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Abstract
The propagation of Lamb waves generated by piezoelectric transducers in a one-dimensional
structure has been studied comprehensively in part I of this two-paper series. Using the
information embedded in the propagating waveforms, we expect to make a decision on whether
damage has occurred; however, environmental and operational variances inevitably complicate
the problem. To better detect the damage under these variances, we present in this paper a
robust and quantitative decision-making methodology involving advanced signal processing and
statistical analysis. In order to statistically evaluate the features in Lamb wave propagation in
the presence of noise, we collect multiple time series (baseline signals) from the undamaged
beam. A combination of the improved adaptive harmonic wavelet transform (AHWT) and the
principal component analysis (PCA) is performed on the baseline signals to highlight the
critical features of Lamb wave propagation in the undamaged structure. The detection of
damage is facilitated by comparing the features of the test signal collected from the test
structure (damaged or undamaged) with the features of the baseline signals. In this process, we
employ Hotelling’s T 2 statistical analysis to first purify the baseline dataset and then to quantify
the deviation of the test data vector from the baseline dataset. Through experimental and
numerical studies, we systematically investigate the proposed methodology in terms of the
detectability (capability of detecting damage), the sensitivity (with respect to damage severity
and excitation frequency) and the robustness against noises. The parametric studies also
validate, from the signal processing standpoint, the guidelines of Lamb-wave-based damage
detection developed in part I.

1. Introduction

Structural damage detection using Lamb waves excited and
sensed by embedded piezoelectric transducers has shown
many promising features. Lamb waves, which are elastic
guided waves propagating in a solid plate (or layer) with
free boundaries, have been well studied and widely used in
damage detection. In recent years, a significant amount of
research on the modeling and analysis has been carried out
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to further understand the properties of Lamb waves excited
by piezoelectric transducers (Lin and Yuan 2001a, 2001b,
Giurgiutiu 2005, Raghavan and Cesnik 2005). In general,
Lamb waves are more sensitive to the presence of local
damage than the global response of a structure; thus the Lamb
wave techniques could provide more useful information than
vibration-based techniques (Kessler and Dunn 2003) in certain
cases. This promising advantage provides possibilities of
in situ damage detection in various applications.

Based on the information given by the Lamb wave
propagation, previous researchers have developed a variety
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of damage detection or identification schemes to determine
the status of a structure. One straightforward thought is to
compare the time domain signals collected from undamaged
and damaged structures. To quantify the degree by which the
signals differ from each other, a number of damage indices
have been proposed (Tseng and Naidu 2002), e.g. root-mean-
square deviation (RMSD), mean absolute percentage deviation
(MAPD), covariance (Cov) and correlation coefficient (CC).
Most of these indices are scalars which average the difference
over the time period; thus some time information has to
be sacrificed. To take advantage of both the amplitude
and the time information, the use of time-of-flight (TOF)
has been suggested, which measures the traveling time
of a wavepacket from the actuator to the sensor. Some
identification methodologies depend more or less on the time-
of-flight concept. For example, Lin and Yuan (2001a, 2001b)
presented a damage identification scheme using a migration
technique which treats the damage as a secondary source and
the detected reflection waves are back-propagated towards the
damage. Giurgiutiu et al (2003) explored using the weighted
sum of the wave propagation signals in different directions
collected by a sensor array. However, since the signals are
often contaminated with noise, in certain cases the time-of-
flight may not be measured accurately enough to determine the
damage location. Moreover, due to the complexity of multi-
mode Lamb wave propagation, blind zones may exist, where
extra caution and effort is needed (Tua et al 2004).

In many applications, the timely detection of the
occurrence of damage is of primary concern, especially
in the presence of environmental uncertainties which make
the identification of damage location/severity difficult. The
environmental and operational variances (e.g. ground vibration
or electrical disturbances) result in noisy and complex sensor
data. Since any ‘robust’ decision-making scheme requires
proper handling of noise, the importance of signal processing
has gradually been emphasized (Staszewski 2002). To reduce
the noise effect, it is common to collect multiple signals
from the same structure under the same conditions. One
straightforward and widely used signal processing method is to
directly average multiple signals (Raghavan and Cesnik 2005),
but such a method does not take full usage of the information
from the statistical point of view. Filtering techniques, e.g.
the Chebyshev type II bandpass filter (Yu and Giurgiutiu
2005), are adopted by some researchers. Recently, denoising
by using either the discrete (Yu and Giurgiutiu 2006) or the
continuous wavelet transform (Yan et al 2005) has also been
studied, which essentially leads to signal processing techniques
in feature domains other than the usual time domain. Here
arises the issue of feature extraction and representation. The
Fourier transform, though most widely used (Cawley and
Adams 1979, Doebling et al 1996), provides only the global
frequency information over the entire time span but loses all
the time information in the signal. To overcome this drawback,
the short time Fourier transform (STFT) was developed to
map a signal into a two-dimensional function of time and
frequency (Niethammer 1999, Zhao et al 2006). STFT adopts
a windowing technique, but the resolution depends on the size
of the window, which is referred to as the uncertainty principle

(Papoulis 1962): a small window leads to fine time resolution
but coarse frequency resolution, while a large window has
the opposite effect. Wavelet analysis is another joint time–
frequency domain technique, which can be treated as a short
time Fourier transform with variable-sized windows. It is
essentially a correlation-based method that yields coefficients
representing how well the input signal correlates with a series
of windowed functions which are the wavelet basis. Kim and
Melhem (2004) reviewed recent studies on damage detection
using wavelet analysis and put them into three categories:
(1) variation of wavelet coefficients; (2) local perturbation of
wavelet coefficients and (3) reflective wave caused by local
damage. The detectability (capability of detecting damage)
thus relies on the degree by which the waveform signal of a test
structure differs from that of an undamaged structure. A variety
of mother wavelets have been used, including Haar wavelets
(Wang et al 1999), Daubechies wavelets (Hou et al 2000),
Mexican hat wavelets (Lu and Hsu 1999), Gabor wavelets
(Quek et al 2001), Morlet wavelets (Park et al 2006), etc.

Using wavelet analysis for feature extraction, we can
transform each time series collected into one array of wavelet
coefficients. In the presence of environmental and operational
variances, multiple signals are collected from the undamaged
structure; thus a matrix instead of only one vector of wavelet
coefficients will be obtained as the baseline dataset. Although
it is possible to use the aforementioned damage indices, the
complexity due to multiple baseline signals may affect the
accuracy or even the feasibility. Indeed, statistical techniques
appear to be a natural choice. The research issue here
is actually similar to that in process monitoring, where
multivariate data are collected from different processes and
used to determine abnormal operational conditions. Ganesan
et al (2004) performed a thorough literature review on wavelet-
based multiscale statistical techniques in the field of process
monitoring, where it was pointed out that the principal
component analysis (PCA) combined with Hotelling’s T 2

analysis could be very useful for monitoring. PCA is an
orthogonal linear transformation that projects data onto a new
coordinate system such that the largest variance lies on the
first coordinate (first principal component), the second greatest
variance on the second coordinate, and so on. In some
applications, the obtained wavelet features are compressed
and denoised by the truncation of the principal components
with the corresponding eigenvalues below a certain threshold
(Okimoto and Lemonds 1999). The PCA is usually followed
by a decision-making procedure based on Hotelling’s T 2,
which is a statistic for a multivariate test of differences between
the mean values of two data groups. In damage detection
studies, the T 2 statistic not only can quantitatively detect
a damage with a given confidence level, but also can help
eliminate outliers from the set of baseline signals (Fang and
Tang 2006).

2. Research overview

Although a significant amount of research has been carried
out on Lamb-wave-based damage detection using piezoelectric
transducers, there are still unsolved issues regarding detection
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Figure 1. Side and top view of the experimental set-up (dimensions in mm).

decision-making algorithms. In particular, to date, the
feature extraction and quantitative prediction of damage in
the presence of environmental uncertainties remain as a
challenging problem. Existing methods are either built upon
the accurate analysis of wave propagation that might not be
measured easily under noisy conditions, or using an overly
simplified threshold value that is rigid and overlooks the
abundant information carried by the wave propagation signals.
In this research, a combination of signal analysis tools will
be studied to specifically address the issue of robust damage
detection using piezoelectric transducers and the Lamb wave
propagation.

The damage detection is carried out by comparing the
multiple time series (baseline signals) measured a priori from
the undamaged structure with one test signal collected from
the test beam (damaged or undamaged). In order to identify
the critical features embedded in the baseline signals, we adopt
the adaptive harmonic wavelet transform to analyze the wave
propagation characteristics. This adaptive harmonic wavelet
transform allows us to use the smallest number of wavelet
coefficients (referred to as the baseline dataset) to characterize
the multiple signals in the joint time–frequency domain.
Following that, the principal component analysis is applied to
the wavelet coefficients for feature highlighting and denoising.
During the detection process, the test signal will undergo the
same data processing; thus a vector of wavelet coefficients of
the test signal (the test data vector) is obtained. Finally, we use
Hotelling’s T 2 analysis to analyze quantitatively the difference
between the test data vector and the baseline dataset, where
the decision making is made upon a given confidence level.
With this highly integrated procedure, human interference
can be reduced so that the damage detection may become
an automated process. Using this quantitative and robust
decision-making procedure, we then investigate the influence
of a variety of system parameters involved in the Lamb-wave-
based damage detection using piezoelectric transducers.

This paper is part II of a two-paper series. In part I,
systematic analysis of Lamb wave propagation excited and
sensed by piezoelectric transducers is performed. Parametric
studies have verified the ‘sweet spot’ excitation center
frequency concept that maximizes the amplitude ratio between
the S0 and A0 mode waves. In this second paper, the parametric
results obtained in part I will be examined in actual damage
detection with environmental and operational variances. This

two-paper series will provide general guidelines for Lamb-
wave-based damage detection using piezoelectric transducers.

3. Description of decision-making methodology

As mentioned above, for signals like Lamb waves that
contain non-stationary content, time–frequency analysis is
preferred rather than frequency-only methods (Peng and
Chu 2004). Among various time–frequency representations,
wavelet analysis has the ability of multiscale decomposition
via dilation and translation; thus, features in a signal can
be extracted through wavelet basis (Yu and Giurgiutiu 2005).
The advantage of wavelet transforms is the flexibility in using
narrow windows for the analysis of high frequency content and
wide windows for low frequencies. Newland (1993, 1994)
developed the harmonic wavelet and its generalized form,
whose wavelet levels represent non-overlapping frequency
bands so that there is no interference term between any
frequency components. It is preferable if the information
contained in the original signals can be isolated and
concentrated in the wavelet domain, so that the decision about
damage status could be made based on as few coefficients (i.e.
features) as possible. Newland’s harmonic wavelet transform
offers great possibilities for such an analysis. In particular, here
we adopt the adaptive harmonic wavelet transform (AHWT)
proposed by Liu (2003) to analyze the baseline and test
signals of Lamb wave propagation in the undamaged and test
structures, respectively. With this as the basis for feature
extraction, PCA and Hotelling’s T 2 analysis are employed
to highlight the feature, remove the noise effect and finally
identify the response anomaly with a given confidence level.

To facilitate the following discussions, here we briefly
review the experimental configuration outlined in part I.
We consider an aluminum beam structure in two states:
undamaged and damaged. The experimental set-up in figure 1
shows the damaged beam with a single piezoelectric actuator
and single sensor. In the damaged beam, a surface notch is
introduced. The piezoelectric actuator is connected with a
waveform generator while the senor is connected with a digital
oscilloscope. Since excitation signals with narrow bandwidth
are preferred to reduce the dispersion of the Lamb wave, we
use sinusoidal waves under a Hann window as the transient
excitation signal. It is expressed as

f (t) = 1

2
sin(ω0t)

[
1 − cos

(
2π t

T

)]
, t < T (1)
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where ω0 is the center frequency and T is the duration of the
excitation signal which is typically a multiple of the half-period
of the center frequency. Unless otherwise noted, in this paper
T is selected as ten times the half-period. As introduced in
part I, Lamb wave modes can be categorized as symmetric
and antisymmetric based on the wave motions with respect to
the median plane of the structure. In our case, we choose the
center frequency lower than 160 kHz so that only the S0 mode
(the lowest symmetric mode) and the A0 mode (the lowest
antisymmetric mode) can be excited.

3.1. Adaptive harmonic wavelet transform for multi-signal
applications

From the Fourier transform in the frequency domain

Wmnk(ω) =
⎧⎨
⎩

1

(n − m)2π
e−iω k

n−m m2π � ω � n2π

0 otherwise.
(2)

Newland (1993, 1994) derived the family of generalized
harmonic wavelets

wmnk(t) = wmn

(
t − k

n − m

)

= exp
[
in2π

(
t − k

n−m

)] − exp
[
im2π

(
t − k

n−m

)]
(n − m)i2π t

(3)

where m and n are the level parameters, 0 � m < n, and
an integer k denotes the translation parameter within the level
(m, n). Notice that each level (m, n) corresponds to one
wavelet function that covers the frequency range (m2π, n2π).
Harmonic wavelets are orthogonal so that a complete set of
them could be called a wavelet basis. They are compact in
the frequency domain, where each wavelet can be related to an
ideal bandpass filter. The advantage is that the signal analysis
is restricted to specific frequency bands with known physical
meanings and these bands are represented by the corresponding
wavelet levels.

Here we employ a discrete algorithm to obtain the
coefficients by computing the inverse discrete Fourier
transform (IFFT) of successive blocks (each corresponding
to a (m, n) level) of the Fourier coefficients. For a given
Lamb wave response signal s(t) represented by the time series
s(r), r = 0, 1, . . . , N − 1, the corresponding complex wavelet
coefficients can be obtained by computing

amnk =
n−m−1∑

l=0

F(m + l) exp

(
i2πkl

n − m

)
,

k = 0, 1, . . . , n − m − 1 (4)

where F(q), q = 0, 1, . . . , N − 1 are the Fourier coefficients
calculated by discrete Fourier transform (or FFT)

F(q) = 1

N

N−1∑
r=0

s(r) exp

(
− i2πrq

N

)
. (5)

Moreover, in the discrete transform, each continuous
wavelet function has to be replaced by a corresponding circular

continuous function

w
(c)
mnk(r) = 1

(n − m)

n−1∑
l=m

exp

(
i2πl

(
r

N
− k

n − m

))
. (6)

Thus, the signal s(r) defined on the unit time interval can
be expanded as

s(r) =
∑
m,n

n−1∑
k=m

{
amnkw

(c)
mnk(r) + āmnkw̄

(c)
mnk(r)

}
. (7)

Each selection of level parameter pairs, e.g. {(m0, n0),

(m1, n1), . . . , (mL−1, nL−1)}, must begin with a pair for which
m0 = 0 and continue with touching (but not overlapping)
pairs until nL−1 = N f , where N f corresponds to the Nyquist
frequency and L denotes the number of levels (Newland 1993,
1994).

Liu (2003) treated each selection {(m0, n0), (m1, n1), . . . ,

(mL−1, nL−1)} as a partition of � = {0, 1, . . . , N f } and
adopted a Shannon entropy-based algorithm (Coifman and
Wickerhauser 1992) to search a partition tree for the best
partition (in the sense that the signal can be represented most
sparsely). For any time series x = {x j}, the Shannon entropy
is defined as

H (x) = −
∑

j

p j log p j (8)

where p j = |x j |2/‖x‖2 and p j log p j is set to be 0 if p j = 0.
The entropy shown above is a measure of the sparsity, and
therefore we expect smaller entropy for a better partition. The
iteration procedure for a sequence of 16 elements using a
binary partition tree is illustrated in figure 2. Since N f =
9 in this case, there are 9 Fourier coefficients left for the
partition algorithm. For the initial partition, we consider
each inverse Fourier coefficient as an initial subgroup, whose
Shannon entropy is called the initial entropy. Here notice
that each subgroup represents an aforementioned (m, n) pair
corresponding to a wavelet. In the second partition, IFFT is
applied to every two successive Fourier coefficients to form
a subgroup, whose entropy is calculated and compared with
the sum of the corresponding initial entropies. As in the
example shown in figure 2, the sum entropy of the first two
initial subgroups is smaller so that they are kept after the first
selection. Through the entire iteration, the wavelet coefficients
associated with the ‘best’ partition are computed. Meanwhile,
the ‘best’ wavelet basis is generated by the same partition.

The advantages of the above-outlined adaptive harmonic
wavelet transform (AHWT) over other wavelet transforms, like
Daubechies 4, can be seen from the example illustrated in
figure 3. Figure 3(a) shows an experimental signal used as
the input of the transforms to be compared. The signal is
the waveform collected by the piezoelectric sensor from the
aforementioned damaged beam with the center frequency at
90 kHz. Based on the information of the frequency contents,
we could identify noise-related contents on the AHWT map,
i.e. in figure 3(b), the low frequency content around 0 kHz is
due to the vibration of the experiment base, while the noise
from the experimental equipment results in high frequency
content at around 300 kHz. On the other hand, the content
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Figure 2. Discrete time adaptive harmonic wavelet transform implemented using FFT/IFFT (N = 16).

around 100 kHz, which is associated with the received Lamb
waves, could be called signal-related content. In contrast to
the signal-related content, which varies over time as the sensor
signal does, the noise-related content remains unchanged
over the entire time span. The excitation frequency of the
actuation signal is set as 90 kHz; therefore, the features
of the received signal have been highlighted and interpreted
physically in the AHWT domain. In comparison, we cannot
directly differentiate the features from the noise on the wavelet
coefficient map shown in figure 3(c), where the discrete
Daubechies 4 wavelet is used. From figure 3(d), we can
see a similar pattern in the continuous Daubechies 4 wavelet
domain but could not interpret it directly. This is because
its wavelet scale is not directly associated with physical
parameters. It is also worth mentioning that Daubechies 4
wavelet transforms, which cannot be implemented by FFT, are
of lower computational efficiency than AHWT.

AHWT is signal-dependent, i.e. multiple signals
measured from the same structure may lead to different
‘best’ wavelet bases, due to the environmental and operational
variances. In order to build a consistent baseline dataset from
multiple signals, our detection algorithm requires a common
wavelet basis for all the signals to be compared. In other words,
the problem becomes how to find a common wavelet basis
such that the overall performance of the wavelet transforms
from all the baseline signals could be maximized. It is
worth mentioning that we have used the entropy to measure
the performance of each wavelet transform, and entropies
are addable for independent events. Thus, a natural idea
is to use the summation of all the entropies as a measure
of the overall performance. Recall that each time series
sl = {sl(r), r = 0, 1, . . . , N − 1} (l = 1, 2, . . . , L is the
sequence number) collected from the piezoelectric sensors
generates a ‘best’ wavelet basis {wmnk}l and an vector of

wavelet coefficients al . An entropy H (al) can then be obtained
for al . Thus, if all L signals are projected on {wmnk}l , then a
matrix of wavelet coefficients Al = [ a1 a2 · · · aL ]l can
be obtained. Here we define the total Shannon entropy for Al

H (Al) = H (a1) + H (a2) + · · · + H (aL) (9)

where l = 1, 2, . . . , L. Since high sparsity is our objective
in the basis selection, we select the common wavelet basis
{wmnk}u such that the corresponding matrix of wavelet
coefficients Au = [ a1 a2 · · · aL ]u have the smallest total
Shannon entropy, i.e.

u = arg min
l

H (Al). (10)

The baseline dataset is then chosen as Au . By applying the
same wavelet basis to the newly collected signal, we can obtain
the new data vector to be compared with Au . This procedure
ensures that the features extracted from the multiple baseline
signals are comparable with the features extracted from the
newly collected signals, while all the advantages of AHWT
remain.

3.2. Feature highlighting and quantitative decision making

Principal component analysis (PCA) is a multivariate statistical
procedure that transforms a number of correlated variables
into a smaller number of uncorrelated new variables called
the principal components (Jackson 1991). The first principal
component accounts for as much of the variation in the data
as possible, and each succeeding component explains as much
of the remaining variability as possible. By eliminating
the information not contained in the first few principal
components, noise can then be reduced. PCA has been applied
in a variety of applications including process monitoring and

5



Smart Mater. Struct. 17 (2008) 025034 Y Lu et al

 

 

 

 

 

 25  50  75 100 125
-60

-40

-20

0  

20

40

60

Time ( s)  (a) 

Time ( s)

 

 25  50  75 100 125
1

17

33

49

65

81

97

113

128

(d) Time ( s) 
 25  50  75 100 125

5

4

3

2

1

(c) 

 25  50  75 100 125

156

312

468

624

780

936

F
re

qu
en

cy
 (

kH
z)

Time ( s)(b) 

 noises

signal

V
ol

ta
ge

 (
m

V
)

L
ev

el

Sc
al

e

Figure 3. Comparing AHWT with Daubechies 4 wavelet transforms.

fault diagnosis (Dunia and Qin 1998, Akbaryan and Bishnoi
2001).

Consider a block of baseline data denoted by a K × L
matrix X, whose L column vectors x1, x2, . . ., xL represent L
signals, each with K coefficients (dimensions). Specifically
in our application, the matrix X is normally a part of the
baseline dataset Au . We can obtain the covariance matrix C =
X̃X̃T/(L − 1) using X̃ = [ x1 − μ x2 − μ · · · xL − μ ],
where vector μ consists of the sample mean μk along each
dimension (k = 1, 2, . . . , K ). Note that the square root of
the kth element along the main diagonal of the covariance
matrix C is the sample standard deviation σk along the kth
dimension. By singular value decomposition, it yields an
orthogonal (eigenvector) matrix V = [ v1 v2 · · · vK ] and
a diagonal (eigenvalue) matrix D = diag(λ1, λ2, . . . , λK ) such
that CV = VD. The eigenvalues are arranged in descending
order λ j � λ j+1 for j = 1, 2, . . . , K − 1.

Theoretically, the denoising can be carried out by the
following procedure. First we find the effective rank rk of
X such that λrk � ε1 > λrk+1 (Konstantinides and Yao
1988), where ε1 is the L1-norm of the noise. We then discard
the eigenvectors (i.e. replacing them by zero) associated with
λrk+1, . . . , λK and form a modified eigenvector matrix Vm .
However, finding the optimal value of ε1 without a specific
noise model is generally difficult. Thus, in practice an
alternative method is carried out to choose rk as the smallest
number so that the accumulative energy is above a certain

threshold ET %,

rk0 = min rk such that
rk0∑
j=1

λ j > ET %
K∑

j=1

λ j . (11)

Here we recall that the eigenvalues represent the distribution
of the original energy among each of the eigenvectors. The
selection of an appropriate ET % will be discussed later in this
paper.

Previous studies have shown that the orthogonal wavelet
transform of fractal noise is Karhunen–Loève-like in terms of
correlation structure (Wornel 1996), which means the signal-
to-noise ratio (SNR) can be enhanced by concentrating signal
information into a relatively smaller number of non-zero
coefficients. Consider a data vector xt consisting of wavelet
coefficients transformed from a test signal st . First we need
to standardize it using the same sample mean vector μ and the
sample standard deviation vector σ for the corresponding block
of aforementioned baseline data blocks X, z = (x − μ)/σ .
Then we obtain the reduced-space data y = VT

mz by projecting
z onto Vm . Finally the denoised data can be reconstructed as
x̂ = Vmy.

Now let us consider how to quantitatively indicate the
potential damage from the obtained features. We adopt
Hotelling’s T 2 analysis, a widely used approach in multivariate
analysis (MacGregor and Kourti 1995, Johnson and Wichern
2002). Its standard procedure consists of two phases. First,
baseline data are subgrouped and used to establish an upper
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Figure 4. Procedure of the robust and quantitative decision making (N = 16, L = 5, K = 3).

control limit UC L1 under a certain confidence level 100(1 −
α)%, where α indicates the error probability (0 < α < 1). We
consider a subgroup (block) of the denoised baseline dataset
X̂ = [x̂1 . . . x̂L ] with L signals, each having K points (K <

L). Denote the signal mean vector and the covariance matrix
as μ̂ and Ĉ, respectively. The statistic T 2 for the lth signal x̂l

is defined as T 2
l = (x̂l − μ̂)Ĉ−1(x̂l − μ̂)T, l = 1, 2, . . . , L. It

is known that Hotelling’s T 2 follows the F distribution (Seber
1984), therefore the phase I upper control limit can be obtained
as

UCL1 = K (L − 1)2

L(L − K )
Fα(K , L − K ) (12)

with Fα(K , L − K ) denoting the critical value for an F
distribution with K and L − K degrees of freedom. If
any signal’s T 2 value is beyond the upper control limit and
assignable causes are determined, the corresponding signal
is omitted from the baseline dataset. This procedure is
called phase I self-checking. Following that, in phase II, a
distinction is made between the baseline and the test data using
a modified upper control limit UC L2. Assuming the test data
is independent of the baseline data, the phase II upper control
limit is modified as

UC L2 = K (L − 1)(L + 1)

L(L − K )
Fα(K , L − K ). (13)

The processing of a test signal follows the same procedure
as is done to the baseline dataset. If any calculated T 2 value
exceeds the phase II upper control limit, we may conclude that,
at the confidence level of 100(1 − α)%, the analyzed structure
is in a damaged state. This completes the development of the
signal processing and decision-making methodology.

Figure 4 illustrates a complete procedure of detection
decision making. First, five input signals from an undamaged
structure are processed to build up the baseline dataset.
Each input signal generates one ‘best’ wavelet basis and a
corresponding matrix of wavelet coefficients using that basis.
Here each matrix consists of L = 5 vectors, whose entropies
are summed up as the total Shannon entropy of that matrix. We
select the common wavelet basis as the one with the minimum
total Shannon entropy, while the matrix is called the baseline
dataset. PCA truncation is applied to the baseline dataset after
subgrouping (K = 3), followed by Hotelling’s T 2 analysis.
The phase I upper control limit is used for the self-checking
procedure, where outliers are eliminated and the baseline
dataset is updated. After that, the test signal is processed
using the identical common wavelet basis and then denoised by
PCA truncation. Finally the T 2 chart quantitatively indicates
the extent to which the test dataset in every subgroup deviates
from the baseline. The damage detection decision is then made
based on the statistical analysis at a certain confidence level.

4. Parametric analysis and case studies

In what follows we carry out detailed analysis and case studies
of damage detection using the methodology outlined in the
preceding section.

4.1. Detection demonstration

We start our discussion with a demonstration of our proposed
methodology using experimental signals. We collect a group
of eight time series from the undamaged beam and transform
them to a matrix of wavelet coefficients using the procedure

7



Smart Mater. Struct. 17 (2008) 025034 Y Lu et al

Figure 5. Damage detection demonstration. (Notch width w = 0.8 mm and depth h/2d = 33.3%.)

developed in section 3. Figure 5(a) shows one baseline
signal collected via experiment, together with one test signal
collected on a test beam with a notch (width w = 0.8 mm
and depth-to-beam-thickness ratio h/2d = 33.3%). Notice
that we need all the eight baseline signals for the following
data processing, but the solid line in figure 5(a) represents
only one of them. By applying the entropy based method
described in section 3.1, the group of the baseline signals yields
a common wavelet basis set. The baseline dataset is then
obtained by projecting those baseline signals onto the common
wavelet basis set. We subgroup the baseline dataset into several
blocks to perform the PCA-based denoising, where μ and σ

of each block are recorded for later use. Here we need to
consider that small groups lead to more computation loops
while large groups may average the deviation within a group
and result in meaningless T 2 values. In addition, the subgroup
size affects both degrees of freedom for the F distribution as
used in equations (11) and (12). Therefore, adjusting the size
is a complicated trade-off between computational efficiency
and detection sensitivity. In this research, after comprehensive
simulation studies we make each subgroup contain 5 wavelet
coefficients. Next, outliers are eliminated from the baseline
dataset through the phase I self-checking in Hotelling’s T 2

analysis. Figure 5(b) exhibits the AHWT coefficient map for
the baseline signal in figure 5(a), and figure 5(c) is the map for
the test signal.

The test signal is then processed using the same wavelet
basis and other relevant parameters such as μ and σ . After

that, the denoised test data vector is compared with the baseline
dataset. A T 2 chart is plotted as the detection result, where
each T 2 value indicates the deviation of the test data block
from the corresponding baseline data block. If any T 2 value
exceeds the phase II upper control limit, we may make a
decision that the structure is damaged. Although it seems
difficult to recognize the difference between the two wavelet
maps by direct observation, the damage can be detected with
90% confidence from the T 2 chart, as shown in figure 5(d). We
can see that the phase II upper control limit is around 70, while
the critical subgroup, marked with an arrow in figure 5(d), is
around 200. In the presence of noise, although the T 2 values
may fluctuate case by case, we can always recognize the same
critical subgroup via the T 2 chart. The AHWT coefficients
belonging to the critical subgroup are also marked with arrows
in figures 5(b) and (c). We can see that the marked block
is around the center frequency of the excitation signal (i.e.
90 kHz in this case). In other words, we have verified that
the frequency shift is insignificant as the Lamb waves travel
through the notch, which has been numerically studied by
Alleyne and Cawley (1992). We also randomly choose one
baseline signal as the test signal to simulate the case of an
undamaged test beam. The T 2 values are indicated by the
dotted line in figure 5(d). Clearly, all of these values are well
under the phase II upper control limit. In conclusion, the
proposed robust and quantitative method can lead to correct
decisions about the beam status, even in the presence of noise
and other variations.

8
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Figure 6. Detection sensitivity versus signal-to-noise ratio. (Notch
width w = 0.8 mm and depth h/2d = 33.3%.)

4.2. Estimation of additive noise for numerical simulations

In what follows we discuss the influence of parameters
including the center frequency of the excitation signal and
notch (damage) size. For such parametric analysis, we mainly
use numerical simulation results from the direct finite element
analysis. As introduced in part I, an undamaged beam structure
is modeled in ANSYS and meshed mainly by SOLID45
elements with eight nodes and three degrees of freedom (DOF)
per node. The Lamb waves are excited by applying pin forces
to the nodes located at the two ends of the actuator. The sensor
output is obtained through the summation of the strains along
the center line of the sensor. The rectangular notch (i.e. the
damage, with the same size as in section 4.1) is introduced by
removing elements from the undamaged beam model. Finer
meshes around the notch are employed.

In order to perform a parametric study with the finite
element model, we incorporate noise into the simulation
results so that a group of multiple baseline signals can be
constructed numerically. We first estimate the level of the
additive noise so that the noisy simulation signals can result
in equivalent detection sensitivity compared with experimental
signals. According to the central limit theorem, the artificial
noise added to numerical signals is assumed as additive white
Gaussian noise (AWGN). Figure 6 shows the detection results
when using numerical signals with AWGN of different noise
levels (SNR = 12, 15, 18 dB). Apparently, this AWGN
blurs the numerical signals and therefore reduces the detection
sensitivity. Here we regard the level of the noise added to the
numerical signals as appropriate if its effect can represent the
total effect of all the environmental variations and uncertainties
associated with the experiments. In other words, the T 2

values calculated using the experimental signals should be the
same as that using simulation outputs added with appropriate
AWGN. By comparing the curves corresponding to different
noise levels in figure 6, we can see that the numerical signals
with SNR = 15 dB result in similar T 2 values as that using
experimental signals. Clearly, SNR = 15 dB is a good estimate
about the total noise effect. In the following analyses we
construct multiple baseline signals as well as the test signal
by adding AWGN onto the simulation results while keeping
SNR = 15 dB.

Figure 7. Detection sensitivity versus truncation threshold. (Notch
width w = 0.8 mm and depth h/2d = 33.3%.)

4.3. Truncation threshold ET% in PCA-based denoising

The truncation threshold ET %, as introduced in equation (11),
decides how many principal components are kept in the PCA-
based denoising. If too many principal components are
kept, meaning too little energy is regarded as noise, then
the detection sensitivity would decrease due to the remaining
noise. On the other hand, if too few principal components
are kept, meaning some signal energy is removed, then
the detection sensitivity would also decrease due to less
information provided by the signal. Therefore, ET % is an
important parameter influencing the effect of denoising. In our
discussion, we consider the peak T 2 value which corresponds
to the aforementioned critical subgroup as a measure of the
detection sensitivity for each specific configuration. To study
the truncation threshold ET %, we use the same set of baseline
and test signals as in section 4.1. Figure 7 shows the peak T 2

value versus ET % when other parameters remain the same. At
first, all the principal components are kept when ET% = 100%
(no denoising). We can see that the peak T 2 value is below the
phase II upper control limit, meaning no damage is detected.
As ET % decreases to 90%, the peak T 2 value reaches its
maximum which is above the control limit, meaning that the
damage can be detected by the proposed method. When ET %
goes below 90%, the peak T 2 value decreases again and finally
stays below the control limit. Obviously, larger T 2 values
would be preferred when processing the same signals, because
the detection would be not only more sensitive to small damage
but also more robust against signal noises. We thus choose
ET% = 90% for the following discussions so that T 2 values
can be maximized for our specific case.

4.4. Detection sensitivity with respect to excitation frequency

Recall that the single piezoelectric actuator excites multiple
Lamb modes simultaneously, which in our specific case are
the S0 mode and the A0 mode. As suggested by Giurgiutiu
(2003, 2005), damage detection should be carried out at the
center frequency where the peak wave amplitude ratio between
the S0 mode and the A0 mode is the maximum. That center
frequency is referred to as the ‘sweet spot’. This ‘sweet
spot’ frequency has been analyzed systematically in part I
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Figure 8. Detection sensitivity versus center frequencies of the
excitation signal. (Notch width w = 0.8 mm and depth
h/2d = 33.3%.)

and verified through analytical, numerical and experimental
analyses. For our specific case, the ‘sweet spot’ excitation
frequency is 90 kHz. Figure 8 shows the T 2 values calculated
using numerical signals with AWGN for different center
frequencies. As demonstrated in section 4.1, here we add
AWGN to the numerical simulation so that a group of eight
baseline signals can be obtained with SNR = 15 dB. The test
signal is then obtained in the same manner. We note that the
‘sweet spot’ 90 kHz indeed leads to better detection sensitivity
than other frequencies.

Since the ‘sweet spot’ depends on both the S0 and A0

Lamb modes, we want to evaluate the individual effects
of the S0 and A0 Lamb modes under the proposed robust
decision-making methodology. Since pure S0 or A0 mode
excitation cannot be achieved by a single actuator, in this
particular discussion we use two actuators attached on the top
and bottom surfaces of the structure. Thus, pure symmetric
Lamb wave modes can be excited by applying in-phase
excitation signals onto both actuators, while antisymmetric
modes can be excited by applying out-of-phase excitation
signals. Correspondingly, we modify our numerical simulation

by introducing the equivalent set-ups shown in figure 9,
where the set-up for generating mixed S0 and A0 modes in
figure 9(a) can be replaced by those in figures 9(b) and (c).
The actuators in figure 9(b) generate a pure S0 mode while
those in figure 9(c) generate a pure A0 mode. The summation
equality holds for the signals received by the piezoelectric
sensor. Examples of the corresponding time domain signals
are shown in figures 9(d)–(f), respectively. Figure 10 shows
the detection results for the cases where a pure S0 mode or
a pure A0 mode is excited. Each subplot corresponds to one
excitation frequency: 50, 90, 115 or 130 kHz.

In part I of this two-paper series, we have discussed,
through a case study, from the mechanistic standpoint, the
effects of S0 and A0 Lamb modes on the damage detection.
In that analysis which does not involve noise, we defined
an energy index to quantify the difference between wave
patterns from undamaged and damaged structures. As the
excitation frequency rises from 50 to 130 kHz, the energy
difference increases and then decreases with the maximum
reached at 90 kHz (Wang et al 2007). Here we can
quantify the difference between signals (under noise) using the
methodology developed in this paper. As shown in figure 8,
the same trend can be observed for the peak T 2 values, where
both the baseline and test signals are contaminated by artificial
noises. The discussion in part I also showed that the pure S0

mode leads to a similar trend, while the pure A0 mode leads to
an opposite trend (i.e. negative energy difference). These can
now be verified by the peak T 2 values in figure 10, where the
pure S0 mode always leads to better detection results than the
pure A0 mode. In particular, the peak T 2 value is about 350 for
the case that the 90 kHz pure S0 mode is excited (figure 10(b)),
while that for the case of the pure A0 mode is only around 50
(below the control limit). In comparison, the mixed modes lead
to a peak T 2 value of about 220 (figure 8). This indicates that
the detection sensitivity is negatively affected by the excited
A0 mode. Using the quantitative decision-making method,
we have thus verified that for our specific case the ‘sweet
spot’ frequency (around 90 kHz) leads to the optimal detection
sensitivity, in the presence of noises.

Figure 9. Equivalent set-ups for generating (a) mixed modes, (b) pure S0 mode and (c) pure A0 mode Lamb waves. The same equity holds for
the sensor signals (d)–(f).
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Figure 10. Detection using pure A0 or pure S0 mode Lamb waves excited at (a) 50 kHz, (b) 90 kHz, (c) 115 kHz and (d) 130 kHz. (Notch
width w = 0.8 mm and depth h/2d = 33.3%.)

4.5. Detection sensitivity versus notch depth and width

After analyzing the parameters of the experiment and
simulation, we now discuss the detection sensitivity versus
the notch depth/width. It is worth mentioning that the single
actuator set-up (figure 9(a)) is used for the following discussion
to simulate the effect of mixed S0 and A0 modes. In general,
larger notches cause more wave energy reflection than smaller
notches do, which means more significant difference would
be observed in sensor signals. Therefore, we may expect a
higher T 2 value for larger notches. In our case, the notch size
is determined by two parameters: depth and width.

We first vary the notch depth and keep the notch width
fixed at 0.8 mm. By modifying the finite element model,
we can numerically obtain sensor outputs for different notch
depths (from 16.7% to 44.4%). Figure 11(a) shows the
detection results as a function of h/2d . We can see that T 2

values increase as the notch depth increases, meaning that the
deeper notches greatly weaken the transmitted wave energy.
For the confidence level 100(1 − α)% = 90%, it can be seen
from figure 11(a) that a 0.8 mm wide notch with h/2d =
22.2% can be successfully detected.

In comparison, figure 11(b) shows the detection results
for notches with different width when we keep the notch
depth fixed as h/2d = 33.3%. We can see that the T 2

value does not change too much as the notch width changes,

meaning that the notch width is not a major factor in the
detection sensitivity. Similar observations have been discussed
by Alleyne and Cawley (1992) in terms of transmission and
reflection ratios. From figures 11(a) and (b), we confirm that,
when the notch width is small compared to the wavelength, as
is usually the case in practice, the major factor in the detection
sensitivity is the notch depth.

5. Concluding remarks

In this research, we developed a combination of signal
processing tools for the analysis of Lamb-wave-based damage
detection using piezoelectric transducers. An improved
adaptive harmonic wavelet transform approach was used to
extract the common features from multiple baseline signals.
This was followed by principal component analysis for feature
highlighting and denoising. Quantitative decision making
was realized by using Hotelling T 2 analysis that declares
damage occurrence under given confidence level. Collectively,
these analysis tools lead to a robust and quantitative
damage detection methodology. Experimental, numerical and
analytical studies were carried out on a laboratory beam
structure to demonstrate and verify the detection performance.
A series of parametric studies were performed. The results
validated the mechanistic analysis developed in part I of
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Figure 11. Detection sensitivity versus (a) notch depth (when w = 0.8 mm is fixed) and (b) notch width (when h/2d = 33.3% is fixed).

this two-paper series from the statistical and data analysis
standpoint, and also provided general guidelines for damage
detection implementation.
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