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Dimensional variation reduction is critical to assuring high quality in assembly
and manufacturing processes. The extent to which data from a multiple-sensor
system aids the diagnosis of variation sources depends on the effective placement
of the sensors. The diagnostic objective that we consider is to estimate the
variance components for potential variation sources. Using a linear structured
model to represent the effects of the variation sources on the measurement data,
this paper studies the problem of how to add additional sensor(s) to ensure
diagnosability and/or improve estimation accuracy. Most prior work on sensor
placement focused on automated numerical search algorithms that optimize
rather unintuitive mathematical measures of diagnosability and accuracy.
Our objective is to translate the measures into expressions that provide better
conceptual guidance into how to most appropriately locate additional sensors to
improve accuracy and diagnosability. The expressions may be used in conjunction
with qualitative judgment and expert knowledge as the basis for locating
additional sensors. Alternatively, they can be used in conjunction with existing
numerical search routines by providing initial guesses for the sensor location
and/or substantially narrowing the space of feasible sensor locations that must be
searched during the numerical optimization. The proposed method is illustrated
with examples from automotive panel assembly.

Keywords: Assembly systems; Dimensional variation reduction; Fault diagnosis;
Sensor placement; Variance component estimation

1. Introduction

Dimensional integrity is a major quality concern in many discrete-part manufactur-
ing processes such as assembly (Shalon et al. 1992, Ceglarek and Shi 1995). To ensure
high-quality, automated dimensional sensing devices are commonly used, providing
measurements of dimensional features on every product and thus enabling a level of
manufacturing fault diagnosis that would otherwise be impossible. In recent years
there has been considerable work on reducing dimensional variation in assembly
processes, in particular in automobile body assembly (Hu and Wu 1992, Ceglarek
et al. 1994, Ceglarek and Shi 1996, Apley and Shi 1998, Chang and Gossard 1998,
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Rong et al. 2000, Carlson et al. 2000, Apley and Shi 2001, Ding et al. 2002a).
The broad objective is to effectively utilize the dimensional measurement data for
the purpose of identifying (and subsequently eliminating) major root causes of
part-to-part dimensional variation.

The above referenced papers have developed measurement data analysis
algorithms for diagnosing root causes of variation, with particular emphasis on
fixture- and other tooling-related variation sources. The typical first step is to
establish a model that links product measurements to process variance sources.
In quality control applications, a linear or linearized model is often considered
acceptable for representing the effects of the variation sources on the measurement
data. Almost all the aforementioned approaches employ the following linear
structured model:

yðtÞ ¼ !uðtÞ þ vðtÞ ¼
Xp
i¼1

!iuiðtÞ þ vðtÞ : t ¼ 1, 2, . . . ,N, ð1Þ

where y(t) is a vector of n measured product features on part number t, u(t)¼ [u1(t),
u2(t), . . . , up(t)]

T is a random vector whose elements represent p independent
variation sources, v(t) is an additive random noise vector (e.g. sensor noise),
!¼ [!1,!2, . . . ,!p] is an n� p diagnostic matrix of known coefficients relating the
variation sources to the measurement vector, t is an observation or part index, and
N is the sample size. The quantity !i ui(t) therefore represents the effects of the i th
variation source on the measurements for part number t of the sample. Because the
elements of u(t) are assumed independent, its covariance matrix is a diagonal matrix
'u¼ diagf�21, �

2
2, . . . , �2pg. The sensor system is normally assumed to be homogenous,

so that the elements of v(t) are independent with equal variance �2. In other words,
the covariance matrix of v(t) is 'v¼ �

2I.
In addition to the aforementioned work on panel assembly, models of the

form (1) have been used to represent the effects of variation sources in crankshaft
manufacturing (Apley and Lee 2003), electronics assembly (Barton and Gonzalez-
Barreto 1996), polyester film processing (Qin 2003), machining (Djurdjanovic and
Ni 2001, Zhou et al. 2003b), and many other applications. It is a special case of the
standard linear mixed effects model used in variance components analysis (refer to
Searle et al. 1992). We can view (1) as more informative than the general linear
model, because the columns of ! incorporate a great deal of information on the
geometry of parts, the nature and location of the tooling elements and other
variation sources, and the locations of the sensors. There have been a number of
recent analytical modelling developments to aid in obtaining ! based on engineering
design knowledge, process physics, and a specified set of potential variation sources
(Ceglarek et al. 1994, Jin and Shi 1999, Mantripragada and Whitney 1999, Ding et al.
2000, Djurdjanovic and Ni 2001, Camelio et al. 2003, Zhou et al. 2003b).

The diagnostic objective in this paper and in most of the aforementioned
references is to estimate the variance components f�21, �

2
2, . . . , �2pg for each of the p

potential variation sources, based on a sample of data and a ! matrix obtained from
prior off-line modelling. The reason that most of the aforementioned work has
focused on variance components, as opposed to mean components, is that variance
components are more challenging to estimate and to correct in dimensional quality
control. A sustained, consistent deviation from nominal (i.e. a mean shift) can often
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be compensated relatively easily by process engineers via shimming and other
adjustments. In contrast, variance is much more difficult to compensate and requires
either some form of on-line feedback control or the removal of the root cause.
Estimation of the variance components allows us to assess whether each variation
source is present in the current sample and, if so, the severity of the source.

All of the existing diagnostic algorithms (details of which will be given in the
subsequent section) require a set of diagnosability conditions to be satisfied in order
to produce valid, unique estimates of the variance components. This is analogous to
the singularity issue in standard least squares that results in non-unique parameter
estimates. The diagnosability conditions for the various algorithms (see Apley and
Shi 1998, Chang and Gossard 1998, Ding et al. 2002b, Zhou et al. 2003a) typically
involve checking whether a certain matrix is singular. Further studies have
decomposed the diagnosability conditions to reveal coupling relations among the
variation sources in partially diagnosable systems (Zhou et al. 2003a) or to provide
a set of more conceptually meaningful conditions that offers better insight into the
reasons behind the diagnosability problems (Apley and Ding 2005). Various
measures of estimation accuracy, which is closely related to diagnosability, have
also been developed by Wang and Nagarkar (1999), Chang and Gossard (1998),
Carlson et al. (2000), and Ding et al. (2005), often using one of the alphabetic
optimality criteria (such as D-, A-, or E-optimality) that originated in optimal
experimental design research (Atkinson and Donev 1992).

Diagnosability and accuracy are important issues to consider when laying out
a system of sensors. Existing sensor layout strategies typically involve searching over
a pre-determined set of candidate sensor layouts in order to optimize appropriate
diagnosability and/or accuracy measures (Khan et al. 1998, 1999, Wang and
Nagarkar 1999, Khan and Ceglarek 2000, Djurdjanovic and Ni 2003, Ding et al.
2003, 2004, Liu et al. 2005). Because the optimization algorithms are automated
and the diagnosability and accuracy measures are mathematical in nature, it is
difficult to incorporate other more qualitative sensor layout criteria that result from
the system designer’s expert knowledge and engineering judgment.

The main purpose of this paper is to study strategies of how to place additional
sensors in order to improve an existing system of sensors that currently lacks
diagnosability and/or sufficient estimation accuracy. In contrast to previous auto-
mated numerical search methods for optimizing a sensor layout, we decompose the
diagnosability and accuracy measures into expressions that are more convenient for
providing conceptual guidance in where to place an additional sensor. The guidelines
can be used by themselves to provide an immediate suboptimal solution of where
to place the additional sensor. Alternatively, they can be used in conjunction with
numerical optimization algorithms to provide better initial guesses for the additional
sensor location(s) and/or narrow down the range of feasible locations over which the
optimization algorithm must search.

The format of the remainder of the paper is as follows. In the next section,
we review the variance components estimation method and its mathematical
diagnosability conditions. Next, we discuss the strategy for adding an additional
sensor to an existing layout in order to ensure diagnosability and illustrate with an
example. Following this, we present the strategy for adding an additional sensor to
an existing layout in order to improve estimation accuracy, as opposed to ensure
diagnosability, and illustrate with an example. We then present a more involved
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example and show how the proposed method can help place an additional sensor for
diagnosability and accuracy requirements in a panel assembly process. The last
section concludes the paper.

2. Variance components estimation and diagnosability conditions

Throughout, the ‘^’ overscore symbol denotes an estimate of a parameter. Unless
otherwise noted, we assume the sample mean y ¼ N�1

PN
t¼1 yðtÞ has been subtracted

from the data so that the resulting sample {y(t): t¼ 1, 2, . . . ,N} is taken to be
zero-mean.

The following approach for estimating the variance components was investigated
in D’Assumpcao (1980), Bohme (1986), and Ding et al. (2004). Express the covari-
ance matrix of y as Dy¼

Pp
i¼1 !i!

T
i �

2
i þ �

2I, and consider the sample covariance

matrix Sy ¼ ðN� 1Þ�1
PN

t¼1 ðyðtÞ � yÞðyðtÞ � yÞT as an estimate of 'y. The variance
component estimates are taken to be the values that minimize the sum of squares of
the elements of the error matrix Sy�

Pp
i¼1 �i�

T
i �̂

2
i þ �̂

2I. The estimates for this
approach, which we refer to as matrix least squares (MLS), are given by

r̂¼G�1b, ð2Þ

where r̂ ¼ �̂21 �̂21 . . . �̂2p �̂2
h iT

is the vector of variance component estimates,

G ¼

!T
1!1

� �2
� � � !T

1!p

� �2
!T
1!1

..

. ..
.

!T
1!p

� �2
� � � !T

p!p

� �2
!T
p!p

!T
1!1 � � � !T

p!p n

2
666664

3
777775, and b¼

!T
1Sy!1

..

.

!T
pSy!p

tr Sy

� �

2
6664

3
7775: ð3Þ

The diagnosability condition for the MLS algorithm is that G has full rank pþ 1,
so that its inverse exists in equation (2). Because G is a Gram matrix of
(appropriately defined) inner products between pairs of matrices in the set {!1!1

T,
!2!2

T, . . . ,!p!p
T, I}, an equivalent condition for diagnosability is that these matrices

are linearly independent. Otherwise, the variance component estimates that minimize
the MLS error criterion are not unique.

Ding et al. (2004) also presented a weighted least squares version of the MLS
algorithm designed to improve estimation accuracy. We refer to this as the weighted
MLS (WMLS) algorithm. Because the elements of the estimation error matrix Sy�'y

in the MLS algorithm are not uncorrelated with equal variance, the MLS algorithm
does not inherit certain desirable properties of least squares estimation. This is
corrected if we pre- and post-multiply the error matrix Sy ��

p
i¼1!i!

T
i �̂

2
i þ �̂

2I

in the MLS criterion by the inverse square root matrix D
�1=2
y : This results in an

iterative algorithm (refer to Ding et al. 2004 for details), where an iteration over the
following two steps is required because we do not know the true 'y.

(1) Based on the estimate r̂ at the previous iteration, calculate

D̂y ¼
Xp
i¼1

!i!
T
i �̂

2
i þ �̂

2I:
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(2) Calculate the new estimate r̂ ¼ ðG�Þ�1b� at the current iteration, where

G� ¼

!T
1 D̂
�1
y !1

� �2
� � � !T

1 D̂
�1
y !p

� �2
!T
1 D̂
�2
y !1

..

. ..
.

!T
1 D̂
�1
y !p

� �2
� � � !T

p D̂
�1
y !p

� �2
!T
p D̂
�2
y !p

!T
1 D̂
�2
y !1 � � � !T

p D̂
�2
y !p tr D̂

�2
y

� �

2
66666664

3
77777775
, and b�¼

!T
1 D̂
�1
y SyD̂

�1
y !1

..

.

!T
p D̂
�1
y SyD̂

�1
y !p

tr D̂
�2
y Sy

� �

2
666664

3
777775:

ð4Þ

At the initial iteration, we can use the estimate �̂ from the MLS algorithm. Provided

that D̂y remains positive definite at each iteration, which can be guaranteed by

resetting any negative variance component estimates to zero (and a negative �̂2

should be reset to some small positive value), the diagnosability conditions for the

WMLS and MLS algorithms are equivalent (Ding et al. 2004).
Given that model (1) is a special case of a mixed linear model, one might consider

any of the estimation methods developed in the broad body of variance component

analysis (VCA) literature (see Searle et al. 1992, Rao and Kleffe 1988), such as

a maximum likelihood estimator (MLE), a restricted maximum likelihood (REML)

estimator, or Rao’s MINQUE. In fact, the MLS estimator is precisely the

MINQUEO or MINQUE(0) estimator, a special form of Rao’s MINQUE with

the initial 'y chosen to be the identity matrix (Searle et al. 1992). Anderson (1973)

proved that the WMLS estimator is an asymptotical MLE. Moreover, if we start

with an MLS estimator and proceed with the WMLS iterations, the entire procedure

is equivalent to Rao’s iterative MINQUE. Therefore, the MLS and WMLS variance
estimators are equivalent to those developed in VCA theory, retaining their desirable

statistical properties. We believe that the above presentation of the MLS and WMLS

algorithms are intuitive to practitioners and also make the connection to their

diagnosability conditions more transparent.
It is worth noting that the diagnosability condition for variance components

estimation is different from the diagnosability condition for the ordinary least-

squares (OLS) estimation approach taken in, for example, Apley and Shi (1998).

The OLS approach involves calculating ûðtÞ ¼ ½!T!��1!TyðtÞ for t¼ 1, 2, . . . ,N, for

which the diagnosability conditions are a non-singular !T! and n4p. The (W)MLS

algorithm is diagnosable whenever the OLS algorithm is, but the converse is not

necessarily true (Ding et al. 2004).
To illustrate the model and diagnosability concepts, consider the following

example of dimensional variability in the liftgate opening of a minivan (see Apley

and Ding 2005 for further details). Figure 1(a) shows the liftgate opening, which is

illustrated schematically as a box in figure 1(b). Suppose that sensors 1–4 are

positioned around the liftgate opening as in figure 1(c) (temporarily ignore
sensors 5–7, which will be used later). The sensors positioned on the bodyside

(sensors 1 and 2) measure the left/right dimensional deviation from nominal at their

respective locations. The sensors positioned on the roof cross-member (sensors 3

and 4) measure the up/down deviation from nominal. Deviations in the up and right

directions are taken to be positive. Deviations in the left and down directions are

taken to be negative.
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Suppose we are interested in diagnosing the five potential variation patterns
illustrated in figure 2, each of which is a relatively common occurrence as the
tooling becomes worn, loose, broken, etc. Throughout, we will refer to the effects
of a variation source as a variation pattern and the corresponding column of ! as
a pattern vector. Note that each pattern represents part-to-part variation, as opposed
to a mean shift. For example, although pattern 1 is shown as a positive enlargement
in figure 2(a), on some autobodies in the sample the enlargement may be negative
(a contraction) depending on whether the value of u1(t) was positive or negative for
that autobody.

Determination of ! in this example is fairly straightforward. Recall that we only
have sensors 1–4 for the time being. When pattern 1 in figure 2 happens with
a magnitude of u1, the sensor reading vector is [� u1 u1 0 0]

T, which makes the first
column of ! to be [�1 1 0 0]T after the effect of input u1 is taken out from the sensor
outputs. The similar procedure can be employed to determine other columns in !
based on the geometry of the patterns and the locations of the sensors. Eventually,
the diagnostic matrix for this example is

! ¼

�1 1 1 0 0
1 1 0 0 0
0 0 0 1 0
0 0 0 1 �1

2
664

3
775: ð5Þ

(b)

Left
bodyside

Right
bodyside

Roof
cross-member

(c)

Lift gate opening

(a)

1

2 

3 4 5 
6 

7

Figure 1. Illustration of the actual liftgate opening (a), a schematic box representation (b),
and a potential sensor layout (c) with four sensors numbered 1 to 4.

(a) (b) (c) (d) (e)

Figure 2. Illustration of five variation patterns affecting the liftgate opening: (a) pattern 1,
a horizontal enlargement; (b) pattern 2, a horizontal translation; (c) pattern 3, a horizontal
matchboxing; (d) pattern 4, a vertical enlargement; and (e) pattern 5, a vertical matchboxing.
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It can be verified that !T! is singular, but the Gram matrix

G ¼

4 0 1 0 0 2
0 4 1 0 0 2
1 1 1 0 0 1
0 0 0 4 1 2
0 0 0 1 1 1
2 2 1 2 1 4

2
6666664

3
7777775

ð6Þ

is full rank. Thus, the (W)MLS algorithm is diagnosable with the four-sensor layout,
whereas the OLS algorithm would not be. In the remainder of this paper, the sensor
placement strategies assume that the (W)MLS algorithm is used.

3. Adding individual sensors for diagnosability

Suppose that we have a sensor layout with n sensors currently installed, and we
decide that an additional sensor must be added. For example, we may decide that
we need to add a sensor to improve accuracy. Alternatively, we may discover an
additional potential variation source that must be added to the model. After
increasing the number of sources in the model, the original layout with n sensors
may no longer be diagnosable, in which case we must add an additional sensor for
diagnosability. This section discusses strategies for adding an additional sensor
for diagnosability. The following section will discuss adding an additional sensor
to improve the accuracy of a system that is already diagnosable.

Let !¼ [!1,!2, . . . ,!p] denote the (nþ 1)� p diagnostic matrix with the addi-
tional sensor added, ~! ¼ b ~!1, ~!2, . . . , ~!pc denote the n� p diagnostic matrix for the
original n sensors, and cT¼ [�1, �2, . . . , �p] denote the last row of !. Let Gn and Gnþ1

denote the Gram matrices in equation (3) for the original system of n sensors and the
system of nþ 1 sensors, respectively. If the original system of n sensors is non-
diagnosable, then Gn is singular. Note that the upper left p� p block of the Gram
matrix can be written as (!T!) � (!T!), where the symbol ‘�’ denotes the Hadamard
(element-by-element) product of two matrices of equal dimension (Schott 1997).
From the preceding definitions, it follows that !T ¼ ½ ~!T, c�,!T! ¼ ~!T ~!þ ccT, and
it can be shown (the derivation is included in the appendix) that

Gnþ1¼GnþA, ð7Þ

where

A ¼
2 ~!T ~!
� �

� ccT
� �

þ ccT
� �

� ccT
� �

c � c

c � cð Þ
T 1

" #
:

The Gram matrix Gnþ1 depends on c only via A, because Gn does not depend
on c. The objective is to select the additional sensor so that the resulting c causes
the system to be diagnosable (i.e. GnþA non-singular). Note that the elements of c

represent the effects of the p sources on the additional sensor.
Now let {�i, zi}, i¼ 1, 2, . . . , pþ 1, denote the eigenvalue/eigenvector pairs of Gn,

arranged so that the eigenvalues are in ascending order, and let m¼ pþ1� rank(Gn).
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Thus, m is the dimension of the null space of Gn, and there are exactly m
null eigenvalues (�i¼ 0: i¼ 1, 2, . . . ,m). We refer to the associated eigenvectors
{zi: i¼ 1, 2, . . . ,m} as null eigenvectors, which we take to be an orthonormal set.
If c is such that zTAz¼ 0 for any null eigenvector z, then Gnþ1 will be singular,
because zTGnþ1z¼ zTGnzþ zTAz¼ 0þ 0¼ 0. Consequently, the strategy will involve
selecting the additional sensor so that zTAz40 for all null eigenvectors of Gn.

To accomplish this, alternative expressions for zTAz will be useful. Let {�i, wi},
i¼ 1, 2, . . . , p, denote the eigenvalue/eigenvector pairs of ~!T ~!, arranged so that the
eigenvalues are in descending order, and let r¼ rank( ~!T ~!). Furthermore, given any
vector z¼ [aT �]T with a an arbitrary p-length column vector and � an arbitrary
scalar, zTAz can be expressed as (the derivation is included in the appendix)

zTAz¼ jjhðz, cÞk2, ð8Þ

where the (rþ 1)-length column vector h(z, c) is defined as a function of z and c via

hðz, �Þ ¼
HðaÞc

aTðc � cÞ þ �

� �
, ð9Þ

and the r� p matrix H(a) is defined as a function of a via

HðaÞ ¼

ffiffiffiffiffiffiffi
2�1
p

ða � w1Þ
T

..

.ffiffiffiffiffiffiffi
2�r
p
ða � wrÞ

T

2
64

3
75: ð10Þ

These concepts lead to the following guideline for locating an additional sensor
to ensure diagnosability, the proof of which is also in the appendix. An example at
the end of this section illustrates the use of the guideline.

Guideline 1: The system is diagnosable after adding an additional sensor if and
only if c is such that {h(zi, c): i¼ 1, 2, . . . ,m} are linearly independent, where
{zi: i¼ 1, 2, . . . ,m} is the set of null eigenvectors of Gn. In order to ensure this, first
calculate the null eigenvectors {zi ¼ [ai

T �i]
T: i¼ 1, 2, . . . ,m} of Gn and the r non-null

eigenvalues and eigenvectors of ~!T ~!. Second, calculate numerical values for {H(ai):
i¼ 1, 2, . . . ,m} and inspect the resulting expressions for {h(zi, c): i¼ 1, 2, . . . ,m}
from (9), as a function of the to-be-determined c, in order to identify the conditions
that c must satisfy for diagnosability. The required conditions for c provide insight
into where the sensor must be placed. For m¼ 1, we only require that at least one
element of h(z1, c) differs from zero. For m¼ 2, we require that h(z1, c) and h(z2, c) are
not collinear.

For m42 it may be less straightforward to use the above guidelines. It may
even be impossible to find a single sensor that will result in diagnosability. However,
the following guideline suggests an iterative procedure in which additional sensors
are added successively until the system is diagnosable. The proof of Guideline 2 is
in the appendix.

Guideline 2: Recall that m is the dimension of the null space of the ( pþ 1)� ( pþ 1)
matrix Gn and that rank(Gn) ¼ ( pþ 1)�m. After adding an additional sensor with
c denoting the last row of !, we have

rankðGnþ1Þ ¼ rankðGnÞ þ rank½hðz1, cÞ, hðz2, cÞ, . . . , hðzm, cÞ�:
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If we can find a c such that h(zi, c) differs from the zero vector for at least one

i 2 {1, 2, . . . ,m}, then rank(Gnþ1) is strictly greater than rank(Gn). Thus, for each

additional sensor that we add, we increase the rank of the Gram matrix by at least

one (assuming at least one h(zi, c) differs from zero) and possibly more. The effects

of c on {h(zi, c): i¼ 1, 2, . . . ,m} can be ascertained as described under Guideline 1.

This allows us to eventually arrive at a diagnosable sensor layout by iteratively

adding sensors, provided that there exists some diagnosable layout.

Example 1: In a continuation of the example presented in section 2, suppose we

originally considered only the first three variation patterns shown in figure 2 and

implemented a three-sensor layout consisting of sensors 1, 2, and 4 in figure 1(c).

The diagnostic matrix for this layout is

! ¼
�1 1 1
1 1 0
0 0 0

2
4

3
5,

from which we can verify that the Gram matrix is non-singular. Now suppose we

discover that patterns 4 and 5 in figure 2 may possibly affect the liftgate build quality

and decide to include them in the model. With the original n¼ 3 sensors,

the diagnostic matrix and Gram matrix are

~!¼

�1 1 1 0 0

1 1 0 0 0

0 0 0 1 �1

2
64

3
75, andGn ¼

~!T ~!
� �

� ~!T ~!
� �

~!T
1

~!1

..

.

~!T
p

~!p

~!T
1

~!1 � � � ~!
T
p

~!p n

2
6666664

3
7777775
¼

4 0 1 0 0 2

0 4 1 0 0 2

1 1 1 0 0 1

0 0 0 1 1 1

0 0 0 1 1 1

2 2 1 1 1 3

2
666666664

3
777777775
:

The system is no longer diagnosable because the rank of Gn is 4. Thus, m¼ 2,

and the corresponding null eigenvectors are z1¼ [0.35, 0.35, 0, 0.35, 0.35,�0.71]T

and z2¼ [0, 0, 0, 0.71,�0.71, 0]T. Furthermore, r¼ rankð ~!T ~!Þ ¼ 3, and the

non-null eigenvalues and eigenvectors of ~!T ~! are {�1, �2, �3}¼ {3, 2, 2},

w1¼ [0.58,�0.58,�0.58, 0, 0]T, w2¼ [0, 0, 0, 0.71,�0.71]T, and w3¼ [0.71, 0.71,

0, 0, 0]T.
Guideline 1 can be used to determine an appropriate location for adding a sensor.

Since m¼ 2, the requirement is that h(z1, c) and h(z2, c) are not collinear, where

cT¼ [�1, �2, �3, �4, �5] denotes the new row of !, the elements of which depend on

where the additional sensor is placed. Substituting the preceding values for the

eigenvalues and eigenvectors into equation (9) gives

hðz1,cÞ

0:5�1�0:5�2
0:5�4�0:5�5
0:5�1þ0:5�2

0:35�21 þ0:35�22 þ0:35�24 þþ0:35�
2
5 �0:71

2
664

3
775 and hðz2,cÞ

0
�4þ�5

0
0:71�24 �0:71�25

2
664

3
775:

In order for h(z2, c) to differ from zero, we cannot have both �4 and �5 equal to
zero, which would be the case if we placed the sensor on one of the body sides (recall

that �4 and �5 are the effects of pattern 4 and pattern 5 on the additional sensor).
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Consequently, if the system is to be diagnosable with the additional sensor, it must be
placed on the roof. For a roof sensor, �1¼ �2¼ �3¼ 0, and �4¼ 1, so that the
preceding expressions reduce to

hðz1, cÞ ¼

0
0:5� 0:5�5

0
0:35�25 � 0:35

2
664

3
775 and hðz2, cÞ ¼

0
1þ �5

0
0:71� :71�25

2
664

3
775:

If the additional roof sensor is placed near sensor 5 in figure 1(c), then �5 will be
close to 1, in which case h(z1, c) is zero. If the sensor is located near sensor 4 in
figure 1(c), then �5 will be close to �1, in which case h(z2, c) is zero. Consequently, we
should not place the additional roof sensor near the locations of sensors 4 and 5
in figure 1(c). This suggests placing the sensor near the middle of the roof, similar to
where sensor 3 was positioned. In this case, �5¼ 0, h(z1, c)¼ [0, 0.5, 0, �0.35]T, and
h(z2, c)¼ [0, 1, 0, 0.71]T. Because these two vectors are not collinear, Guideline 1
states that the system is diagnosable with this sensor layout. It can be verified that
the ! matrix for this layout (see equation (5)) results in a non-singular Gram matrix
(equation (6)).

4. Adding sensors to improve accuracy

Up to this point, we have only considered diagnosability in the sensor layout guide-
lines. Diagnosability means only that the Gram matrix is non-singular. A particular
sensor layout may result in a non-singular but poorly conditioned Gram matrix,
in which case the system will be diagnosable but the estimation accuracy may be
unacceptably poor.

Laying out a sensor system to satisfy some accuracy requirements is a more
difficult problem. The estimation accuracy for the ( pþ 1)-length vector of param-
eters r¼ [�21 , . . . , �2p , �

2]T depends in a complex manner on the particular set of true
values for the component variances. We first consider estimation accuracy for the
special case that �1¼ �2¼ � � �¼ �p¼ 0. For the WMLS algorithm in this case, which
is an asymptotic MLE, the error covariance matrix for the estimate of r can be
approximated as (Ding et al. 2005)

D� �
2

N
�4G�1,

which is proportional to the inverse of the Gram matrix. The sum of the estimation
error variances for all pþ 1 components is equal to the trace of '�, which is
proportional to

traceðG�1Þ ¼ trace
Xpþ1
i¼1

�i zi z
T
i

" #�10
@

1
A ¼ trace

Xpþ1
i¼1

1

�i
zi z

T
i

 !
¼
Xpþ1
i¼1

1

�i
,

where {�i, zi}, i¼ 1, 2, . . . , pþ 1, denote the eigenvalue/eigenvector pairs of G

arranged so that the eigenvalues are in ascending order. The estimation accuracy
will clearly deteriorate if any of the eigenvalues is much smaller than 1 (i.e. 1/�i is
much larger than 1).
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When �1 � � � �p are not zero, the expression for '� becomes (Ding et al. 2005)

D� �
2

N
½ftrðD�1y � Vi � D

�1
y � VjÞg

pþ1
i, j¼1�

�1,

where faijg
pþ1
i,j¼ 1 is a ( pþ 1) � ( pþ 1) matrix with aij as its (i, j) element, Vi ¼ !i!

T
i for

i¼ 1, . . . , p and Vpþ1 ¼ I. One may verify that the matrix ftrðD�1y � Vi � D
�1
y � VjÞg

pþ1
i, j¼1

is G� in equation (4). Because G and G� are Gram matrices for the same quantities

but under a slightly different inner product, one is singular or poorly conditioned

if and only if the other one is (the proof of this claim is provided in appendix E).

Hence, good (poor) accuracy associated with the system when �1¼ � � � ¼�p¼ 0

will translate to good (poor) accuracy associated with the system when �1, . . . , �p
differ from zero. In light of this and for reasons of simplicity (e.g. to avoid having

to specify specific values of �1, . . . , �p on which to base the system design),

we recommend selecting the additional sensors based on G, rather than G�.
As in the previous section, suppose we have a current sensor layout with n sensors

and want to add an additional sensor to improve accuracy. Instead of Gn being

singular with m null eigenvalues, we now consider the case that there are a set of m0

small eigenvalues {�i: i¼ 1, 2, . . . ,m0}, and {zi: i¼ 1, 2, . . . ,m0} are the associated

eigenvectors. In light of the preceding paragraph, the objective is to select the

additional sensor in order to increase the small eigenvalues of Gnþ1¼GnþA.

The exact relationship between c and the eigenvalues of Gn and Gnþ1 is complex and

inconvenient to use. However, a necessary condition to increase the eigenvalues of

Gnþ1, and consequently improve the estimation accuracy, is to increase the value

of kh(zi, c)k
2 (i¼ 1, 2, . . . ,m0). This follows by noting that the smallest eigenvalue

of Gnþ1 is

�minðGnþ1Þ ¼ min
kzk¼1

zTGnþ1z¼ min
kzk¼1

zTGnzþ zTAz � zTi Gnzi þ zTi Azi

¼ �i þ khðzi, cÞk
2 : i ¼ 1, 2, . . . ,m0:

This leads to the following guideline for adding an additional sensor to improve

accuracy.

Guideline 3: First, find the set of small eigenvalues {�i: i¼ 1, 2, . . . ,m0} and the

associated eigenvectors {zi}i¼1,. . .,m0. Then, select the additional sensor so

that the corresponding new row cT of the diagnostic matrix results in values of

�i þ kh(zi, c)k
2, i¼ 1, 2, . . . ,m0, that are as large as possible.

Deciding a set of eigenvalues to be selected is a focused topic in statistical analysis

such as principal component analysis (PCA). One of the widely used methods

is the scree plot (i.e. a Pareto plot) suggested by Johnson and Wichern (2002,

page 441), where the eigenvalues are ordered and plotted, and people will look for

an elbow (bend) in the scree plot. In PCA, eigenvalues are arranged in descending

order because people mean to select the group of the largest eigenvalues. Here

we arrange the eigenvalues in ascending order to select the group of the smallest

group. To get a quantitative sense, we also recommend calculating the ratio of

�iþ1/�i for those eigenvalues smaller than 1 (whose amplification on output variance

is 1/�i41), and then select the set of small eigenvalues where the largest �iþ1/�i
ratio occurs.
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Example 2: Reconsider the liftgate example, and suppose we have a current sensor

layout with the n¼ 5 sensors numbered 1, 2, 4, 5, and 7 in figure 1(c). Considering

all five patterns shown in figure 2, the diagnostic matrix and Gram matrix for

this layout are

~! ¼

�1 1 0 0 0

�1 1 1 0 0

1 1 0 0 0

0 0 0 1 1

0 0 0 1 �1

2
6666664

3
7777775
, and

Gn ¼

~!
T ~!

� �
� ~!

T ~!
� � ~!

T

1
~!1

..

.

~!
T

p
~!p

~!
T

1
~!1 � � �

~!
T

p
~!p

n

2
6666664

3
7777775
¼

9 1 1 0 0 3

1 9 1 0 0 3

1 1 1 0 0 1

0 0 0 4 0 2

0 0 0 0 4 2

3 3 1 2 2 5

2
666666664

3
777777775
:

The diagonal elements of G�1n (which are proportional to the variances of the

estimated elements of r) are {0.19, 0.19, 1.50, 0.50, 0.50, 1.00}. Thus, the estimates

of �23 and �2 are the least accurate. The eigenvalues of Gn are {0.45, 0.97, 4.00, 5.67,

8.00, 12.91}. Using a scree plot or the ratio of �iþ1=�i, it is obvious that the set of

small eigenvalues include the first two. Then, we have m0 ¼ 2, �1¼ 0.45,

and �2¼ 0.97. The corresponding eigenvectors are z1¼ [0.12, 0.12, 0.64, 0.33,

0.33,�0.59]T and z2¼ [0.22, 0.22,�0.75, 0.28, 0.28,�0.42]T. Furthermore,

r¼ rankð ~!T ~!Þ ¼ 5, and the non-null eigenvalues and eigenvectors of ~!T ~! are

{�1, �2, �3, �4, �5}¼ {4.56, 2.00, 2.00, 2.00, 0.44}, w1¼ [0.66,�0.66,�0.37, 0, 0]T,

w2¼ [0, 0, 0, 0, 1]T, w3¼ [0, 0, 0, 1, 0]T, w4¼ [0.71, 0.71, 0, 0, 0]T, and w5¼ [0.26,�0.26,

0.93, 0, 0]T. Substituting these into equation (9) gives

hðz1, cÞ ¼

0:23�1� 0:23�2� 0:72�3

0:66�5

0:66�4

0:16�1þ 0:16�2

0:03�1� 0:03�2þ 0:55�3

0:12 �21 þ 0:12 �22 þ 0:64 �23 þ 0:33 �24 þ 0:33 �25 � 0:59

2
666666664

3
777777775
,

hðz2, cÞ ¼

0:44�1� 0:44�2þ 0:84�3

0:56�5

0:56�4

0:32�1þ 0:32�2

0:05�1� 0:05�2� 0:65�3

0:22 �21 þ 0:22 �22 � 0:75 �23 þ 0:28 �24 þ 0:28 �25 � 0:42

2
666666664

3
777777775
:

In order to decide which pattern should have most effect on the additional sensor,

we recommend doing so in accordance with the element of c that has the largest sum
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of squares of coefficients. Here, the sum of squares of coefficients of �3 is clearly
the largest, suggesting that pattern 3 should have as large an effect as possible on the
additional sensor. This is accomplished by placing the additional sensor as high up
on the body side as possible. If we choose a location that corresponds to sensor 6
in figure 1(c), then c¼ [1, 1, 1, 0, 0]T, and the result is kh(z1, c)k¼ 1.02 and
kh(z2, c)k

2
¼ 2.06. With this value of c, it can be verified that the Gram matrix Gnþ1

after adding the additional sensor is

Gnþ1 ¼

16 0 0 0 0 4
0 16 4 0 0 4
0 4 4 0 0 2
0 0 0 4 0 2
0 0 0 0 4 2
4 4 2 2 2 6

2
6666664

3
7777775
:

The diagonal elements of G�1nþ1 are {0.10, 0.10, 0.40, 0.40, 0.40, 0.60}, compared
to the diagonal elements {0.19, 0.19, 1.50, 0.50, 0.50, 1.00} of G�1n discussed earlier.
Thus, the additional sensor reduces the estimation error variances for �23 and �2

by 73% and 40%, respectively.

5. Sensor placement in a three-station assembly process

The examples in the previous sections were rather simple ones in which the ! matrix
can be readily determined given the sensor locations, and all elements of ! are either
	1 or 0. In this case, a numerical optimization algorithm is largely unnecessary.
Actual assembly processes are often far more complicated, however, consisting
of multiple assembly stations and sequences of operations. In this section we apply
the guidelines from the previous sections in a three-station panel assembly example
that, although still relatively simple, is not as transparent as the previous examples.
In situations like this, it might be advantageous to use the guidelines in conjunction
with numerical optimization. The example demonstrates the use of the guidelines and
how they can facilitate a numerical search.

5.1 The assembly process

The three-station assembly process shown in figure 3, which was also considered in
Ding et al. (2002b), Zhou et al. (2003a), and Apley and Ding (2005), represents
a segment of an automotive body assembly with the geometry of each part simpli-
fied to a rectangle. The assembly process welds four parts together in two stations
(Stations I and II). In Station I, Parts 1 and 2 are joined, and the resulting sub-
assembly is joined with Parts 3 and 4 in Station II. In an assembly station, each part
(or subassembly) is located in a fixture using a pin that mates with a hole in the part
and second pin that mates with a slot in the part. A pin/hole combination constrains
two degrees-of-freedom and a pin/slot constrains only one degree-of-freedom.
Together, a pin/hole and pin/slot completely constrain all three degrees-of-freedom
of the part within the x–z plane. The active holes and slots at each station are
shown darkened. Holes and slots that are not darkened are not used in that
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particular station. Station III is a measurement station in which no assembly

takes place, although measurement is not restricted to Station III. The dimensions

shown in the Station III figure have been scaled for convenience, and have no

physical meaning.
The variation sources that we will consider are deviations of the pin/hole

combinations in the x- and z-directions and deviations of the pin/slot combinations

in the z-direction for the two assembly stations. Because there are a total of five

active pin/hole combinations and five active pin/slot combinations in Stations I

and II, there are a total of 15 potential variation sources ( p¼ 15). These are indicated

by the arrows labelled u1 through u15 in the Station I and Station II figures.

Deviations in the positive x- and positive z-directions are taken to be positive.
In order to estimate the variance components associated with the 15 variation

sources, suppose that a total of eight sensors (n¼ 8) are installed in Station III, with

two sensors (one measuring the x-deviation and one measuring the z-deviation)

placed on each of the four parts. The locations of the eight sensors are labelled

y1 through y8, where the direction of the arrows indicates whether the x-coordinate

or z-coordinate is being measured (temporarily ignore the additional sensors denoted

by y9 and y10).
For this initial sensor layout, we first check diagnosability to verify whether it is

possible to estimate pþ 1¼ 16 variance components (including that of sensor noise)

using n¼ 8 sensors. The !matrix can be calculated using a simple computer program

based on any of the systematic multi-station modelling procedures described

x

z

Part 1

Part 2

u1

u2 u3
u4

u5 u6
Part 3

Part 4

Part 1 

Part 2

u7 
u8 u9

u13

u14 u15

u10

u11 u12

Station I Station II 

Station III

y1

y3

y2

y4

y5

y6

y7

y8

0.5 1

0.5

0.5
1

10.5

0.5

1 1.51

1 1 1 1 1

1

y9

y10

Figure 3. A three station assembly system where Parts 1 and 2 are joined in Station I;
the Part 1–2 subassembly is joined with Parts 3 and 4 in Station II; and the final assembly is
measured in Station III.

5498 Y. Ding and D. W. Apley



in Carlson et al. (2000), Jin and Shi (1999), or Ding et al. (2000), which yields (the bar
overscore indicates a repeating digit):

!¼

0 0:6 �1 0 0 0:3 0 0:13 �0:3 0 0 0 0 0 0:2
0 �0:3 0:5 0 0 �0:16 0 �0:06 0:16 0 0 0 0 0 �0:1
�1 0:3 0 1 �1 0:6 0 �0:13 0:3 0 0 0 0 0 �0:2
0 �0:16 0 0 0:5 �0:3 0 �0:3 0:83 0 0 0 0 0 �0:5
0 0 0 0 0 0 �1 �0:3 0 1 0:5 �0:5 0 0 0:3
0 0 0 0 0 0 0 �0:1 0 0 0:5 0:5 0 0 �0:9
0 0 0 0 0 0 �1 0:1 0 0 0 0 1 �0:5 0:4
0 0 0 0 0 0 0 �0:1 0 0 0 0 0 0:5 �0:4

2
66666666664

3
77777777775
:

It can easily be verified that the resulting Gram matrix for the above ! is singular
with rank 15, so that the system is not diagnosable.

5.2 Ensuring diagnosability

To ensure diagnosability, we need to place additional sensors. Because m¼ 1 in this
case, Guideline 1 implies that we only need h(z1, c) to differ from the zero vector,
where c is the 15� 1 vector that represents the effects of the 15 variation sources on
the additional sensor. The vector h(z1, c), which can be calculated using equations (9)
and (10) as described in the previous examples, is

hðz1, cÞ ¼

�0:0128�1 � 0:0128�4
0:101�1 þ 0:101�4
�0:0333�1 � 0:0333�4
0:0988�1 þ 0:0988�4
0:2882�1 þ 0:2882�4
0:3139�1 þ 0:3139�4
�0:8928�1 � 0:8928�4
0:7071�21 � 0:7071�24

2
66666666664

3
77777777775
:

The insight gained from this is that we need to place the additional sensor so that
�1 6¼��4. Recall that �1 and �4 represent the effects of the variation sources u1
and u4 on the additional sensor. Because u1 and u4 are associated with x-direction
displacement of Parts 1 and 2, respectively, in Station I, it does not help to place the
sensor on Part 3 or 4 in Station II or III. Thus, the additional sensor must measure
the x-direction on either Part 1 or Part 2.

Because Parts 1 and 2 appear in all three stations, we need to further decide in
which station to place the sensor. If the sensor is placed in Station II or III, then we
will have �1 ¼ ��4. This is because in Stations II and III, Parts 1 and 2 have already
been joined, at which time a positive deviation of u1 becomes indistinguishable from
a negative deviation of u4. Consequently, the only choice is to place the additional
sensor in Station I, measuring either the x-direction of Part 1 or the x-direction of
Part 2. If the sensor is placed on Part 1 then �1¼ 1 and �4¼ 0. If the sensor is placed
on Part 2 then �1¼ 0 and �4¼ 1. Either placement results in a diagnosable sensor
layout according to Guideline 1.

Suppose that we place the additional sensor at y9 on Part 1, which is the same
position as y1 but in Station I. It can be verified that the Grammatrix is now full rank.
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In fact, after adding y9, we can even remove y1 and still retain diagnosability with an

eight-sensor system ( y2 to y9). After adding a sensor, we recommend iteratively

removing each column of ! and checking whether the resulting Gram matrix is still

full-rank, in order to determine whether any of the original sensors can be removed

(or perhaps relocated to a more advantageous position). This can be checked quickly

and easily with a computer program.

5.3 Improving accuracy

Starting with the diagnosable eight-sensor system ( y2 to y9) from the previous step,

the next step is to determine whether accuracy is sufficient. With sensors y2 to y9,

we have

~!¼

1 1 �1 0 0 0 0 0 0 0 0 0 0 0 0
0 �0:3 0:5 0 0 �0:16 0 �0:06 0:16 0 0 0 0 0 �0:1
�1 0:3 0 1 �1 0:6 0 �0:13 0:3 0 0 0 0 0 �0:2
0 �0:16 0 0 0:5 �0:3 0 �0:3 0:83 0 0 0 0 0 �0:5
0 0 0 0 0 0 �1 �0:3 0 1 0:5 �0:5 0 0 0:3
0 0 0 0 0 0 0 �0:1 0 0 0:5 0:5 0 0 �0:9
0 0 0 0 0 0 �1 0:1 0 0 0 0 1 �0:5 0:4
0 0 0 0 0 0 0 �0:1 0 0 0 0 0 0:5 �0:4

2
66666666664

3
77777777775
:

The diagonal elements of G�1n are {0.68, 4.75, 5.79, 3.58, 8.59, 35.21, 0.55, 30.31,

3.09, 3.61, 9.42, 12.43, 2.15, 6.75, 0.81, 0.61}, which indicate that the estimates of

�26 and �
2
8 are the least accurate. The eigenvalues of Gn are {0.023, 0.031, 0.050, 0.103,

0.163, 0.221, 0.234, 0.310, 0.629, 1.109, 1.347, 1.916, 2.626, 2.932, 5.020, 11.132},

from which one can observe that there are a few small eigenvalues.
Same as in Example 2, calculating the ratio of �iþ1/�i or using the scree plot,

we find that the set of small eigenvalues includes the first three eigenvalues (the

largest �iþ1/�i¼ 2.06 happens at i¼ 3), in which case we set m0 ¼ 3. In order to use

Guideline 3, we first use equations (9) and (10) to calculate

hðz1, cÞ ¼

0:0987�5 þ 0:1578�6
�0:0964�5 � 0:1528�6

�0:1885�2 � 0:1637�3 þ 0:3575�5 þ 0:596�6
0:1560�5 þ 0:2336�6

�0:0994�3 � 0:4733�5 � 0:6834�6
�0:1239�22 þ 0:1259�23 � 0:4028�25 þ 0:8961�26

2
6666664

3
7777775
,

hðz2, cÞ ¼

�0:2149�8 � 0:1244�9
0:1107�8 þ 0:1213�10 þ 0:1048�12
0:6086�8 þ 0:1039�9 þ 0:1133�10
0:1117�8 þ 0:1578�10 þ 0:1084�12

�0:1254�8
�0:9578�28 þ 0:1417�29 þ 0:1645�210 � 0:1756�212

2
6666664

3
7777775
,
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hðz3, cÞ ¼

0:1297�11 � 0:1486�14

�0:1628�9 þ 0:2996�11 þ 0:3173�12

�0:1607�10 � 0:4087�12 þ 0:1448�14

0:136�9 � 0:1501�10 þ 0:42�11 þ 0:1129�15

�0:2091�10 þ 0:1965�11 � 0:423�12 � 0:1449�14 � 0:0992�15

�0:1157�12

�0:1331�28 þ 0:1855�29 � 0:2179�210 þ 0:5743�211
þ0:6851�212 þ 0:2683�214 þ�0:0971�

2
15

2
66666666666664

3
77777777777775
:

Note that we have cleaned up the expressions for these three h vectors by ignoring

terms with very small coefficients (our threshold was 10% of the largest coefficient,

or 0.0958). The immediate goal is to make the norm of these three h vectors as large

as possible.
The above expressions indicate that the major contributors to kh(z1, c)k are �5

and �6 (again based on the magnitude of their coefficients), the major contributors to

kh(z2, c)k are �8 and �9, and the major contributors to kh(z3, c)k are �11 and �12.
By inspection of figure 3, it is not possible to find a single sensor that will

simultaneously make kh(z1, c)k, kh(z2, c)k, and kh(z3, c)k large. The reason is that in

order for �11 and �12 to differ from zero, the sensor must be located on Part 3. Any

sensor located on Part 3, however, will not be strongly affected by u5, u6, u8, or u9 (i.e.

will not result in large values for �5, �6, �8, and �9). On the other hand, figure 3

indicates that it may be possible to make �5, �6, �8, and �9 large (thereby making

kh(z1, c)k and kh(z2, c)k larger simultaneously) with a single additional sensor.

This suggests the following strategy for adding two additional sensors in order to

increase the norm of the three h vectors. We locate the first sensor to make �5, �6, �8,
and �9 as large as possible, and we locate the second sensor to make �11 and �12 as
large as possible.

In order to make �5, �6, �8, and �9 large, the first additional sensor should be

placed on Parts 1 or 2. Because Parts 1 and 2 appear on all three stations, we also

need to decide in which station to place the sensor. We cannot choose Station I,

because u8 and u9 would have no effect on the sensor (i.e. �8¼ �9¼ 0). Moreover,

fixture layouts are usually designed so that the effects of faults that occur in one

station are not amplified in subsequent downstream stations. Hence, we can most

likely make �5, �6, �8, and �9 larger by placing the first additional sensor in

Station II, rather than the downstream Station III.
Consequently, we restrict our search to Parts 1 or 2 on Station II. It is not

difficult to see that placing a sensor further away from the locating point generally

results in a larger �. On a rectangular part, this translates to placing the additional

sensor at a corner. We can therefore narrow down the set of candidate sensor

locations to 16 possibilities (either an x- or a z-direction sensor at one of the eight

corners on Parts 1 and 2).
Calculating the resulting Gnþ1 matrix for a total of 16 different sensor locations

is relatively easy with the aid of a numerical program in (for example) MATLAB.

This would reveal that placing an additional x-direction sensor on the top-right

corner of Part 1 in Station II (i.e., y10 in figure 3) maximizes the smallest eigenvalue

of Gnþ1 among the 16 candidate locations. For the resulting nine-sensor system
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(y2 to y10), the smallest eigenvalue of Gnþ1 is 0.0584, which is 2.5 times larger than the
smallest eigenvalue of Gn. The diagonal elements of G�1nþ1 are {0.3842, 1.4438, 0.5864,
3.2294, 2.6017, 3.6385, 0.1688, 8.7818, 1.7787, 2.6091, 8.3464, 10.8194, 1.6370,
6.2866, 0.7517, 0.3734}. Comparing this with the diagonal elements of G�1n , the
additional sensor reduces the estimation error variances for �26 and �28 by 95.1% and
71.0%, respectively. After adding y10, we could then focus on making kh(z3, c)k large
(via making �11 and �12 large) by placing the second additional sensor on Part 3 in
Station III. Alternatively, we could start anew after y10 is added by recalculating the
new h vector(s) corresponding to any small eigenvalue(s) of the new Gnþ1.

5.4 Comparison with numerical search

Others (e.g. Khan et al. 1998, 1999, 2000, Wang and Nagarkar, 1999, Ding et al. 2003,
Liu et al. 2005) have used numerical search methods to find the additional sensor
location that maximizes the minimum eigenvalue ofGnþ1 (equivalent to E-optimality)
over the feasible design space. For this three-station problem, the feasible design space
might be the two-dimensional space over the panel surfaces of each part in each
station. The pool of possible candidate sensor locations is generated by discretising
each panel with a grid of resolution 0.01. With this resolution, Part 2, for example, has
60 000 candidate locations for either an x-direction or a z-direction sensor. The best
single sensor location found by an exhaustive search turned out to coincide with the
one recommended above based on the guidelines, namely y10 shown in figure 3.
Consequently, onemight use the guidelines as amethod of substantially narrowing the
search space, in order to reduce computational expense and improve the robustness of
a numerical optimization procedure.

6. Conclusions

This paper has developed guidelines that aid in placing additional sensor(s) in an
existing sensor layout, in order to ensure diagnosability and/or improve variance
components estimation accuracy. The guidelines were illustrated with examples from
autobody assembly. In the three-station example, the recommended sensor location
using the guidelines turned out to coincide with the ‘optimal’ location produced
by an exhaustive search, and the additional sensor substantially improved the
estimation accuracy of the variance components.

In more complex manufacturing systems, the sensor placement guidelines could
be used in conjunction with the numerical optimization strategies of (for example)
Wang and Nagarkar (1999), Khan and Ceglarek (2000), or Liu et al. (2005), which
search over all possible candidate sensor layouts. The guidelines could be used to
judiciously select the set of candidate layouts over which the optimization algorithm
must search. Alternatively, the guidelines could be used to provide a set of ‘good’
sensor locations that the optimization routine could fine-tune by searching only
locally, in the neighbourhoods of the candidate locations.

There are also situations in which one might wish to use the guidelines by
themselves, in lieu of a numerical search routine. There are typically many engineer-
ing constraints on where sensors can be located and what features can be measured.
For example, if the panels in figure 3 truly were perfectly flat with no distinguishing
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features, then the only way a sensor could measure an x- or z-direction displacement
would be to locate it on an edge or on one of the holes/slots. Furthermore, some
edges (either abrupt sheared edges or contoured flanges) are not formed with enough
precision to yield an accurate measurement of the panel displacement. Although
a process engineer may have a clear conception of where sensors can or cannot
be located, it may be quite difficult to meticulously encode all of these constraints
into an optimization algorithm. The fact that this is not a black and white issue
further complicates the matter. A sensor located on one panel feature may yield
a panel displacement measurement that provides some information, but that is not
as accurate as if the sensor were located on a different feature. When using the
guidelines of this paper to select a good sensor location, a process engineer could
easily take into account a myriad of other qualitative factors based on experience
and engineering judgment that would be otherwise difficult to incorporate quanti-
tatively into an optimization routine.
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Appendices (proofs of various results)

Appendix A. Derivation of equation (7)
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Appendix B. Derivation of equation (8)

Given that rank ð ~!T ~!Þ is r, it follows that �i¼ 0 for i¼ rþ 1, rþ 2, . . . , p, and
inserting the spectral decomposition ~!T ~!¼ �r

i¼1�iwiw
T
i into the expression of A in

equation (7) gives

A ¼
2�r

i¼1�iðwi � cÞðwi � cÞT þ ðc � cÞðc � cÞT c � c

ðc � cÞT 1

� �
, ðB1Þ

where we have used the fact that (aaT) � (bbT) ¼ (a � b)(a � b)T for any vectors
a and b of equal dimension. With z ¼ [aT �]T and A as in the foregoing expression,

zTAz ¼ 2aT
Xr
i¼1

�i wi � cð Þ wi � cð Þ
Taþ aT c � cð Þ

� �2
þ 2�aT c � cð Þ þ �2

¼ 2
Xr
i¼1

�i½a
Tðwi � cÞ�2 þ ½aTðc � cÞ þ ��2

¼
Xr
i¼1

½
ffiffiffiffiffiffi
2�i

p
½ða � wiÞ

T
� cÞ�2 þ ½aTðc � cÞ þ ��2

¼ kHðaÞck2þ ½�Tðc � cÞþ ��2¼ khðz, cÞk2: h

Appendix C. Proof of Guideline 1

The system is nondiagnosable (Gnþ1 is singular) iff there exists a nontrivial vector
z such that zTGnþ1z¼ zTGnzþ zTAz¼ 0. Both Gn and A are positive semi-definite
(Gn because it is a Gram matrix, and A because of equation (8)). Thus, zTGnþ1z¼ 0
iff zTGnz and zTAz are both zero. Now zTGnz is zero iff z lies in the null space of Gn,
and the null space of Gn is the span of its null eigenvectors. It follows that the system
is non-diagnosable iff there exists a set of coefficients {�i: i¼ 1, 2, . . . , m}, not all zero,
such that

0 ¼ ð�1z1þ �2z2þ � � � þ �mzmÞ
TAð�1z1þ �2z2þ � � � þ �mzmÞ

¼ khð�1z1þ �2z2þ � � � þ �mzm, cÞk
2

¼ khðz1, cÞ�1þ hðz2, cÞ�2þ � � � þ hðzm, cÞ�mk
2,

where the second equality follows from equation (8), and the last equality follows
from the linearity of h(z, c) with respect to z. There exists a set of coefficients such
that preceding equation holds iff {h(zi, c): i¼ 1, 2, . . . ,m} are linearly dependent,
which completes the proof. œ

Appendix D. Proof of Guideline 2

Let N (.) denote the null space of a matrix and dim(.) the dimension of a linear
vector space. Because Gnþ1¼GnþA, and Gn and A are both positive semi-definite,
N (Gnþ1) is the intersection of N (Gn) and N (A). Thus, N (Gnþ1)¼ {z2
span{z1, z2, . . . , zm}: zTAz¼ 0}. As in the proof of Guideline 1, consider
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linear combinations of the form z¼ �1z1þ �2z2þ � � � þ �mzm¼ [z1, z2, . . . , zm]d
with d¼ [�1, �2, . . . , �m]

T. For any such z, it also follows from the proof of
Guideline 1 that zTAz¼ 0 iff [h(z1, c), h(z2, c), . . . , h(zm, c)]d¼ 0. Thus,
N (Gnþ1)¼ {[z1, z2, . . . , zm]d: [h(z1, c), h(z2, c), . . . , h(zm, c)]d¼ 0}, the dimension of
which is equal to the dimension of N ([h(z1, c), h(z2, c), . . . , h(zm, c)]). Because the
rank of any matrix is equal to the number of columns minus the dimension of its null
space, it follows that

rankðGnþ1Þ ¼ ð pþ1Þ � dimðN ðGnþ1ÞÞ

¼ ð pþ 1Þ � dimðN ð½hðz1, cÞ, hðz2, cÞ, . . . , hðzm, cÞ�ÞÞ

¼ ð pþ 1Þ � ðm� rank½hðz1, cÞ, hðz2, cÞ, . . . , hðzm, cÞ�Þ

¼ rankðGnÞ þ rank½hðz1, cÞ, hðz2, cÞ, . . . , hðzm, cÞ�: h

Appendix E. Proof of claim related to estimation accuracy

The following is a proof that if the system is designed to have good accuracy in the
simplifying scenario where �1¼ � � � ¼ �p¼ 0, then it will also have good accuracy in
the more general scenario where �1, . . . , �p are not all zero. Consider the set of pþ 1
matrices {{!i!

T
i : i¼ 1, 2, . . . , p}, I}. G is the Gram matrix for the set {{!i!

T
i :

i¼ 1, 2, . . . , p}, I} under the matrix inner product5A, B4¼ tr(ABT). Similarly, G� is
the Gram matrix for the same set {{!i!

T
i : i¼ 1, 2, . . . , p}, I} under the matrix inner

product hA,Bi ¼ trðD�1=2y AD�1y BT
D
�1=2
y Þ, where Dy ¼ �

p
i¼1�

2
i !i!

T
i þ �

2I. A Gram
matrix for a set is singular if and only if the members of the set are linearly
dependent. Because this does not depend on which inner product is chosen to define
the Gram matrix, it follows that G� is singular if and only if G is singular. One may
use similar, but more tedious, arguments to show that G� is poorly conditioned
if and only if G is poorly conditioned. This claim also relies on the observation that
Dy is well-conditioned, even if ! is close to singular, because of the �2I term
(the eigenvalues of the positive definite matrix Dy are bounded below by �2). œ
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