on the fixture layout at each stati6ris the observa- Ky= 2, ©)Ky()¥()+K,. (10)

tion matrix, corresponding to the information of the sensor num- =1

ber and locations. This equation suggests that, while being contaminated by noise,

Equation(1), known as the state equation, implies that the pafihe variation of the final product is mainly the contribution of
deviation at statiori is influenced by two sources: the accumuvariations of fixturing errors at all stations.
lated part deviation up to statidn- 1, and the deviation contrib-
uted at the current station. Equati¢®) is the observation equa- . . . .
tion. If sensors are installed at one or more stations in % Diagnosis of Fixture Fault in MMPs
production line, the index for the observation equation is actually

a subset of1,2,...m}, whereas the index for the state equaﬂorﬁostic methodology is shown in Fig. 1. If a fixturing element
is the complete set.

Thi | th d-of-i . trat hich locatop does not function properly, a symptom will be reflected
IS paper eémploys the end-ol-lineé sensing strategy, WNICh ji$ ye fina) product or downstream intermediate products. From
the most commonly used sensor installation scheme in indus

. - oo . -line CAD information and the created earlier state space
End-of-line sensing means that observation is only available at ¢, je| the set of all possible fault patterns can be generated. Mea-
last stationm, that is,i =m for Eq. (2), and ’

surement data are collected in-line and analyzed using one of the
Y=CX(m)+W (3) multivariate statistical methods, for example, the Principal Com-
KX s . ponent Analysig18], to extract the fault feature patterns. Fault
whereY e R indicates thek measurements are obtained at stgspjation can then be conducted by mapping the feature patterns of
tion m. The indices fory, C, andW are dropped since they are allreg| production data with the pre-determined fault patterns gener-

ms. . . . ) ated from the analytical model.
State transition matrix®(-,-) is adopted from linear control

theory[16] and is defined as

®(m,i)=A(m—1)A(m—2)---A(i)for m>i and ®(i,i)=1I. DTttt
4) In-line Manufacturing Process

. - — - Parts :
The input-output relationship can then be represented as : [Station 1}—.. ~—{Station i |- .. —Station ml:
m e l ....... :

Y= Cd(m,i)B(i)U(i)+ CP(m,0)X(0)+&, (5) Extraction of
i=1

fault patterns

3.1 The Overall Concept. The overall concept of the diag-

Root Causes

where X(0) corresponds to the initial conditioffior instance, the
fabrication imperfection of product components in an assembl
and ¢ is the summation of all modeling uncertainty and sensc

Mapping

noise terms, where . Off-line Diagnostic Model ;
m : Engineering Knowledge | ,| State Space Model of potential
£= 2 CH(m,i)V(i)+W. (6) + | (CAD and CAPP) System Model Variation Patterns
7=
Define ¢(i) and ¥(0) as Fig. 1 Outline of the diagnostic methodology
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Y, (1) ¥, ()
¥, (1) and v, (k)

n/2 '\{q(k)

¥ (k)
(a) undistinguishable faults (b) orthogonal faults (c) generic case

Fig. 2 Angle between two fault patterns

For the sake of simplicity and better illustration, the diagnostioy generating a mode shape of measurement vectolf one
methodology for the MMP systems is presented in the context ifpeats this for the entire range of single fault candidates, the
automotive body assembly process. However, the proposed &jgenvalue-eigenvector paifs;, , y,(i)} will constitute the set of
proach and analysis are not limited to a specific automotive margandidate fixture fault patterns. In the rest of this paper, assume
facturing process. The presented methodology can be used farpéi) as a normalized eigenvector using the Euclidean norm.
class of MMPs which can be modeled by using the state space

framework. 3.3 Fault Isolation and Diagnosability With the Presence

3.2 Single Fault Patterns Without Noise Consideration. of Noise. Given any two fault patterng,(i) and y,(k), which
A detailed description of an autobody assembly process can @@ the symptoms of fauft at stationi and faultq at stationk,
found in[19]. Suppose there arg subassemblies on each statiorfespectively, the similarity between the two faults can be ex-
in an m-station assembly process. Each of the subassembliegigssed in the acute angle formed by fault pattern vectors,
supported by the 3-2-1 fixture layout, which consists of a pair of
locating pinsP 4,y andP,,,, and three NC blocks. An illustrative 0,o4(i,K)=cos K yo(i), v(K)), 0<6@<
picture is included in Appendix | for reference. Due to the mod- ot PR A
eling assumption used [13], the currently developed state spac
model only includes the fixturing deviation from the 4-way an
2-way locating pins. Each of the pins could be faulty in two or- ¢ =0, the two vectors are collinear. The fault patterns are
thogonal_dlm(_ensmns.As_|mple calculation reveals that the ”Um%%nncm and, therefore, the corresponding faults are undistin-
of potential single faults in the process3g. ,4n; . guishable in this cas€Fig. 2()).
_ Let p be the index of fixturelocating pin fault at theith sta- ™ |t g— 7/2 the two vectors are perpendicular to each other. In
tion, which could be one of therd potential single faults f  thjs sjtuation, the two faults are called orthogonal. It is obvious
=1,2,...,4). Assuming that all pin deviations at statiorre that orthogonal faults ensure maximum diagnosabiffig. 2(b)).
uncorrelated with each othe{ (i) is a diagonal matrix. When |t g has a value between 0 amd2, as long ag is not zero, the
only fault p occurs at station, matrix Ky(i) appears as follows: o faults are distinctFig. 2(c). However, smalld implies that
0 two fault patterns are close to each other. Under the influence of
noise, fault patterns might be undistinguishable. Thus, the l#ger
is, the easier are the faults that can be distinguished.

a
5
here(-,-) represents the inner product of two vectors. Consider
0 special case®)=0 and 8= =/2.

(16)

. 2 1 H
Ky(i)= o (11) With the presence of noise,
Ky=KJ+K,. (17)
0 Denote the eigenvalue and eigenvectorkof as {\, y} and

0 0 H
where only the(p, p) entry is a non-zero valuej, the variance of those ofKy as { Y"’O}' The pattern vectors obtained from Eq.
the fault. The pattern vectors of potential fixture faults are firdt2) are actuallyy’’s. The difference betweep andy° due to the
obtained without considering the noise terkh, , i.e. from the additive noisek, is studied by Ceglarek and S[0] for the case
covariance matrisk®. which is not contaminatéd by noisléS is whereK is diagonal. Although this is a reasonable assumption in

. Y ) . a single station case, it is not valid for an MMP. Consider 4.
obtalrlled by_sltébstltutlng Ed11) into Eq. (10) and dropping the Evengif all V's are assumed mutually independent, elements in
termK, to yie ;

may be correlated in general after being filtered@¥$(m;,i). In
nggg,},p(i)yg(i), (12) fact, the evaluation of pattern perturbation under the influence of

. . correlated noisenmay not be adequately handled by the diagnostic
where the superscrifit denotes vector transpose apgli) is the 5 9qrithms proposed for the single station situation, which are

pt(t] _column of m_atrixy(i)._Equation(]_.Z) implies that the rank of usually employed for cases ahcorrelatednoise.

Ky is one, that is, one eigenvalue is non-zero and all others areviatrix perturbation theonf21] is employed to evaluate the
zero. It is also known thag(i) is the eigenvector correspondingupper bound on the perturbation of pattern vectors due to the
to the only non-zero eigenvalueg, (fault p at stationi), that is, influence of correlated noise. Theorem 8.1.142d] derives an

Ko (i) =N 7o) 13) upper bound of eigenvector perturbation for a symmetric matrix
Yo pep under the influence of another symmetric perturbation magrix
resulting in This theorem is stated in Appendix Il for the reader’s reference.
. . . Since the covariance matrk is always symmetric, the results
o2 7p(1) =N ip} =0 (14) vy

of this theorem apply here. Noting thlaﬁ only has one non-zero
which indicates, eigenvalue\®, therefore, there exists an orthogonal mat€ix

M= 027D 7o(D) = oy 7,ll2 (15) =[7 Q] such that

wherel|-|, is the Euclidean norm. The eigenvalNg, represents 1 o ° - (P)KY (P)K.Q,
the variance of the principal component. In a single fault situation,Q KyQ= 0 0 and Q'K.Q= QK.Y QIK.Q, |
it indicates the variation level of a product. The eigenvector is the ° °
pattern vector of a fixture fault, manifesting the fixturing variation (18)
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Following the definition ford in Theorem 8.1.12, we may con- Min{ 6,4(i,1) — 2b1(,(i)) 02b1 (4(i))}>0 (22)
clude thatd=\°>0. Furthermore, if the conditiofK || ,<\%4 is p.g

also satisfied, the upper bound of the angle betwgkand y is whereallb=max@,b) for any real numbea andb.

4 T (2) Diagnosability between stations
i1 2 2
Ag=sin (F VIK A=K, ) ) The second scenario asks whether we could tell on which sta-
tion the fault occurred based on the end-of-line measurement.

44 With the fault pattern angle between staticend statiork defined
<sin 1(F Jxﬁqammﬁﬂn(rg)), (19 as
where(-) is the eigenvalue of a matrix. The proof of this result is 6(i,k)=ming,, 4(i,k), (23)
presented in Appendix IV. P

Remark 1 The condition|K [|,<\%4 required for Eq(19) is the between-station diagnosability is ensured if and only if
not restrictive in practice. Notice thaK |,=\n(K.) is the in6(i K)>2b
largest variance of noise, and is the variance of a fixture fault, niq:(nﬂ(l, )>2Db, or
AmaxdK .)=<\%4, suggesting that the standard deviation of noise is i#k
less than one half of the standard deviation of a fixture fault. This A . .
condition is usually satisfied. If the noise in the MMP is severer min Ming fpq(i,k) = 201 ( (1)) 02D (74(k))}=0. (24)

K op
than this level, the eigenvector will be distorted to the point where iz P
this PCA-based recognition approach will no longer be effe_ctiv?g) Diagnosability of the entire process
Remark 2There are two upper bounds given in Et0), that is If the above two conditions are satisfied, the fixture fault can
4 first be localized at a certain station and then identified right on
b1(7/°)=sin‘1(—0\/HKE)PHg—(yOTKEyO)Z and that station. Diagnosability of the entire process is equivalent to
A the combination of two previous equatiori2l) and(24):
4 min 6(i,k)>2b, or
b,=sin l(ﬁ \/)\ZmaX(KS)—)\ﬁm(Ks)). i K 2
The boundb;, is different for individual eigenvectors and pre- min mMin{fpq(i,k) = 2by (%,(1)) D2by(74(K))}>0.  (25)

ferred since it is tighter thab,. However, it requires<, to be kopa

known or estimable. The bourm only requires the knowledge of
the extreme eigenvalues &f,, which may be more easily esti- 4 A Case Study
mated from production data. For instance, Apley and [ 4.1 Single-Fault Patterns and Geometric Interpretation.
estimated the variance of noigequivalent to the eigenvalue of | this section, a multistage assembly process is set up. This pro-
K.) from Ky. The tightness ob, depends on the difference be-cess is abstracted from a side aperture assembly line in the auto-
tween the extreme eigenvaluesKf . Since the noise normally motive industry, including three assembly stations and one mea-
exists in process uniformly and any outstanding deviation away,rement station. The final product is made of four parts, as shown
from the nominal is grouped into the temﬁ as fault condition, in Fig. 3.
K. is fairly well-posed. Thus, the recognition result will not be The assembly sequence and datum shift scheme regarding this
very conservative wheh, is used. assembly process are shown in Fig.{#P,,P,},{P5,P,}} de-
Remark 3According to the upper boura,, it is not the vari- notes the locating pairs used at station 1, wHérg, P} is for the
ance of noise associated with each measurement point but thg#t workpiece andP5,P,} for the second one. The others are
difference(\2(K.) —\2,(K,)) that accounts for the distortion similarly defined. At station 4, which is the measurement station,
in fault pattern vectors. IK,=¢?l, i.e., the noises are uncorre-one pair of locating pin§P,,Pg} is used since there is only one
lated and have the same variances for all KPCs, thgn0, Piece of the assembly to measure. _
meaning that the fault pattern vectors will not be altered. The In the fixture layout indicated in Fig.(B), a 4-way pin(one of
above conclusions are consistent with those presenf@djriora  P1. P3. Ps, andP7) controls part motion in botlX andZ direc-
single-station manufacturing process. But the boumdsndb, tions and a 2-way pirione ofP,, P,, Ps, andPg) controls part
provide general analytical expression for the robustness evali@otion only in theZ direction. It is also assumed that the locating
tion of the PCA-based approach in pattern recognition_ pins at the measurem.ent Statl.on _are .mUCh m.Ore accurate than
By using the upper bounds, conditions for the diagnosability dpose at assembly stations, which implies that fixture error at the
an individual station, between stations, and of the entire procé8§asurement station can be neglected. Hence, the total number of
are presented here on the single fault assumption. all single fault patterns is;=3>_,(4n,—2)=18 with n;=2 for
(1) Diagnosability within an individual station i=1, 2, and 3. The relationship between fault indices and root
If it is known on which station a fault occurred, the question isauses on each station is shown in Table 1.
then under what condition we can tell which fixtuflecator or As indicated in Fig. &), there are two sensors on each part at
clamp on the specific station causes the fault. Given that the fadlte last station(end-of-line sensing Each sensor can measure
patterns at stationare represented by the column vectors of magsart deviation in bothX and Z directions. Two sensors are suffi-
trix (i), the smallest angle between any two pattern vegporscient to detect the deviation in position and orientation of a 2-D

andq at stationi can be defined as rigid part.
) ) . Following the derivation of the previous sections, a state space
Omin(1) =mind,q(i,1) (20)  model can be set up for this side aperture assembly process as
P
_ . - : . X(1)=B(1)U(1)+V(1)
Then, a single fixture fault on statidncan be diagnosed if and X()=A(i—1)X(i — 1)+ B U +V(i), 1=2,3
only if ' " (26)
X(4)=A(3)X(3)+V(4)
Omin(i)>2b, (21) Y=CX(4)+W
If by(yp(i))'s are known, the following condition will be less whereA's, B's, andC can be obtained through Eq&88), (39),
conservative and(45) in [13].
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AZ m, . — measurement points
P, s — locating points

my my | ms ms

P, P, Ps P, Ps Pe P, Py

(a) (b)

Fig. 3 Geometry of the assembly

Based on this state space model, matgitd) is equal to the pattern vectors listed in Table@® (b), and (c) are not
CA(3)---A(i)B(i) by substituting the state transition matdx normalization, in order to be consistent with the current algorithm,
into Eq.(7). Then the total of 18 potential single fault patterns canormalization should be conducted before doing any numerical
be generated from the column vectors;q?Ll(i). The fault pat- calculation.
terns are shown in Table(@, (b), and(c), whereL; represents  The fault patterns in Table(@), (b), and(c) have a clear geo-
the distance between pirP; and pin Py, that is, Lij metric interpretation. For example, if the 4-way pin at the first
= (Xp,=Xp)*+(Zp, —Z)? andAX;, AZ;, andAa; represent subassembly is faulty in the direction at the second station, that
the deviation in position and orientation of each part. Becaugep=2 andi=2, then

LiamLis . Lig=Lig Lig=Lis . —Lsg 1 . T
2)=(0 0 : 0 : 0 — : 00 0] . 27
72(2) Lislia Lia Lidlag Liz Lis @7

The counter-clockwise is the positive rotation direction as déi +2” in the counter-clockwise directiofFig. 5). Part 4 is not

fined in[13]. Thus,Aa;=Aa,<0 suggests that part 1 and part Zaffected by faultp=2 at station 2 since it has not yet come into
rotated the same amount in a clockwise direction. This can Bgs stream of assembly.

justified because part 1 and part 2 have already been welded tOAII six fault manifestations at the 1st station are listed in Table

gether in the previous station, thus behaving as one rigid pa§F'The fault manifestations at the 2nd and 3rd stations look very

SinceP, is free of deviation at the measurement statidX, and ~ . : .
AZ, are always zeros. The fact thAZ, is less than zero is similar except that the first subassembly consists of more than one

consistent with the part rotatiol a;>0 implies that part 3 ro- Part. However, they behave like one rigid part in the single fault
tates in the counter-clockwise direction. This seems counterintgituation.
tive, because part 3 should not have a deviation at the 2nd statioffonsider the satisfaction of diagnosability conditions of this
if there only exists one fixture fault. However, the new subassemrocess using Eq921)—(25). At every station, the patterns of
bly “1 +2+3" has a reorientation-induced deviation at the 3rdaultsp=1 andp=4 are identical, and thugy(i,i)i—1,3=0. As
station, where it appears that part 3 rotates relative to subassemppasult, the conditions in Eq&21) and(22) are both invalidated,
meaning that the single fixture fault cannot be completely diag-
nosed on each station. No matter which pin is faultyXiulirec-
Assembly Sequence tion, the symptom is only reflected in the deviation of the second
1 o b n ™ part or subassembly. Only the relative deviation between two parts
T | Assembly i— Assembly [~ Assembly | | Measurement | jn the X direction can be detected.

- » Station #1 Station #2 Station #3 Stati
am4 tation taton However, faultp=1 (or 4) andp=2, 3, 5, and 6, on the other
Datum : hand, have distinct fault patterns within each station. There is no
shift  [((P1Pa), (Ps P} Jo{((Py Pu}. {Ps P} 1|»{((P1 Ps), (Pr Po} ((P1 Pe)} | identical between-station fault pattern found among the three sta-
Scheme . . . .
tions. But whether these non-identical fixture faults are guaranteed
Fig. 4 Assembly sequence and datum shift scheme distinguishable depends on the noise level, i.e. boimdsr b, .

Table 1 Fault indices and their root causes

Index Fault root cause Index Fault root cause
-1 4-way pin on the 1** part/subassembly 4 4-way pin on the 2™ part/subassembly
p= is faulty in X direction P is faulty in X direction
4-way pin on the 1% part/subassembly 4-way pin on the 2 part/subassembly
p= is faulty in Z direction p=> is faulty in Z direction
3 2-way pin on the 1% part/subassembly -6 2-way pin on the 2™ part/subassembly
p= is faulty in Z direction P is faulty in Z direction
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Table 2 (a) Pattern vectors of single fault for the 1st station

vector Y.(D Y Y5 ¥, (D ¥s(1) ¥s(D

element p=1 p=2 p=3 p=4 p=5 p=6
1 AX, 0 0 0 0 0 0
2 AZ, 0 0 0 0 0 0
L,-L, 1

’ ho 0 LpLs ! 0 0 Ls
4, | 0 0 1 0 0
5 AZ, 0 1 0 0 1 1
6 0 1 0 o 1 1

__________ A 0‘2 Ly L. Ly,
7 AX, 0 0 0 0 0 0
8 AZ, 0 0 0 0 0 0
9 Aol 0 0 0 0 0 0
0 Aax, | o 0 0 0 0 0
11 AZ, 0 0 0 0 0 0
12 Aoy 0 0 0 0 0 0

Table 2 (b) Pattern vectors of single fault for the 2nd station

vector v, (2) ¥,(2) ¥,(2) Y. (2 75(2) Y6(2)
element p=1 p=2 p=3 p=4 p=5 p=6
1 AX 0 0 0 0 0 0
2 AZ, 0 0 0 0 0 0
L14 - L16 1 1
3 Aa 0 Su e — 0 0 e
1 LiLy, Ly L,
4 AX, 0 0 0 0 0 0
L L
5 AZ, 0 14L 16 1 0 0 .
14
Lu - L16 1
6 Aq, 0 _— 0 0 -
_____________ f Ll L, L,
7 AX; 1 0 0 1 0 0
Ly L15
8 AZ 0 - 0 0 1 L
’ L Ly
9 Al 0 ! 0 0 1 Ly
O - - _
_____________ ?__ L13 L56 L13L5(,
10 AXy 0 0 0 0 0 0
11 AZ, 0 0 0 0 0 0
12 AOL4 0 0 0 0 0 0

Table 2 (c) Pattern vectors of single fault for the 3rd station

vector 7,3 v,3) ¥,(3) ¥,03 7,3 v,(3)
element p=1 p=2 p=3 p=4 p=5 -6
1 AX, 0 0 0 0 0 0
2 AZ, 0 0 0 0 0 0

L Ly 1 1
3 0 e s — 0 0 1
.......... . Lk, L, »
4 AXy 0 0 0 0 0 0
L,-L
5 AZ, 0 16 18 1 0 0 )
Ly
Lm - LIB 1
6 0 — 0 0 —_
__________ .A_O%__ L13L16 L13 13
7 AX; 0 0 0 0 0 0
(Lys —Lig)Ls L L,
8 AZ 0 — 0 0 5
’ L13L16 ng L13
L—Liy 1 1
9 Ad, 0 —_ 0 0 _—
____________ ?__ L13L16 L13 L13
10 AXy 1 0 0 1 0 0
L7s L17
11 AZ 0 - 0 0 1 7
) L13 L13
! 1 L7x - Lls
12 Aoy 0 — 0 0 _
L13 L7B L] L78
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Reorientation Before simulation, the CAD information was assigned to the
assembly process in Fig. 3. The coordinates of locating and sens-
2 3 NG, ing points are listed in Table 4 and 5, respectively.
[ BX J o Q“ During simulation, two kinds of additive noises were included,
7 process nois&/{,(i) and sensor nois®, and these were as-
E . o sumed to be normally distributed. The severity of both noise
X @ Normal fixture éFaultyﬁxture & its faulty direction sources is defined as
Fig. 5 Geometric interpretation of fault p =2 at the 2nd station oy ow
Np=— and Np,=—, (28)
Ot Ot

This is discussed further in the following section on the numeric

h . Whereat is the standard deviation of faulty fixture, ando, are
simulation.

It is obvious that diagnosability of the entire process is n&Pe lstandarr(]j deV|at|ons_ of e:;ch erllemem’ihdl(l()je:jnd\_N,_respec— h
ensured since there are identical fault patterns within individullY€"» on the assumption that their standard deviations are the

stations. In order to obtain the process diagnosability, extra i

sors have to be added directly on the assembly stations. The S|mulat_|on was conducted with,=5 percent andN
=1 percent. First, we evaluated the perturbation in fault pattern

4.2 Simulations. Although a full diagnosability of the entire vectors when the noise was present. Similar to experimentally
process is not ensured with the current sensor installation schewmducting the calibration of the process, a simulation ran when
faults of p=2, 3, 5, 6 do have distinct patterns, which could beo fixture fault was present. The resulting perturbation bduysl
correctly identified when one of them occurs. In reality, the cofer fault pattern vectors on three stations are listed in Table 6. The
rect identification of a fixture fault in the set §p=2,3,5,6 also maximumb; for all pattern vectors is 2.83 deg. The valuebgfis
depends on the severity of the perturbation due to noise. Duringpre conservative. Simulation revealed that(K,)=0.035 and
this simulation study, one of the faul{p=2,3,5, will be as- \i,(K,)=0.001. Therb,=8.04 deg.
signed, together with noise and process disturbance, to the assenThe anglegin degree between fault pattern vectors at station
bly process discussed in Section 4.1. The developed techniqueauris listed as follows, wherp, g=1, 2, 3, 4, 5, 6. Since these
used to analyze the data and isolate the faulty fixture. matrices are symmetric, only the upper half is listed.

Table 3 Geometric manifestation of six single faults at the 1st station

Fault Fault Manifestation Fault Fault Manifestation

=1

éh—i

g E p:4 i -

—l

p=2 =5 C 2

4]

p=3

>

—
|33
gt
1]
(@)}

217

Table 4 Coordinates of locating points in Fig. 3 (b) (Units: mm )

Tooling Py P, P; Py
Position (X, Z) | (100,100) (580,100) (800,100) (1400,100)
Tooling Ps Ps P; Pg
Position (X, Z) | (1500,100) | (2000,100) | (2300,100) | (2600,100)

Table 5 Coordinates of sensing points in Fig. 3 (b) (Units: mm )

Sensors m mp ms my
Position (X, Z) | (200, 400) (700, 400) (700, 600) | (1500, 600)
Sensors ms mg my mg
Position (X, Z) | (1550,600) | (2100, 600) | (2200, 200) | (2700, 200)

Table 6 Perturbation angle of fault pattern vectors (degree °)

p=1or4 p=2 p=3 p=5 p=6
Station 1 2.47 1.48 2.09 2.38 1.58
Station 2 2.29 1.67 2.83 2.35 1.60
Station 3 2.04 1.97 2.62 1.72 1.91
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Table 7 Angle of fault pattern vectors between stations A,=0.6011

(degree °)
) 023) 03) ¥,=[0.2302 —0.0713 0.2178—0.4484 —0.4054 —0.5858
66.2 54.5 76.4 —0.4230 0.0736—0.0062 0.0068 0.0151
—0.0164 0.0257 0.0084 0.0132 0.0051 (30)
The first eigenvalue accounts for 53 percent of the total varia-
- 640 90 0 45 53. tion and is 8.5 times larger than the second largest eigenvalue. The
angles between, and potential fault patterns are listed in Table
- 383 640 517 19 8. All units are in degrees.
- 90 90 ©57.6 The smallest angle indicates the fault. Here it is 2.76 deg for
[0pg(L,D)]= 45 534 p=6 at the 1st station. By using within-station fault pattern angles
. : in Eq. (29) and between-station fault pattern angles in Table 7, we
- 32.4 know the angle between fault patternpf 6 at station 1 and its
closest pattern vector is 19.3 deg, which is larger thdm 2
) =16.1 deg. Thus, the fault is considered to be correctly identified.
- 538 90 0 331 48
- 449 538 451 7.2 5 Conclusions
- 90 90 52.2 This paper developed a fixture fault diagnosis method explicitly
[0,4(2,2]= . 331 486 for multistage manufacturing processes based on product/process
) ' design parameters and in-line measurements obtained at the end
- 37.8 of production line. The developed state space model was used to
) describe propagation of fixturing variation throughout production
line, and to relate the product quality to fixturing variability. The
- 825 90 0 711 76. state space model provided a systematic way to model the set of
i 236 825 664 21 fault pattern vectors, Wh_ich are needed for PCA-based_pattern
: ' : : recognition. Given the existence of correlated process noises, the
- 90 90 45.3 upper bound of the perturbation in fixture fault pattern is given by
[0p4(3.3)]= (29) matrix perturbation theory and can be expressed in terms of the

) 711 76.7 eigenvalues of noise covariance matrix. Furthermore, perturbation
- 44.7 in fault pattern due to the influence of noise depended on the
difference of variances of noises rather than on the absolute values
of individual noise variances.

It was known that faults op=1 andp=4 at each station are An assembly process was used as an application for the pro-
identical. Hence the angles between faytts 1 and p=4 on posed methodology. The single fault patterns of the process,
three stations are zeros. Moreover, the minimum angle formed Wjich have a clear geometric interpretation, were obtained from
the faults ofp=1 (or 4), 2, 3, 5, 6 is6, «2,2)=7.27 deg, which the state space model and interpreted in terms of process/product
is the angle between faulps=2 andp=6 at station 2. This mini- information. For this specific process, the entire process diagnos-
mum value is larger than2max(,)=5.66 deg, suggesting thatability was not ensured because there existed fault patterns either
these two fault patterns are still distinct under the current noiggentical or too close to the other fixture fault patterns within a
level. Hence, the other fault patterns on three stations are afgation. However, the between-station fault pattern angles were
distinguishable by using bounld,. If bound b, is used in the fairly large, suggesting that the fixture fault could be confidently
situation that only the eigenvaluesi¢f are estimable, then thoselocalized to a certain station based on the end-of-line sensing.
fixture faults within three stations are still distinguishable, exceptsing this process with CAD data from an assembly plant, nu-
for the faults ofp=2 andp=#6 at station 2 with the angle of 7.27 merical simulation was conducted to illustrate and verify the
deg less thah,=8.04 deg, which are not guaranteed distinguishmethod.
able in the presence of noise. Extension of the current work to the diagnosis of multiple si-

Similarly, the smallest between-station andlas defined in Eq. multaneous faults is being investigated by following the concept
(23)) are given in Table 7. Those values are large enough so tledtobservability in control theory. As the total number of stations
between-station fault patterns are distinct under noise. The laged involved product components increases, the computation in
between-station fault angles imply stronger robustness in localinodel development and application could be a burden. It is worth-
ing fixture fault to a certain station, while the smaller in-statiomhile to explore effective ways leading to a reduced model for
angles in Eq(29) suggest that the isolation of fixture fault withinimplementation in practice.
each station is more sensitive to the influence of noise. Despite assumptions made for sake of simplicity during the

Suppose faulip=6 occurred at the 1st station. The sampleourse of modeling and diagnosis, the approach is fairly general
covariance matriXXy is calculated by using 500 samples generfor MMPs since it is based on the standard state space model.
ated by the VSA14]. The principal component analysis is per\When more complex variation factors are accommodated in the
formed to get the eigenvalue/eigenvector pairs. The firstate space form, the same method can be applied and the analysis
eigenvalue/eigenvector pair is will remain valid.

Table 8 Angle between v, and fault patterns for single fault

p=lor4 p=2 p=3 p=5 p=6
1% station 54.1 18.2 56.4 33.7 2.76
2™ station 89.6 84.1 82.3 89.4 84.8
39 station 88.4 86.0 86.0 89.1 86.6
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Acknowledgment The first three assumptions are still kept in the current modeling

. . . evelopment. The rigid body assumption is made and 3-2-1 fix-
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- - - . - odel will also apply tan-2-1 nonrigid body fixturing 23] if the
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sin's Graduate School, and DaimlerChrysler Corporation. ixture faults being considered cause panel motion only in the

plane of rigidity. The simplification of joints used in the assembly
model enables us to decouple the stamping variation and the fix-
turing variation, and thus we can focus on the latter one.
Appendix | 3-2-1 Fixture Layout (Fig. 6) The fourth assumption, however, limits the scope of application
of the state space model, and thus model revision is conducted to
eliminate it. In order to expand the model to accommodate an
assembly process with many workpieces joined at a station, the
Pauay selecting matriXW,(s) is defined as

Wl(s):[5ls|4X4 523|4X4 6ns|4><4]

Appendices

NG,

1 if k=s H ‘ I
Sys= 0 i kes is the Kronecker Delta, ag)

such that

AP(i)
AP’ (i)
wheres is the index of the workpiece directly supported by a set

of fixture, U(i) can be multiple sets of fixtures ab(i)
=[AP(i) APy(i) --- APni(i)]T and [AP(i) AP'(i)]" is the

}=W1(S)U(i), (a4)

Pgway - 4-way locator controlling part in the X U(i) defined in[13]
and Z directions . ) Another W,(i) is defined to pick up the right reorientation
Poway - 2-way locator controlling part in the Z term.
direction s
NC; 53 - NCblocks controlling part in the Y ] Wiro Wi ot Wy
direction and rotation Wo(i)= Woy W o’ (a5)
Fig. 6 A layout of 3-2-1 fixture where
1353 if (p,g)=(1k) or (2j)
) ) w3= (aB)
Appendix Il Extension of State Space Model of MMP Sys- Pa 0%%3  otherwise '
tem Developed in [13]. First, the definiton of AP(i) is
expressed as such that
AP(i)=(Axp (i) Azp (i) Axp (i) Azp (i)  (al) Xa D) o
P, Py P, P, XAj(i) =W, (i)X(i), @7)

This definition differs from that i 13] because thisAP(i) is hereX, (i dX, (i defined in Ea(22) in [13] andN i
measured in a global body coordinate system, whikgi) in [13] whereX,, (i) andX, (i) are defined in Eq22) in [13] andN is

is measured in a local part coordinate system. The modificati
offers more convenience in using actual measured data sinc@ppendix Ill Theorem 8.1.12 in [21] (p. 399-400). Sup-
CMM or OCMM readings are based on the global coordinaigose matrice$ and S+ E arenxn symmetric matrices and that

e total number of workpieces in the assembly.

system. AccordinglyQp_ p, (i) is changed to Q=[q; Q,] is an orthogonal matrix such that is a unit 2-norm
_ eigenvector forS. Partition the matrice®Q"SQ and Q"EQ as
Qp, p,(1) follows
5 ° ° ° Qiso-| ! aqeo-’ € (28)
= an = a
0 1 0 0 0 b, e By
| sina cosa sina cosa If d= min |\;—u|>0 and||E||,=<d/4, then the unit 2-norm ei-
- - penDy)
Lx(P1.P2) Lx(P1,P2) Lx(P1.P2)  Lu(P1.P2) [, genvectorg, of S+E is different fromg, in such a way that

(a2)

4
i GV =/1—(a'g.)2< —

wherea is the nominal orientation of a workpiece measured in the dist(sparidy}, sparifis}) = V1~ (d:80)"< d ez, (29)

global coordinate system. This value cannot be assumed to be . . . .

small since a workpiece could be positioned at an arbitrary ang herex (D,) is the set of eigenvalues &f;, and), IS the eigen-

. : . value of S associated with eigenvectay;. In this theorem,
The modeling assumptions used[8] can be summarized as dist(span{a,}, span{a,}) is equal o the sine of the angle between

EI)) g? 1rig;]_id bodly part;f id g, and@,, i.e., A9, =sin"! (dist(span{q,}, span{d,})).

ii) 3-2-1 fixture layout for rigid part; . . .

(iii) Lap joint only so that part fabrication error does not affect APPendix IV Proof of Equation (19). Following Theorem
variation propagation. 8.1.12, the upper bound of the angle betwg@rand y is

(iv) There are only two workpieces on each station and the Ag=sin~L(di a a al0
second piece should be a single-piece part rather than a sin*(dist(spart’}, spar v})). (a10)
multiple-piece subassembly. Becausad=\° ande=QJK .+, according to Eq(18),
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