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Abstract In this paper, we present an adaptive evolutionary
Monte Carlo algorithm (AEMC), which combines a tree-
based predictive model with an evolutionary Monte Carlo
sampling procedure for the purpose of global optimization.
Our development is motivated by sensor placement appli-
cations in engineering, which requires optimizing certain
complicated “black-box” objective function. The proposed
method is able to enhance the optimization efficiency and
effectiveness as compared to a few alternative strategies.
AEMC falls into the category of adaptive Markov chain
Monte Carlo (MCMC) algorithms and is the first adaptive
MCMC algorithm that simulates multiple Markov chains
in parallel. A theorem about the ergodicity property of the
AEMC algorithm is stated and proven. We demonstrate the
advantages of the proposed method by applying it to a sen-
sor placement problem in a manufacturing process, as well
as to a standard Griewank test function.
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1 Introduction

Optimization problems arise in many engineering applica-
tions. Engineers often need to optimize a “black-box” ob-
jective function, i.e., a function that can only be evaluated
by running a computer program. These problems are gen-
erally difficult to solve because of the complexity of the
objective function and the large number of decision vari-
ables involved. Two categories of statistical methodologies,
one based on random sampling and another based on pre-
dictive modeling have made great contribution to solving
the optimization problems of this nature. In this article,
we propose an adaptive evolutionary Monte Carlo (AEMC)
method, which enhances the efficiency and effectiveness of
engineering optimization problems.

A real example that motivates this research is the sen-
sor placement problem. Simply put, in a sensor placement
problem, one needs to determine the number and locations
of multiple sensors so that certain design criteria can be
optimized within a given budget. Sensor placement issues
have been encountered in various applications, such as man-
ufacturing quality control (Mandroli et al. 2006), structural
health monitoring (Bukkapatnam et al. 2005), transportation
management (Čivilis et al. 2005), and security surveillance
(Brooks et al. 2003). Depending on applications, the design
criteria to be optimized include, among others, sensitivity,
detection probability, and coverage. A design criterion is a
function of the number and locations of sensors, and this
function is usually complicated and nonlinear. Evaluating
the design criterion needs to run a computer program, qual-
ifying it as a “black-box” objective function.

Mathematically, a sensor placement problem can be for-
mulated as a constrained optimization problem.

min
w∈W

H(w) subject to G(w) ≥ 0, (1)
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where W ⊆ Rd , d is the number of sensors, w is a vector of
decision variables (i.e., sensor locations), H : W → R is a
user-specified design criterion to be optimized, and G(·) ≥ 0
represents physical constraints associated with engineering
systems. Taking sensor placement in an assembly process
for an example, G(·) ≥ 0 means that sensors can only be
installed on the surface of subassemblies, and H(·) is an E-
optimality design criterion (Mandroli et al. 2006). In Sect. 4,
we will visit this sensor placement problem with more de-
tails.

When the physical constraints are complicated and dif-
ficult to handle in an optimization routine, engineers could
discretize the solution space W and create a finite (yet pos-
sibly huge) number of solution candidates that satisfy the
constraints (see Kim and Ding 2005, Sect. 1 for an exam-
ple). For the sensor placement problems, this means to iden-
tify all the viable sensor locations a priori; this can be done
relatively easily because individual sensors are located in
a low (less than or equal to three) dimensional space. One
should use a high enough resolution for discretization so
that “good” sensor locations are not lost. Suppose we do
discretization. Then, the formulation (1) becomes an uncon-
strained optimization problem,

min
x∈X

H(x), (2)

where X is the sample space that contains the finite num-
ber of candidate sensor locations. Clearly, X ⊂ Zd , which is
the set of d-dimensional vectors with integer elements. Note
that H(·) in (2) is still calculated according to the same de-
sign criterion as in (1) but now defined on X . Recall that
H(·) is of “black-box” type with potentially plenty of local
optima, due to the complex nature of engineering systems.

Solving this discrete optimization problem might seem
mathematically trivial because one just needs to enumerate
all potential solutions exhaustively and select the best one.
In most real-world applications, however, there could be an
overwhelmingly large number of potential solutions to be
evaluated, especially when a high-resolution discretization
was performed.

Two categories of statistical methodologies exist for solv-
ing this type of optimization problems. The first category
is the sampling-based methods: it starts with a set of ran-
dom samples, and then generates new samples according
to some pre-specified mechanism based on current samples
and probabilistically accepts/rejects the new samples for
subsequent iterations. Many well-known optimization meth-
ods, such as simulated annealing (Bertsimas and Tsitsiklis
1993), genetic algorithm (Holland 1992), and Markov chain
Monte Carlo (MCMC) methods (Wong and Liang 1997), fall
into this category; the differences among them come from
the specific mechanism an algorithm uses to generate and
accept new samples. These methods can handle complicated

response surface well and have been widely applied to en-
gineering optimizations. Their shortcoming is that they gen-
erally require a large number of function evaluations before
reaching a good solution.

The second category is the metamodel-based methods. It
also starts with a set of solution samples {x}. A metamodel
is a predictive model fitted by using the historical solution
pairs {x, H(x)}. With this predictive model, new solutions
are generated based on the model’s prediction of where
one is more likely to find “good” solutions. Subsequently,
the predictive model is updated as more solutions are col-
lected. The model is labeled as “metamodel” because H(x)

is the computational output based on a computer model. The
metamodel-based method originates from the research on
computer experiments (Chen et al. 2006; Fang et al. 2006;
Sacks et al. 1989; Simpson et al. 1997). This strategy is also
called “data-mining” guided method, especially when the
predictive model used therein is a classification tree model
(Liu and Igusa 2007; Kim and Ding 2005; Schwabacher et
al. 2001) since the tree model is a typical “data-mining” tool.
For the metamodel-based or data-mining guided methods,
the major shortcoming is their ineffectiveness in handling
complicated response surfaces, and as a result, they only
look for local optima.

This paper proposes an optimization algorithm, com-
bining the sampling-based and metamodel-based methods.
Specifically, the proposed algorithm combines evolutionary
Monte Carlo (EMC) (Liang and Wong 2000, 2001) and a
tree-based predictive model. The advantage of such a hybrid
is that it incorporates strengths from both EMC sampling
and the predictive metamodeling: the tree-based predictive
model adaptively learns informative rules from past solu-
tions so that the new solutions generated from these rules
are expected to have better objective function values than
the ones generated from “blind” sampling operations, while
the EMC mechanism allows a search to go over the whole
sample space and guides the solutions toward the global op-
timum. We thus label the proposed algorithm adaptive evo-
lutionary Monte Carlo (AEMC). We will further elaborate
the intuitions behind AEMC at the beginning of Sect. 3, after
we review the two existing methodologies with more details
in Sect. 2.

The remainder of this paper is organized as follows. Sec-
tion 2 provides details of the two relevant methodologies.
Section 3 describes the general idea and implementation de-
tails of the AEMC algorithm. We also prove that the AEMC
algorithm preserves the ergodicity property of Markov chain
samples. In Sect. 4, we employ AEMC to solve a sensor
placement problem. We provide additional numerical exam-
ples to show AEMC’s performance in optimization as well
as its potential use for sampling. We conclude this paper in
Sect. 5.
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2 Related work

2.1 Sampling-based methods

Among the sampling-based methods, simulated annealing
and genetic algorithms have been used to solve optimiza-
tion problems for quite some time. They use different tech-
niques to generate new random samples. Simulated anneal-
ing works by simulating a sequence of distributions deter-
mined by a temperature ladder. It draws samples according
to these distributions and probabilistically accepts or rejects
the samples. Geman and Geman (1984) have shown that if
the temperature decreases sufficiently slowly (at a logarith-
mic rate), simulated annealing can reach the global optimum
of H(x) with probability 1. However, no one can afford such
a slow cooling schedule in practice. People generally use a
linearly or geometrically decreasing cooling schedule, but
when doing so, the global optimum is no longer guaranteed.

Genetic algorithm uses evolutionary operators such as
crossover and mutation to construct new samples. Mimick-
ing natural selection, crossover operators are applied on two
parental samples to produce an offspring that inherits char-
acteristics of both the parents, while mutation operators are
occasionally used to bring variation to the new samples. Ge-
netic algorithm selects new samples according to their “fit-
ness” (for example, their objective function values can be
used as a measure of fitness). Genetic algorithm is known to
converge to a good solution rather slowly and lacks rigorous
theories to support its convergence to the global optimum.

The MCMC methods have also been used to solve op-
timization problems (Wong and Liang 1997; Liang 2005;
Liang et al. 2007; Neal 1996). Even though a typical appli-
cation of MCMC is to draw samples from complicated prob-
ability distributions, the sampling operations can be readily
utilized for optimization. Consider a Boltzmann distribution
p(x) ∝ exp(−H(x)/τ) for some τ > 0. MCMC methods
could be used to generate samples from p(x). As a result, the
MCMC method has a higher chance to obtain samples with
lower H(x) values. If we keep generating samples accord-
ing to p(x), we will eventually find samples close enough
to the global minimum of H(x). The MCMC methods per-
form random walks in the whole sample space and thus may
potentially escape from local optima given long enough run
time.

Liang and Wong (2000, 2001) proposed a method called
evolutionary Monte Carlo (EMC), which incorporates many
attractive features of simulated annealing and genetic algo-
rithm into a MCMC framework. It has been shown that EMC
is effective for both sampling from high-dimensional distri-
butions and optimization problems (Liang and Wong 2000,
2001). Because EMC is an MCMC procedure, it guarantees
the ergodicity of the Markov chain samples in a long run.
Nonetheless, it appears that there is still a need and room to
further improve the convergence rate of an EMC procedure.

Recently, adaptive proposals have been used to improve
the convergence rate of traditional MCMC algorithms. For
example, Gilks et al. (1998) and Brockwell and Kadane
(2005) proposed to use regenerative Markov chains and up-
date the proposal parameters at regeneration times; Haario et
al. (2001) proposed an adaptive Metropolis algorithm which
attempts to update the covariance matrix of the proposal dis-
tributions by making use of all past samples. Important the-
oretical advances on the ergodicity of the adaptive MCMC
method have been made by Haario et al. (2001), Andrieu and
Robert (2002), Atchadé and Rosenthal (2005), and Roberts
and Rosenthal (2007).

2.2 Metamodel-based methods

In essence, metamodel-based methods are not much differ-
ent from other sequential sampling procedures guided by a
predictive model, e.g., response surface methodology used
for physical experiments (Box and Wilson 1951). The meta-
model based method constitutes of design and analysis of
computer experiments (Chen et al. 2006; Fang et al. 2006;
Sacks et al. 1989; Simpson et al. 1997) where the so-
called “metamodel” is an inexpensive surrogate or substi-
tute of the computer model that is oftentimes computation-
ally expensive to run (e.g., the computer model could be
a finite element model of a civil structure). Various statis-
tical predictive methods have been used as the metamod-
els, according to the survey by Chen et al. (2006), includ-
ing neural networks, tree-based methods, Splines, and spa-
tial correlation models. During the past few years, there
have emerged a number of research developments, labeled
as data-mining guided engineering designs (Guikema et al.
2004; Huyet 2006; Liu and Igusa 2007; Kim and Ding 2005;
Michalski 2000; Schwabacher et al. 2001). The data-mining
guided methods are basically one form of metamodel-based
methods because they also use a statistical predictive model
to guide the selection of design solutions. The predictive
models used in the data-mining guided designs include re-
gression, classification tree, and clustering methods.

When looking for an optimal solution, the predictive
model is used as follows. After fitting a metamodel (or sim-
ply a model, in the cases of physical experiments), one could
use it to predict where good solutions are more likely to
be found and thus select subsequent samples accordingly.
This sampling-modeling-prediction procedure is considered
a data-mining operation. Liu and Igusa (2007) and Kim
and Ding (2005) demonstrated that the data-mining oper-
ation could greatly speed up computation under right cir-
cumstances. Compared with the slow converging sampling-
based methods, the metamodel-based methods can be espe-
cially useful when one has limited amount of data samples;
this happens when physical experiments or computer simu-
lations are expensive to conduct. But the metamodel based
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methods are “greedy” search methods and can be easily en-
trapped in local optima.

3 Adaptive evolutionary Monte Carlo

3.1 General idea of AEMC

The strengths as well as the limitations of the sampling-
based and the metamodel-based search methods motivate us
to combine the two schemes and develop the AEMC algo-
rithm. The intuition behind how AEMC works is explained
as follows.

A critical shortcoming of the metamodel-based methods
is that their effectiveness highly depends on how represen-
tative the sampled solutions are of the optimal regions of
the sample space. Without representative data, the resulting
metamodel could mislead the search to non-optimal regions.
Consequently, the subsequent sampling from those regions
will not help the search get out of the trap. In particular,
when the sample space is large and good solutions only lie
in a small portion of the space, data obtained by a uniform
sampling from the sample space will not be representative
enough. Taking the sensor placement problem shown later
in this paper for an example, we found that only 5% of
the solutions have relatively good objective function values.
Under this circumstance, stand-alone metamodeling mech-
anism could hardly be effective (as shown in the numerical
results in Sect. 4), thereby promoting the need to improve
the sample quality for the purpose of establishing a better
metamodel.

It turns out that sampling-based algorithms (we choose
EMC in this paper), though slow as a stand-alone optimiza-
tion tool, are able to improve the quality of the sampled so-
lutions. This is because when conducting random searches
over a sample space, EMC will gradually converge in distri-
bution to the Boltzmann distribution in (4), i.e., the smaller
the value of H(x) is, the higher the probability of sampling
x is (recall that we want to minimize H(x)). In other words,

EMC will iteratively and stochastically direct current sam-
ples toward the optimal regions such that the visited solu-
tions are more representative of the optimal regions of the
sample space. With the representative samples produced by
EMC, a metamodeling operation could generate more ac-
curate predictive models to characterize the promising sub-
regions of the sample space.

The primary tool for improving the sampling-based
search is to speed up its converge rate. As argued in Sect. 2,
making a MCMC method adaptive is an effective way of
achieving such an objective. The metamodel part of AEMC
learns the function surface of H(x), and allows us to con-
struct more effective proposal distributions for subsequent
sampling operations. As argued in Gilks et al. (1995), the
rate of convergence of a Markov chain to the Boltzmann
distribution in (4) depends crucially on the relationship be-
tween the proposal function and the target function H(x).
To the best of our knowledge, AEMC is also the first adap-
tive MCMC method that simulates multiple Markov chains
in parallel, while the existing adaptive MCMC methods are
all based on simulation of one single Markov chain. So the
AEMC can utilize information from multiple chains to im-
prove the convergence rate.

The above discussions explain the benefit of combining
the metamodel-based and sampling-based method and exe-
cuting them alternately in a fashion shown in Fig. 1.

In the sequel, we will present the details of the proposed
AEMC algorithm. For metamodeling (or data-mining) op-
erations, we use classification and regression trees (CART),
proposed by Breiman et al. (1984), to fit predictive models.
We choose CART primarily because of its computational ef-
ficiency. Our goal of solving an optimization problem re-
quires the data-mining operations to be fast and computa-
tionally scalable in order to accommodate large-sized data
sets. Since the data-mining operations are repeatedly used,
a complicated and computationally expensive method will
unavoidably slow down the optimization process.

Fig. 1 General framework of
combining sampling-based and
metamodel-based methods
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3.2 Evolutionary Monte Carlo

For the convenience of reading this paper, we provide a brief
summary of EMC in this section and a description of the
operators of EMC in Appendix A. Please refer to Liang and
Wong (2000, 2001) for more details. EMC integrates fea-
tures of simulated annealing and genetic algorithm into a
MCMC framework. Similar to simulated annealing, EMC
uses a temperature ladder and simultaneously simulates a
population of Markov chains, each of which is associated
with a different temperature. The chains with high tempera-
tures can easily escape from local optima, while the chains
with low temperatures can search around some local regions
and find better solutions faster. The population is updated
by crossover and mutation operators, just like genetic algo-
rithm, and therefore adopts some level of “learning” capa-
bility, i.e., samples with better fitness will have a greater
probability of being selected and pass their good “genetic
materials” to the offsprings.

A population, as mentioned above, is actually a set of
n solution samples. The state space associated with a pop-
ulation is the product of n sample spaces, namely X n =
X × · · · × X . Denote a population x ∈ X n such that x =
{x1, . . . , xn}, where xi = {xi1, . . . , xid} ∈ X is the i-th d-
dimensional solution sample. EMC attaches a different tem-
perature, ti , to a sample xi , and the temperatures form
a ladder with the ordering t1 ≥ · · · ≥ tn. We denote t =
{t1, . . . , tn}. Then the Boltzmann density can be defined for
a sample xi as

fi(xi) = 1

Z(ti)
exp{−H(xi)/ti}, (3)

where Z(ti) is a normalizing constant, and

Z(ti) =
∑

{xi }
exp{−H(xi)/ti}.

Assuming that samples in a population are mutually inde-
pendent, we then have the Boltzmann distribution of the
population as

f (x) =
n∏

i=1

fi(xi) = 1

Z(t)
exp

{
−

n∑

i=1

H(xi)/ti

}
, (4)

where Z(t) = ∏n
i=1 Z(ti).

Given an initial population x(0) = {x(0)
1 , . . . , x

(0)
n } and

the temperature ladder t = {t1, . . . , tn}, n Markov chains
are simulated simultaneously. Denote the iteration index by
k = 1,2, . . . , and the k-th iteration of EMC consists of two
steps:

1. With probability pm (mutation rate), apply a mutation
operator to each sample independently in the population
x(k). With probability 1−pm, apply a crossover operator

to the population x(k). Accept the new population accord-
ing to the Metropolis-Hastings rule. Details are given in
Appendices A.1 and A.2.

2. Try to exchange n pairs of samples (x
(k)
i , x

(k)
j ), with i

uniformly chosen from {1, . . . , n} and j = i ± 1 with
probability w(x

(k)
j |x(k)

i ) as described in Appendix A.3.

EMC is a standard MCMC algorithm and thus main-
tains the ergodicity property for its Markov chains. Be-
cause of incorporation of features from simulated annealing
and genetic algorithm, EMC constructs proposal distribu-
tions more effectively and converges faster than traditional
MCMC algorithms.

3.3 The AEMC algorithm

In AEMC, we first run a number of iterations of EMC and
then use CART to learn a proposal distribution (for gener-
ating new samples) from the samples produced by EMC.
Denote by �(k) the set of samples we have retained after
iteration k. From �(k), we define high performance sam-
ples to be those with relatively small H(x) values. The high
performance samples are the representatives of the promis-
ing search regions. We denote by H

(k)
(h) the h percentile of

the H(x) values in �(k). Then, the set of high performance
samples at iteration k, H (k), are defined as

H (k) = {x : x ∈ �(k) and H(x) ≤ H
(k)
(h) }.

As a result, the samples in �(k) are grouped into two
classes, the high performance samples in H (k) and the oth-
ers. Treating these samples as a training dataset, we then fit
a CART model to a two-class classification problem. Us-
ing the prediction from the resulting CART model, we can
partition the sample space into rectangular regions, some of
which have small H(x) values and are therefore deemed as
the promising regions, while other regions as non-promising
regions.

The promising regions produced by CART are repre-
sented as a

(k)
j ≤ xij ≤ b

(k)
j , j = 1, . . . , d, i = 1, . . . , n.

Since X is discrete and finite, there is a lower bound lj
and an upper bound uj in the j -th dimension of the sample

space. Clearly we have lj ≤ a
(k)
j ≤ b

(k)
j ≤ uj . CART may

produce multiple promising regions. We denote by m(k) the
number of regions. Then, the collection of the promising re-
gions is specified in the following:

a
(k)
js ≤ xij ≤ b

(k)
js ,

j = 1, . . . , d, i = 1, . . . , n, s = 1, . . . ,m(k). (5)

As the algorithm goes on, we continuously update �(k),
and hence a

(k)
js and b

(k)
js .

After we have identified the promising regions, the pro-
posal density is constructed based on the following thoughts:
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get a sample from the promising regions with probability
R, and from elsewhere with probability 1 − R, respectively.
We recommend using a relatively large R value, say R = .9.
Since there may be multiple promising regions identified by
CART, we denote the proposal density associated with each
region by qks(x), s = 1, . . . ,m(k). In this paper, we use a
Metropolis-within-Gibbs procedure (Müller 1991) to gener-
ate new samples as follows.

For i = 1, . . . , n, denote the population after the k-th it-
eration by x(k+1,i−1) = (x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , . . . , x

(k)
n ),

of which the first i − 1 samples have been updated, and the
Metropolis-within-Gibbs procedure is about to generate the
i-th new sample. Note that x(k+1,0) = (x

(k)
1 , . . . , x

(k)
n ).

1. Set S to be randomly chosen from {1, . . . ,m(k)}. Gener-
ate a sample x′

i from the proposal density qkS(·).

qkS(x′
i ) =

d∏

j=1

(
r
I (a

(k)
jS ≤ x′

ij ≤ b
(k)
jS )

b
(k)
jS − a

(k)
jS

+ (1 − r)
I (x′

ij < a
(k)
jS or x′

ij > b
(k)
jS )

(uj − lj ) − (b
(k)
jS − a

(k)
jS )

)
, (6)

where I (·) is the indicator function. Here r is the prob-
ability of sampling uniformly within the range specified
by the CART rules on each dimension. Since each di-
mension is independent of each other, we have R = rd .

2. Construct a new population x(k+1,i) by replacing x
(k)
i

with x′
i , and accept the new population with probability

min(1, rd), where

rd = f (x(k+1,i))

f (x(k+1,i−1))

T (x(k+1,i−1)|x(k+1,i))

T (x(k+1,i)|x(k+1,i−1))

= exp{−(H(x′
i ) − H(x

(k)
i ))/ti}

× T (x(k+1,i−1)|x(k+1,i))

T (x(k+1,i)|x(k+1,i−1))
, (7)

If the proposal is rejected, x(k+1,i) = x(k+1,i−1).

The transition probability in (7) is calculated as fol-
lows. Since we only change one sample in each Metropolis-
within-Gibbs step, the transition probability can be written
as T (x

(k)
i → x′

i |x(k)
[−i]), where x

(k)
[−i] = (x

(k+1)
1 , . . . , x

(k+1)
i−1 ,

x
(k)
i+1, . . . , x

(k)
n ). Then we have

T (x
(k)
i → x′

i |x(k)
[−i]) =

m(k)∑

s=1

1

m(k)
qks(x

′
i ).

From (6), it is not difficult to see that as long as 0 < r < 1,
the proposal is global, i.e., qks(x) > 0 for all x ∈ X . Since
X is finite, it is natural to assume that f (x) is bounded

away from 0 and ∞ on X . Thus, the minorisation condition
(Mengersen and Tweedie 1996), i.e.,

ω∗ = sup
x∈X

f (x)

qks(x)
< ∞,

is satisfied. As shown in Appendix C, satisfaction of this
condition would lead to the ergodicity of the AEMC algo-
rithm.

Now we are ready to present a summary of the AEMC
algorithm, which consists of two modes: the EMC mode and
the data-mining (or metamodeling) mode.

1. Set k = 0. Start with an initial population x(0) by uni-
formly sampling n samples over X and a temperature
ladder t = {t1, . . . , tn}.

2. EMC mode: run EMC until a switching condition is met.

– Apply mutation, crossover, and exchange operators
to the population x(k) and accept the updated popu-
lation according to the Metropolis-Hastings rule. Set
k = k + 1.

3. Run the data-mining mode until a switching condition is
met.

– With probability Pk , use the CART method to update
the promising regions, i.e., update the values of a

(k+1)
js

and b
(k+1)
js in (5).

– With probability 1 − Pk , do not apply CART and sim-
ply let a

(k+1)
js = a

(k)
js and b

(k+1)
js = b

(k)
js .

– Generate n new samples following the Metropolis-
within-Gibbs procedure mentioned earlier in this sec-
tion. Set k = k + 1.

4. Alternate between the two modes until a stopping rule is
met. The algorithm could terminate when the computa-
tional budget (the number of iterations) is consumed or
when the change in the best H(x) value does not exceed
a given threshold for several iterations.

To effectively implement AEMC, several issues need to
be considered. Firstly, it is the choice of parameters in EMC:
n and pm. We simply follow the recommendations made in
the EMC related research. So we set n and pm to values that
favor EMC. Typically, n = 5–20 and pm ≈ .25 (Liang and
Wong 2000).

Secondly, the choice of Pk . We need to make sure P1 >

P2 > · · · > Pk > · · · , and limk→∞ Pk = 0, which ensures
the diminishing adaptation condition required for the ergod-
icity of the adaptive MCMC algorithms (Roberts and Rosen-
thal 2007). As discussed in Appendix C, meeting the dimin-
ishing adaptation condition is crucial to the convergence of
AEMC. Intuitively, Pk could be considered as the “learn-
ing rate”. In the beginning of the algorithm, we do not have
much information about the function surface, and therefore
we apply the data-mining mode to learn new information
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with a relatively high probability. As the algorithm goes on,
we may have sufficient knowledge about the function sur-
face, and it may be a waste to execute the data-mining mode
too often. So we make the “learning rate” decrease over
time. Specifically, we set Pk = 1/kδ . The δ (δ > 0) con-
trols the decreasing speed of Pk . The larger δ is, the faster
Pk decreases to 0. We choose δ = .1 in this paper.

Thirdly, the construction of training samples �(k). The
question is that should we use all the past samples to con-
struct �(k) or should we use a subset instead, for exam-
ple, using only recent samples gathered since the last data-
mining operation. If we use all the past samples, data min-
ing will be performed on a large dataset, and doing so will
inevitably take a long time and thus slow down the opti-
mization process. Because EMC is able to randomly sample
from the whole sample space, AEMC is less likely to fall
into local optima even if we just use recent samples. Thus,
the latter becomes our choice.

Lastly, we discuss the following tuning parameters of
AEMC.

– Switching condition M . In order to adopt the strengths of
the two mechanisms and compensate their weaknesses,
a proper switching condition is needed to select the ap-
propriate mode of operations for the proposed optimiza-
tion procedure. Because of the inability of a stand-alone
data-mining mode to find representative samples (will be
shown in Sect. 4), it is not beneficial to run the data-
mining mode for multiple iterations. So a natural choice is
to run the data-mining mode only once for every M iter-
ations of EMC. If M is too large, the learning effect from
the data-mining mode will be overshadowed and AEMC
virtually becomes a pure EMC algorithm. If M is too
small, EMC may not be able to gather enough representa-
tive data and thus data mining could hardly be effective.
We recommend choosing M based on the value of n×M ,
which is the same size used in the data-mining mode for
establishing the predictive model. From our experience,
nM = 300–500 works quite well.

– The proper choice of h varies for different problems. For
a minimization problem, a large h value could bring many
uninteresting samples into the set of supposedly high per-
formance solutions and then slow down the optimization
process. On the other hand, a small value of h would in-
crease the chance for the algorithm to fall into local op-
timum. Besides, a very small h value may lead to small
promising regions, which could make the acceptance rate
of new samples too low. But the danger of falling into the
local optima is not grave because the data-mining mode
is followed by EMC that randomizes the population again
and makes it possible to escape from the local optima. In
light of this, we recommend an aggressive choice for the
h value, i.e. h = 5–15%.

– Choice of the tree size in CART. Fitting a tree is to ap-
proximate the response surface of H(x). A small-sized
tree may not be sophisticated enough to approximate the
surface, while a large-sized tree may overfit the data.
Since we apply CART multiple times in the entire pro-
cedure of AEMC, we believe that the mechanism of how
the trees work in AEMC is actually similar to tree boost-
ing (Hastie et al. 2001), where a series of CART are put
together to produce a result. For tree boosting, Hastie et
al. (2001) recommended 2 ≤ J ≤ 10.

In our problem, however, controlling J alone does not
precisely fulfill our objective. Because our goal is to find
the global optimum rather than to make good prediction
for the whole response surface, we are much more in-
terested in the part of the response surface where the
H(x) values are relatively small, corresponding to the
class of high performance samples, H (k). It then makes
sense to control the number of terminal nodes associated
with H (k), denoted by JH . Controlling JH enables us to
fit a CART model that better approximates a high perfor-
mance portion of the response surface. Note that the set
of terminal nodes representing H (k) is a subset of all ter-
minal nodes in the corresponding tree, meaning that the
value of JH is positively correlated with the value of J .
Thus, controlling JH in the meanwhile also regulates the
value of J . The basic rationale behind the selection of JH

is similar to that for J : a large JH results in a large J and
could lead to overfitting; the danger of using too small a
JH is that there will be too few promising regions for the
subsequent actions to search and evolve from, which may
cause the proposed procedure to miss some good sam-
ples. From the above arguments, we note that the H (k)

in our problem plays an analogous role as the whole re-
sponse surface in the traditional tree boosting. We believe
that the guideline for J could be transferred to JH , i.e.,
2 ≤ JH ≤ 10.

In Sect. 4, we shall provide a sensitivity analysis of the
three tuning parameters, which reveals how the performance
of AEMC depends on their choices. From the results, we
will see that M and h are the two most important tuning
parameters and that AEMC is not sensitive to the value of
JH , provided that it is chosen from the above-recommended
range.

As an adaptive MCMC algorithm, AEMC simulates mul-
tiple Markov chains in parallel and could therefore utilize
the information from different chains for improving the con-
vergence rate. We will provide some empirical results in
support of this claim in Sect. 4 because a theoretical assess-
ment of convergence rate is too difficult to obtain. But we
do investigate the ergodicity of AEMC. We are able to show
that AEMC is ergodic as long as the proposal qks(·) is global
and the data-mining mode is run with probability Pk → 0 as
k → ∞. The ergodicity implies that AEMC will reach the
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global optimum of H(x) given enough run time. This prop-
erty of the AEMC algorithm is stated in Theorem 1 and its
proof is included in Appendix C.

Theorem 1 If 0 < r < 1, limk→∞ Pk = 0, and X is com-
pact, then AEMC is ergodic, i.e., the samples x(k) converge
in distribution to f (x).

A final note is that we assume the sample space X to
be discrete and bounded in this paper. Yet the AEMC al-
gorithm could easily be extended to an optimization prob-
lem with a continuous and bounded sample space. One just
needs to use the mutation and crossover operators that are
proposed in Liang and Wong (2001). Theorem 1 still holds.
For unbounded sample spaces, some constraints can be put
on the tails of the distribution f (x) and the proposal distrib-
ution to ensure that the minorisation condition hold. Refer to
Roberts and Tweedie (1996), Rosenthal (1995) and Roberts
and Rosenthal (2004) for more discussions on this issue.

4 Numerical results

To illustrate the effectiveness of the AEMC algorithm, we
use it to solve three problems: the first two are for opti-
mization purposes and the third is for sampling purposes.
The first example is a sensor placement problem in an as-
sembly process, and in the second example we optimize
the Griewank function (Griewank 1981), a widely used test
function in the area of global optimization. In the third ex-
ample we use AEMC to sample from a mixture Gaussian
distribution and see how AMEC, as an adaptive MCMC
method, can help the sampling process.

For the two optimization examples, we compare AEMC
with EMC, the stand-alone CART guided method, and the
standard genetic algorithm. As to the parameters in AEMC,
we chose n = 5, pm = .25, M = 60, JH = 6 and h = 10%.
For the standard genetic algorithm, we let the population

size be 100, crossover rate be .9 and mutation rate be .01.
All optimization algorithms were implemented in the MAT-
LAB environment, and all reported performance statistics
of the algorithms were the average result of 10 trials. The
performance indices for comparison include the best func-
tion value found by an algorithm and the number of times
that H(·) has been evaluated (also called “the number of
function evaluations” hereinafter). The use of the number
of function evaluations as a performance measure makes
good sense for many engineering design problems, where
the objective function H(·) is complex and time consum-
ing to evaluate. Thus the time of function evaluations essen-
tially dominates the entire computational cost. In Sect. 4.3,
we will also present a sensitivity analysis on the three tuning
parameters, the switching condition M , the percentile value
h, and the tree size JH .

4.1 Sensor placement example

In this section, we attempt to find an optimal sensor place-
ment strategy in a three-station two-dimensional (2-D) as-
sembly process (Fig. 2). Coordinate sensors are distributed
throughout the assembly process to monitor the dimensional
quality of the final assembly and/or of the intermediate sub-
assemblies. M1–M5 are five coordinate sensors that are cur-
rently in place on the three stations; this is simply one in-
stance of, out of hundreds of thousands of other possible,
sensor placements.

The goal of having these coordinate sensors is to estimate
the dimensional deviation at the fixture locators on different
stations, labeled as Pi , i = 1, . . . ,8, in Fig. 2. Researchers
have established physical models connecting the sensor
measurements to the deviations associated with the fixture
locators (Jin and Shi 1999; Mandroli et al. 2006). Such a
relationship could be expressed in a linear model, mathe-
matically equivalent to a linear regression model. Thus, the
design of sensor placement becomes very similar to the opti-
mal design problem in experimentation, and the problem to

Fig. 2 Illustration:
a multi-station assembly
process. The process proceeds
as follows: (i) at the station I,
part 1 and part 2 are assembled;
(ii) at the station II, the
subassembly consisting of part 1
and part 2 receives part 3 and
part 4; and (iii) at the station III,
no assembly operation is
performed but the final
assembly is inspected. The
4-way pins constrain the part
motion in both the x- and the
z-axes, and the 2-way pins
constrain the part motion in the
z-axis
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decide where one should place them on respective assembly
stations so that the estimation of the parameters (i.e., fix-
turing deviations) can be achieved with the minimum vari-
ance. Similar to the optimal experimental designs, people
chose to optimize an alphabetic optimality criterion (such
as D-optimality or E-optimality) of an information matrix
that is determined by the corresponding sensor placement.
In this paper, we use the E-optimality design criterion as
a measure of the sensor system sensitivity, the same as in
Liu et al. (2005). But the AMEC algorithm is certainly ap-
plicable to other design criteria. Due to the complexity of
this sensor placement problem, one will need to run a set of
MATLAB codes to calculate the response of sensitivity for a
given placement of sensors. For more details of the physical
process and modeling, please refer to Mandroli et al. (2006).

We want to maximize the sensitivity, which is equiva-
lent to minimizing the maximum variance of the parame-
ter estimation. To facilitate the application of the AEMC
algorithm, we discretize the geometric area of each part
viable for sensor placement using a resolution of 10 mm
(which is the size of a locator’s diameter); this treatment
is the same as what was done in Kim and Ding (2005)
and Liu et al. (2005). The discretization procedure also en-
sures that all constraints are incorporated into the candidate
samples so that we can solve the unconstrained optimiza-
tion (2) for sensor placement. This discretization results in
Nc candidate locations for any single sensor so the sam-
ple space for (2) is X = [1,Nc]d ∩ Zd . For the assembly
process shown in Fig. 2, the 10-mm resolution level results
in the number of candidate sensor locations on each part as
n1 = 6,650, n2 = 7,480, n3 = 2,600, and n4 = 2,600. Be-
cause part 1 and 2 appear on all three stations, part 3 and
4 appear on the second and third stations, there are totally
Nc = 3 × (n1 + n2) + 2 × (n3 + n4) = 52,790 candidate
locations for each sensor. Suppose that d = 9, meaning that
nine sensors are to be installed, then the total number of so-
lution candidates is C

52,790
9 ≈ 8.8 × 1036, where Cb

a is the
combinational operator. Evidently, the number of solution
candidates is overwhelmingly large.

Moreover, we want to maximize the sensitivity objective
function (i.e., more sensitive a sensor system, the better),
while AEMC is to solve a minimization problem. For this
reason, we let H(x) in the AEMC algorithm equal to the
sensitivity response of x multiplied by −1, where x repre-
sents an instance of sensor placement. We solve the optimal
sensor placement problem for nine sensors and 20 sensors,
respectively.

For the scenario of d = 9, each algorithm was run for
105 function evaluations. The results of various methods are
presented in Fig. 3. It demonstrates a clear advantage of
AEMC over the other algorithms. EMC and genetic algo-
rithm have similar performances. After about 4 × 104 func-
tion evaluations, AEMC finds H(x) ≈ 1.20, which is the

Fig. 3 Performances of the various algorithms for nine sensors

Fig. 4 Uncertainty of different algorithms for nine sensors

best value found by EMC and genetic algorithm after 105

function evaluations. This translates to 2.5 times improve-
ment in terms of CPU time. Figure 4 gives a Boxplot of the
best sensitivity values found at the end of each algorithm.
AMEC finds a sensitivity value, on average, 10% better than
EMC and genetic algorithm. AEMC also has smaller uncer-
tainty than EMC. From the two figures, it is worth noting
that the stand-alone CART guided method performs much
worse than the other algorithms in this example. We be-
lieve this happens mainly because the stand-alone CART
guided method fails to gather representative data in the sam-
ple space associated with the problem. Figure 5 presents the
best (i.e., yielding the largest sensitivity) sensor placement
strategy found in this example.

We also test the AEMC method in a higher dimensional
case, i.e., when d = 20. All the algorithms were again run
for 105 function evaluations. The algorithm performance
curves are presented in Fig. 6, where we observe that the
sensitivity value found by AEMC after 3 × 104 function
evaluations is the same as that found by EMC after 105

function evaluations. This translates to a 3-fold improve-
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Fig. 5 Best sensor placement for nine sensors

Fig. 6 Performances of the various algorithms for 20 sensors

Fig. 7 Uncertainty of different algorithms for 20 sensors

ment in terms of CPU time. Interestingly, this improvement
is greater than that in the 9-sensor case. The final sensitiv-
ity value attained by AMEC is, on average, 7% better than
EMC and genetic algorithm. Again, the stand-alone CART
guided method fails to compete with the other algorithms.
We feel that as the dimensionality of the sample space gets
higher, the performance of the stand-alone CART guided
method gets worse compared to others. Figure 7 shows the
uncertainty of each algorithm. In this case, AEMC has a
little higher uncertainty than EMC, but the average results
of AEMC are still better. Figure 8 presents the best sensor
placement strategy found in this example.

Fig. 8 Best sensor placement for 20 sensors

Fig. 9 Performances of the various algorithms for the Griewank func-
tion

4.2 Griewank test function

In order to show the potential applicability of AEMC to
other optimization problems, we test it on a well-known test
function. The Griewank function (Griewank 1981) has been
used as a test function for global optimization algorithms in
a broad body of literature. The function is defined as

HG(x) =
d∑

i=1

x2
i

4000
−

d∏

i=1

cos

(
xi√
i

)
+ 1,

−600 ≤ xi ≤ 600, i = 1, . . . , d.

The global minimum is located at the origin and the global
minimum value is 0. The function has a very large number
of local minima, exponentially increasing with d . Here we
set d = 50.

Figure 9 presents the performances of the various algo-
rithms. All algorithms were run for 105 function evaluations.
Please note that we have truncated the y-axis to be between
0 and 400 so as to show the performances at the early-stage
of different algorithms more clearly. AEMC clearly out-
performs the other algorithms, especially in the beginning
stage, as one can observe that AEMC converges much faster.
As explained earlier, this fast convergence is an appealing
property to engineering design problems. In this example,
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Fig. 10 Uncertainty of different algorithms for the Griewank function

the stand-alone CART guided method converges faster than
genetic algorithm and EMC, but is entrapped into a local
optimum at an early stage. AEMC appears to level off after
65,000 function evaluations. However, as assured by Theo-
rem 1, AEMC will eventually reach the global optimum if
given enough computational effort. Figure 10 gives a Box-
plot of the best HG(x) found at the end of the algorithms.
Comparing to the other methods, the AEMC algorithm not
only improves the average performance but also reduces the
uncertainty. Although the stand-alone CART guided method
has found good solutions, the uncertainty of this algorithm
is much higher than AEMC and the other two.

4.3 Sensitivity analysis

We run an ANOVA analysis to investigate how sensitive the
performance of AEMC to the tuning parameters: the switch-
ing condition M , the percentile value h, and the tree size JH .
The value of M is chosen from five levels (10, 30, 60, 90,
120), the h is chosen from three levels (1%, 10%, 20%), and
the JH is chosen from three levels (3, 6, 12). Then a full
factorial design with 45 cases is constructed.

For the sensor placement example, we use the 9-sensor
case for the ANOVA analysis. AEMC was run for 105 func-
tion evaluations, and we recorded the best function value
found as the output. For each factor level combination, this
was done five times. The ANOVA table is shown in Table 1.
We can see that the main effect of M and h is significant at
the .05 level. Our study also revealed that relatively smaller
M and h are favored. For the Griewank example, we ran
AEMC for 5 × 104 function evaluations and recorded the
best function value found as the output. For each factor level
combination, this was done five times. The ANOVA table is
shown in Table 2. If using .05 level, then we can see that the
main effects of M and h are significant. Here smaller h and
M are favored as well.

Table 1 ANOVA analysis for the sensor placement example

Source Sum sq. D.f. Mean sq. F Prob > F

M 0.33 4 0.08 2.43 0.05

h 0.87 2 0.44 12.75 0.00

JH 0.06 2 0.03 0.84 0.43

M × h 0.26 8 0.03 0.94 0.48

M × JH 0.14 8 0.02 0.53 0.84

h × JH 0.11 4 0.03 0.79 0.53

Error 6.70 196 0.03

Total 8.47 224

Table 2 ANOVA analysis for the Griewank example

Source Sum sq. D.f. Mean sq. F Prob > F

M 2393.40 4 598.35 48.50 0.00

h 1046.26 2 523.13 42.40 0.00

JH 0.18 2 0.09 0.01 0.99

M × h 163.51 8 20.44 1.66 0.11

M × JH 104.15 8 13.02 1.06 0.40

h × JH 43.41 4 10.85 0.88 0.48

Error 2418.08 196 12.34

Total 6169.00 224

Based on our sensitivity analysis for both examples, we
understand that the switching condition M and the per-
centile value h are the important factors affecting the per-
formance of AEMC. To choose suitable values for M and h,
users may follow our general guidelines outlined in Sect. 3.3
and further tune their values for specific problems.

4.4 Sampling from a mixture Gaussian distribution

AEMC falls into the category of adaptive MCMC methods,
and thus could be used to draw samples from a given tar-
get distribution. As shown by Theorem 1, the distribution
of those samples will asymptotically converge to the target
distribution.

We test AEMC on a five-dimensional mixture Gaussian
distribution

π(x) = 1

3
N5(0, I5) + 2

3
N5(5, I5),

where 0 = (0,0,0,0,0) and 5 = (5,5,5,5,5). This exam-
ple is used in Liang and Wong (2001). Since in this paper we
assume the sample space to be bounded, we set the sample
space to be [−10,10]5 here. The distance between the two
modes is 5

√
5, which makes it difficult to jump from one

mode to another. We compare the performance of AEMC
with the Metropolis algorithm and EMC. Each algorithm
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Fig. 11 Convergence rate of different algorithms

was used to obtain 105 samples and all numerical results
were averages of 10 runs.

The Metropolis algorithm was applied with a uniform
proposal distribution U [x − 2, x + 2]5. The acceptance rate
was .22. The Metropolis algorithm could not escape from
the mode in which it started. We then compare AEMC with
EMC. We only look at samples of the first dimension, since
each dimension is independent of each other. Since the true
histogram of the distribution is known, we can calculate the
L2 distance between the estimated mass vector and the true
distribution. Specifically, we divide the interval [−10,10]
into 40 intervals (with a resolution of .5), and we can calcu-
late the true and estimated probability mass respectively in
each of the intervals.

All EMC related parameters are set following Liang and
Wong (2001). In AEMC, we set h = 25% so that samples
from both modes can be obtained. If h is too small, AEMC
will focus only on the peaks of the function and thus only
samples around the mode 5 can be obtained (this is because
the probability of sampling around the mode 5 is twice as
large as the mode 0). In EMC, we employ the mutation and
crossover operators used in Liang and Wong (2001). The ac-
ceptance rates of mutation and crossover operators were .22
and .44, respectively. In AEMC, the acceptance rates of mu-
tation, crossover, and data-mining operators were .23, .54,
and .10, respectively. The Fig. 11 shows the L2 distance ver-
sus the number of samples for the three methods in compar-
ison. AEMC converges faster than EMC and the Metropo-
lis algorithm, and its sampling quality is far better than the
Metropolis algorithm and it also achieves better sampling
quality than EMC.

5 Conclusions

In this paper, we have presented an AEMC algorithm for
optimization problems with “black-box” objective function,

which are often encountered in engineering designs (e.g.,
a sensor placement problem in an assembly process). Our
experience indicates that hybridizing a predictive model
with an evolutionary Monte Carlo method could improve
the convergence rate for an optimization procedure. We
have also shown that the algorithm maintains the ergodic-
ity, implying its convergence to the global optimum. Nu-
merical studies are used to compare the proposed AEMC
method with other alternatives. All methods in comparison
are used to solve a sensor placement problem and to opti-
mize a Griewank function. In these studies, AEMC outper-
forms other alternatives and shows a much enhanced con-
vergence rate.

This paper focuses mainly on the application of AEMC
in solving optimization problems. Yet considering that the
AEMC algorithm is an adaptive MCMC method, it should
also be useful for sampling from complicated probability
distributions. The EMC algorithm has already been shown
to be a powerful tool as a sampling method. We believe that
the data-mining component could further improve the con-
vergence rate to the target distribution without destroying
the ergodicity of the algorithm. We demonstrated the effec-
tiveness of AEMC for sampling purposes using a mixture
Gaussian distribution.

In the current version of AEMC, we use CART as the
metamodeling method; consequently the sample space is
sliced into rectangles. When the function surface is com-
plex, a rectangular partition may not be sufficient. A more
sophisticated partition may be required. However, a good
replacement for CART may not be straightforward to find
because any viable candidate must be computationally effi-
cient so as not to slow down the optimization process. Some
other data-mining or predictive modeling methods, such as
neural networks, may have more “learning” power, but they
are computationally much more expensive and are there-
fore less likely to be a good candidate for the AEMC al-
gorithm.
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Appendix

We first describe the crossover, mutation, and exchange op-
erators used in the EMC algorithm in Appendix A. In Ap-
pendix B, we then give a brief summary of the published
results on the convergence of adaptive MCMC algorithms.
In Appendix C, we prove the ergodicity of the AEMC algo-
rithm.
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Appendix A: Operators in the EMC algorithm

A.1 Crossover

From the current population x(k) = {x(k)
1 , . . . , x

(k)
n }, we first

select one parental pair, say x
(k)
i and x

(k)
j (i �= j ). The first

parental sample is chosen according to a roulette wheel pro-
cedure with Boltzmann weights. Then the second parental
sample is chosen randomly from the rest of the population.
So the probability of selecting the pair (x

(k)
i , x

(k)
j ) is

P((x
(k)
i , x

(k)
j )|x(k))

= 1

(n − 1)G(x(k))

×
[
exp{−H(x

(k)
i )/τs} + exp{−H(x

(k)
j )/τs}

]
, (8)

where G(x(k)) = ∑n
i=1 exp{−H(x

(k)
i )/τs}, and τs is the se-

lection temperature.
Two offsprings are generated by some crossover opera-

tor, and the offspring with a smaller fitness value is denoted
as yj and the other is yi . All the crossover operators used in
genetic algorithm, e.g., 1-point crossover, 2-point crossover
and real crossover, could be used here. Then the new pop-
ulation y = {x(k)

1 , . . . , yi, . . . , yj , . . . , x
(k)
n } is accepted with

probability min(1,rc),

rc = f (y)

f (x(k))

T (x(k)|y)

T (y|x(k))

= exp{−(H(yi) − H(x
(k)
i ))/ti − (H(yj ) − H(x

(k)
j ))/tj }

× T (x(k)|y)

T (y|x(k))
,

where T (·|·) is the transition probability between popu-
lations, and T (y|x) = P((xi, xj )|x) · P((yi, yj )|(xi, xj ))

for any two populations x and y. If the proposal is ac-
cepted, the population x(k+1) = y, otherwise x(k+1) = x(k).
Note that all the crossover operators are symmetric, i.e.,
P((yi, yj )|(xi, xj )) = P((xi, xj )|(yi, yj )). So T (x|y)/

T (y|x) = P((yi, yj )|y)/P ((xi, xj )|x), which can be cal-
culated according to (8).

Following the above selection procedure, samples with
better H(·) values have a higher probability to be selected.
Offspring generated by these parents will likely to be good
as well. In other words, the offspring have learned from the
good parents. So crossover operator allows us to construct
better proposal distributions, and new samples generated by
it are more likely to have better objective H(·) values.

A.2 Mutation

A sample, say x
(k)
i , is randomly selected from the current

population x(k), then mutated to a new sample yi by re-
versing the values of some randomly chosen bits. Then the

new population y = {x(k)
1 , . . . , yi, . . . , x

(k)
n } is accepted with

probability min(1, rm),

rm = f (y)

f (x(k))

T (x(k)|y)

T (y|x(k))

= exp{−(H(yi) − H(x
(k)
i ))/ti}T (x(k)|y)

T (y|x(k))
.

The 1-point, 2-point, and uniform mutation are all sym-
metric operators, and thus T (y|x(k)) = T (x(k)|y). If the
proposal is accepted, the population x(k+1) = y, otherwise
x(k+1) = x(k).

A.3 Exchange

Given the current population x(k) and the temperature lad-
der t , we try to change (x(k), t) = (x

(k)
1 , t1, . . . , x

(k)
i , ti , . . . ,

x
(k)
j , tj , . . . , x

(k)
n , tn) to (x′, t) = (x

(k)
1 , t1, . . . , x

(k)
j , ti , . . . ,

x
(k)
i , tj , . . . , x

(k)
n , tn). The new population x′ is accepted

with probability min(1,re), where

re = f (x′)
f (x(k))

T (x(k)|x′)
T (x ′|x(k))

= exp

{
(H(x

(k)
i ) − H(x

(k)
j ))

(
1

ti
− 1

tj

)}
T (x(k)|x′)
T (x′|x(k))

.

If this proposal is accepted, x(k+1) = x′, otherwise x(k+1) =
x(k). Typically, the exchange is performed only on states
with neighboring temperature values, i.e., |i − j | = 1. Let
p(x

(k)
i ) be the probability that x

(k)
i is chosen to exchange

with another state, and w(x
(k)
j |x(k)

i ) be the probability

that x
(k)
j is chosen to exchange with x

(k)
i . So j = i ± 1,

and w(x
(k)
i+1|x(k)

i ) = w(x
(k)
i−1|x(k)

i ) = .5 and w(x
(k)
2 |x(k)

1 ) =
w(x

(k)
n−1|x(k)

n ) = 1. The transition probability T (x′|x(k)) =
p(x

(k)
i ) · w(x

(k)
j |x(k)

i ) + p(x
(k)
j ) · w(x

(k)
i |x(k)

j ), and thus

T (x′|x(k)) = T (x(k)|x′).

Appendix B: Published results on the convergence
of adaptive MCMC algorithms

In this section, we briefly review the results presented in
Roberts and Rosenthal (2007). Let f (·) be a target proba-
bility distribution on a state space X n with B X n = B X ×
· · · × B X being the σ -algebra generated by measurable rec-
tangles. Let {Kγ }γ∈Y be a collection of Markov chain ker-
nels on X n, each of which has f (·) as a stationary dis-
tribution: (f Kγ )(·) = f (·). Assume Kγ is φ-irreducible
and aperiodic, and we have that Kγ is ergodic for f (·),
i.e., for all x ∈ X n, limk→∞ ‖Kk

γ (x, ·) − f (·)‖ = 0, where
‖μ(·) − ν(·)‖ = supB∈B X n |μ(B) − ν(B)| is the usual total
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variation distance. Note that B = B1 ×· · ·×Bn is a measur-
able rectangle in X n, each Bi ∈ B X .

For k = 0,1,2, . . . , we have a X n-valued random vari-
able X(k) representing the state of the Markov chain at it-
eration k, and Y -values random variable Γ (k) representing
the kernel to be used when updating X(k) to X(k+1). Let
A(k)((x, γ ),B) = P[X(k) ∈ B|X(0) = x,Γ (0) = γ ], B ∈
B X n , which represents the conditional probability of X(k)

for the adaptive MCMC, given the initial conditions X(0) =
x and Γ (0) = γ . Then let

T (x, γ, k) = ‖A(k)((x, γ ), ·) − f (·)‖
≡ sup

B∈B X n

|A(k)((x, γ ),B) − f (B)|

denote the total variation distance between the f (·) and the
distribution of the adaptive MCMC algorithm at iteration k.
Then the adaptive algorithm is called ergodic if

lim
k→∞T (x, γ, k) = 0, for all x ∈ X n and γ ∈ Y .

The following states three conditions that are used to
prove the ergodicity of an adaptive MCMC algorithm.

(A1) (Strongly aperiodic minorisation condition) There is
a C ∈ X n, ϕ > 0, and for each γ ∈ Y , there exists a
probability measure νγ (·) on X n such that

Kγ (x,B) ≥ ϕνγ (B), ∀x ∈ C, ∀B ∈ B X n . (9)

(A2) (Geometric drift condition) There is V : X n → [1,∞),
0 < λ < 1, b < ∞, and supC V = v < ∞ such that for
each γ ∈ Y

Kγ V (x) ≤ λV + bI (x ∈ C), ∀x ∈ X n (10)

where Kγ V (x) = ∫
X n Kγ (x,y)V (y)dy.

(A3) (Diminishing adaptation condition) The diminishing
adaptation condition holds if

lim
k→∞ sup

x∈X n

‖KΓk+1(x, ·) − KΓk
(x, ·)‖ = 0. (11)

We then have:

Theorem 2 Consider an adaptive MCMC algorithm with
a family of Markov chain kernels {Kγ }γ∈Y satisfying the
conditions (A1), (A2) and (A3), and E[V (x)] < ∞. Then
the adaptive algorithm is ergodic.

Appendix C: Proof of ergodicity of AEMC

As stated in Theorem 1, we have the following:
If X is compact, 0 < r < 1, and limk→∞ Pk = 0, then

AEMC is ergodic, i.e., the samples x(k) converge in distrib-
ution to f (x).

Proof Denote the Markov chain kernel in the data-mining
mode at iteration k by K

(1)
Γk

(x, ·). To prove ergodicity, we
need to prove the conditions (A1), (A2) and (A3) for the
K

(1)
Γk

(x, ·), k = 0,1,2, . . . . For notational simplicity, we

drop the subscript k in the proof, denoting K
(1)
Γk

by K
(1)
Γ and

x(k) by x. We denote the proposal density learned by CART
by qΓ (·) afterwards. Since we use the Metropolis-within-
Gibbs procedure in the data mining mode, we have

K
(1)
Γ (x,y) = K

(1,1)
Γ ((x1, x2, . . . , xn),(y1, x2, . . . , xn))× · · ·

× K
(1,n)
Γ ((y1, . . . , yn−1, xn),

(y1, . . . , yn−1, yn)), (12)

where K
(1,i)
Γ (·, ·) is the Metropolis-Hastings kernel for the

transition of the i-th sample of the population and can be
written as

K
(1,i)
Γ (xi, yi |ξ i )

Δ= K
(1,i)
Γ ((y1, . . . , yi−1, xi, . . . , xn),

(y1, . . . , yi, xi+1, . . . , xn))

= sΓ (xi, yi |ξ i ) + I (xi = yi)

(
1 −

∫

X
sΓ (xi, z|ξ i )dz

)
.

(13)

Here ξ i = (y1, . . . , yi−1, xi+1, . . . , xn) denotes the collec-
tion of the fixed samples in the transition, sΓ (xi, yi |ξ i ) =
qΓ (yi)min{1,

p(yi |ξ i )qΓ (xi )

p(xi |ξ i )qΓ (yi )
}, and p(z|ξ ) is the conditional

density of z given the other components ξ .
Since we have assumed that X n is compact, it is natural

to assume that f (x) is bounded away from 0 and ∞ on the
space X n. As long as 0 < r < 1, we have that the proposal
qΓ (z) is bounded away from 0 due to (6), and then we have
the minorisation condition, i.e.,

ω∗ = sup
y∈X

p(y|ξ)

qΓ (y)
< ∞. (14)

And then

K
(1,i)
Γ (z,Bi |ξ i )

=
∫

Bi

sΓ (z, y|ξ i )dy

+ I (z ∈ Bi)

(
1 −

∫

X
sΓ (z,w|ξ i )dw

)

≥
∫

Bi

qΓ (y)min

{
1,

p(y|ξ i )qΓ (z)

p(z|ξ i )qΓ (y)

}
dy

=
∫

Bi

min

{
qΓ (y),

p(y|ξ i )qΓ (z)

p(z|ξ i )

}
dy
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≥
∫

Bi

min

{
qΓ (y),

p(y|ξ i )

ω∗

}
dy (by (14))

=
∫

Bi

p(y|ξ i )

ω∗ dy (by definition of ω∗)

≥
∫

Bi

p∗
i (y)

ω∗ dy

(by defining p∗
i (y) = inf

ξ
′
i∈X n−1p(y|ξ ′

i ))

= p∗
i (Bi)

ω∗ .

Since we have assumed that f (x) is bounded away from 0
and ∞, p(y|ξi), as the conditional density of a component
of x, is bounded away from 0 and ∞, and so are p∗

i (y) and
p∗

i (Bi). Therefore, we have the following results:

K
(1)
Γ (x,B)

=
∫

B1

· · ·
∫

Bn

K
(1,1)
Γ (x1, y1|ξ1) × · · ·

× K
(1,n)
Γ (xn, yn|ξn)dy1 · · ·dyn

≥ p∗
n(Bn)

ω∗

∫

B1

· · ·
∫

Bn−1

K
(1,1)
Γ (x1, y1|ξ1) × · · ·

× K
(1,n−1)
Γ (xn−1, yn−1|ξn−1)dy1 · · ·dyn−1

· · ·

≥
n∏

i=1

p∗
i (Bi)/(ω

∗)n.

Define νΓ (B) = ∏n
i=1 p∗

i (Bi) and ϕ = 1/(ω∗)n, and then
we have

K
(1)
Γ (x,B) ≥ ϕνΓ (B), ∀x ∈ X n, ∀B ∈ B X n . (15)

The equation (15) implies that the condition (A1) is satisfied,
and it also implies that C = X n is a small set (Mengersen
and Tweedie 1996) and that the following condition holds:

K
(1)
Γ V (x) ≤ λV (x) + bI (x ∈ C), ∀x ∈ X n, (16)

by choosing V (x) = 1, 0 < λ < 1, b = 1−λ. Then the equa-
tion (16) implies that the condition (A2) is satisfied. Also we
have E[V (x)] < ∞.

Now we prove the Diminishing Adaptation condition for
the kernel K

(1)
Γ . Suppose at iteration k +1 the newly learned

data-mining proposal is K
(1)
Γ ∗ , then

K
(1)
Γk+1

= Pk+1K
(1)
Γ ∗ + (1 − Pk+1)K

(1)
Γk

.

Then we have ‖K(1)
Γk+1

−K
(1)
Γk

‖ = Pk+1‖K(1)
Γ ∗ −K

(1)
Γk

‖. Since
limk→∞ Pk = 0, to prove the equation (11), it suffices to
prove that ‖K(1)

Γ ∗ − K
(1)
Γk

‖ is bounded. Since both K
(1)
Γ ∗ and

K
(1)
Γk

are Markov chain kernels, we have ‖K(1)
Γ ∗ −K

(1)
Γk

‖ ≤ 2,
and

‖K(1)
Γk+1

− K
(1)
Γk

‖ = Pk+1‖K(1)
Γ ∗ − K

(1)
Γk

‖ ≤ 2Pk+1 → 0.

This proves the diminishing adaptation condition.
The proof is complete. �
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based discrete optimization. In: Ingalls, R.G., Rossetti, M.D.,
Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter
Simulation Conference (2004)

Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algo-
rithm. Bernoulli 7, 223–242 (2001)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical
Learning. Springer, New York (2001)

Holland, J.H.: Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. MIT Press, Cambridge (1992)

Huyet, A.L.: Optimization and analysis aid via data-mining for simu-
lated production systems. Eur. J. Oper. Res. 173, 827–838 (2006)

Jin, J., Shi, J.: State space modeling of sheet metal assembly for di-
mensional control. J. Manuf. Sci. Eng. 121, 756–762 (1999)

http://www.ceremade.dauphine.fr/~xian/control.ps.gz
http://www.ceremade.dauphine.fr/~xian/control.ps.gz


390 Stat Comput (2008) 18: 375–390

Liang, F.: A generalized Wang-Landau algorithm for Monte Carlo
computation. J. Am. Stat. Assoc. 100, 1311–1327 (2005)

Liang, F., Liu, C., Carroll, R.J.: Stochastic approximation in Monte
Carlo Computation. J. Am. Stat. Assoc. 102, 305–320 (2007)

Liang, F., Wong, W.H.: Evolutionary Monte Carlo: applications to Cp

model sampling and change point problem. Stat. Sin. 10, 317–342
(2000)

Liang, F., Wong, W.H.: Real-parameter evolutionary Monte Carlo with
applications to Bayesian mixture models. J. Am. Stat. Assoc. 96,
653–666 (2001)

Liu, H., Igusa, T.: Feature-based classification for design optimization.
Res. Eng. Des. 17, 189–206 (2007)

Kim, P., Ding, Y.: Optimal engineering system design guided by data-
mining methods. Technometrics 47, 336–348 (2005)

Liu, C., Ding, Y., Chen, Y.: Optimal coordinate sensor placements for
estimating mean and variance components of variation sources.
IIE Trans. 37, 877–889 (2005)

Mandroli, S.S., Shrivastava, A.K., Ding, Y.: A survey of inspection
strategy and sensor distribution studies in discrete-part manufac-
turing processes. IIE Trans. 38, 309–328 (2006)

Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings
and Metropolis algorithms. Ann. Stat. 24, 101–121 (1996)

Michalski, R.S.: Learnable evolution model: evolutionary processes
guided by machine learning. Mach. Learn. 38, 9–40 (2000)

Müller, P.: A generic approach to posterior integration and Gibbs sam-
pling. Technical Report, Purdue University, West Lafayette, Indi-
ana (1991)

Neal, R.M.: Bayesian learning for neural networks. Lecture Notes in
Statistics, vol. 118. Springer, New York (1996)

Roberts, G.O., Rosenthal, J.S.: General state-space Markov chains and
MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive
Markov chain Monte Carlo algorithms. J. Appl. Probab. 44, 458–
475 (2007)

Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit
theorems for multidimensional Hastings and Metropolis algo-
rithms. Biometrika 83, 95–110 (1996)

Rosenthal, J.S.: Minorization conditions and convergence rate for
Markov chain Monte Carlo. J. Am. Stat. Assoc. 90, 558–566
(1995)

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis
of computer experiments. Stat. Sci. 4, 409–435 (1989)

Schwabacher, M., Ellman, T., Hirsh, H.: Learning to set up numeri-
cal optimizations of engineering designs. In: Braha, D. (ed.) Data
Mining for Design and Manufacturing, pp. 87–125. Kluwer Aca-
demic, Dordrecht (2001)

Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: On the use
of statistics in design and the implications for deterministic
computer experiments. In: Design Theory and Methodology—
DTM’97, Sacramento, CA, September 14–17, ASME, Paper No.
DETC97/DTM-3881 (1997)

Wong, W.H., Liang, F.: Dynamic weighting in Monte Carlo and opti-
mization. Proc. Natl. Acad. Sci. USA 94, 14220–14224 (1997)


	Adaptive evolutionary Monte Carlo algorithm for optimization with applications to sensor placement problems
	Abstract
	Introduction
	Related work
	Sampling-based methods
	Metamodel-based methods

	Adaptive evolutionary Monte Carlo
	General idea of AEMC
	Evolutionary Monte Carlo
	The AEMC algorithm

	Numerical results
	Sensor placement example
	Griewank test function
	Sensitivity analysis
	Sampling from a mixture Gaussian distribution

	Conclusions
	Acknowledgements
	Appendix
	Operators in the EMC algorithm
	Crossover
	Mutation
	Exchange

	Published results on the convergence of adaptive MCMC algorithms
	Proof of ergodicity of AEMC
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


