
Calculating the Breakdown Point of
Sparse Linear Models

Jung Jin CHO

Baker Hughes Inc.
Houston, TX 77019

Yong CHEN

Department of Mechanical and Industrial Engineering
The University of Iowa

Iowa City, IA 52242

Yu DING

Department of Industrial and Systems Engineering
Texas A&M University

College Station, TX 77843-3131
(yuding@iemail.tamu.edu)

In robust statistics, the concept of breakdown point was introduced to quantify the robustness of an es-
timator in a linear regression model. Computing the breakdown point is useful in tuning some robust
regression estimators (e.g., the least trimmed squares estimator). Computing the breakdown point for a
structured linear model (i.e., one with dependencies among some p rows of the n×p design matrix X) can
be very demanding. This article presents an algorithm for calculating the maximum breakdown point for
sparse linear models, which are a special type of structured linear model whose design matrix has many
zero entries. The algorithm decomposes a sparse design matrix into smaller submatrixes on which the
computation is performed, thereby leading to substantial savings in computation. An assembly process,
along with a few numerical examples, illustrate the application of the algorithm and demonstrate its com-
putational benefits.

KEY WORDS: Breakdown point; Least trimmed squares estimator; Robust estimation; Structured linear
regression.

1. INTRODUCTION

The research effort reported in this article is concerned with
robust estimators for a linear regression model. Consider a gen-
eral linear regression model,

y = Xβ + e, (1)

where y = (y1, . . . , yn)
T is an n-dimensional vector of measure-

ments or observations, β = (β1, . . . , βp)
T is a p-dimensional

vector of unknown parameters, e = (e1, . . . , en)
T is the random

errors, and X = (xT
1 , . . . ,xT

n)T is the n × p design matrix. Typi-
cally, the error term e is assumed to be normally distributed with
mean 0 and covariance matrix σ 2I. β is commonly estimated
using the least squares (LS) estimator, β̂LS = (XTX)−1XTy.
One major drawback of the LS estimator is its lack of robust-
ness; heavy-tailed distributions in e and outliers in y or model-
ing errors in X prohibit accurate estimation of the coefficients
in β using an LS estimator (Wilcox 2005).

The outlier sensitivity of LS estimation has stimulated inter-
est in developing robust regression estimators. To quantify the
robustness of a regression method, Huber (1983) introduced the
concept of the finite-sample breakdown point, which we will
briefly review in the sequel. Let Z = {(x1, y1), . . . , (xn, yn)} de-
note the collection of known or observed information contained
in y and X and T(Z) denote a regression estimator using Z ;
thus β̂ = T(Z). When data points in Z are contaminated by
outliers, the estimation of β may deviate substantially from its
supposed true value. Suppose that m data points of Z are con-
taminated, meaning that any m data points can be replaced by
arbitrary values. We designate the contaminated data set Z ′

m.

The resulting estimator is T(Z ′
m). The maximum difference be-

tween T(Z) and T(Z ′
m) is denoted by bias(m;T), defined as

bias(m;T) = sup
Z ′

m

‖T(Z ′
m) − T(Z)‖, (2)

where the supremum is over all possible Z ′
m for a given m, and

‖ ·‖ represents the Euclidean norm. The breakdown point of the
regression estimator T , denoted by ε∗

n (T, Z), is defined as

ε∗
n (T, Z) = min

{
m

n
: bias(m;T) is infinite

}
. (3)

Intuitively, the foregoing breakdown point is the minimal frac-
tion of gross outliers in the data that could cause the estimator
to give totally wrong results. The higher the breakdown point,
the more outliers an estimator can tolerate, and thus the more
robust it is.

The breakdown point associated with a robust regression de-
pends not only on the estimator T , but also on the linear de-
pendence relationships among the rows in the design matrix X
(Coakley and Mili 1993; Davies 1993; Mili and Coakley 1996).
Throughout the article, we call a design matrix X structured if
some p row vectors in X are linearly dependent and unstruc-
tured if any p row vectors of X are linearly independent. Con-
sequently, model (1) is a structured linear regression when X is
structured.

Our previous experience provides the following example of a
structured linear model. Figure 1 shows a multistation assembly

© 2009 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1
DOI 10.1198/TECH.2009.0004

34

mailto:yuding@iemail.tamu.edu

CALCULATING THE BREAKDOWN POINT OF SPARSE LINEAR MODELS 35

Figure 1. A three station assembly process.

process, equipped with a distributed, redundant sensor system.
This assembly process consists of three stations. At Station 1,
two parts are assembled, and the resulting subassembly is trans-
ferred to Station 2. At Station 2, the subassembly is assembled
with two more parts. At Station 3, the final assembly is posi-
tioned for quality inspection. Coordinate sensors are placed not
only at Station 3, but also at Stations 1 and 2.

A coordinate sensor measures a dimensional deviation of the
part in either the x-direction or the z-direction. The response y
includes the measurements obtained by the n = 26 sensors. The
positions and measurement directions of the sensors are indi-
cated by arrows in Figure 1. The unknown parameter β denotes
the deviations associated with the fixture locators that hold the
parts during the assembly operation. Each part or each finished
subassembly is positioned by a pair of locators, consisting of a
four-way locator that controls the part motions in both x- and
z-directions and a two-way locator that controls the part motion
in only the z-direction. The potential locator deviations to be
estimated are represented by a double-arrowed bar on a circle
or on a slot that indicates the location of a fixture locator. There
are a total of p = 12 potential deviations at the three stations to
be estimated, and the dimensions of β are 12 × 1.

In the engineering literature (e.g., Jin and Shi 1999) a linear
model, in the same form as Equation (1), is commonly used to
establish a connection between the sensor output y and the lo-
cator deviation β for such an assembly process. The design ma-
trix X of this system is structured, because many sets of p rows
in X are linearly dependent. (We show this X in Section 4 when
we revisit this example.) The design matrix is not only struc-
tured, but also sparse, meaning that it has many zero entries;
in fact, about 75% of the entries are 0. When a robust estima-
tor is used in such an application, how the linear dependencies
among the rows in the design matrix will affect the breakdown
point and the choice of parameters in a robust regression proce-
dure need to be considered.

Mili and Coakley (1996) provided a rather comprehensive
account of robust estimation for a structured linear regression.
They stated that for a structured linear model, the upper bound
for breakdown point, or the maximum breakdown point, is

ε∗
max,n such that

ε∗
max,n = �(n − M + 1)/2�

n
, (4)

where �a� denotes the largest integer ≤ a, and M can be con-
sidered equal to n − d∗, where d∗ is the minimum number of
rows of X that, if deleted, makes X singular. Here d∗ can be in-
terpreted as the redundancy degree of measurements, a concept
that has been used in engineering applications (Stanley and Mah
1981; Luong et al. 1994; Staroswiecki, Hoblos, and Aïtouche
2004). As such, the quantity M complements the redundancy in
a design matrix.

The Least Trimmed Squares (LTS) estimator, developed by
Rousseeuw (1984), is in the class of high breakdown point es-
timators, capable of attaining the maximum breakdown point
ε∗

max,n. An LTS estimator is determined through

min
h∑

i=1

w2
(i), (5)

where h is called a trimming parameter and w2
(1) ≤ w2

(2) ≤
· · · ≤ w2

(n) are the squared residuals (yi − xiβ̂)2 for i = 1, . . . ,n,
arranged in ascending order. To guarantee that an LTS estima-
tor achieves the maximum breakdown point ε∗

max,n, Mili and
Coakley (1996) proved that h must be chosen such that

hL ≤ h ≤ hU, (6)

where hL = �(n + M + 1)/2� and hU = �(n + M + 2)/2�. The
foregoing condition implies that in general, making h smaller
may improve robustness by dropping outliers from the fit, but
making h too small can in fact decrease the breakdown point.
Thus the benefit of knowing M is in determining the proper
choice of h.

For an unstructured design matrix, d∗ = n − p + 1, so that
M = p − 1, meaning that M can be determined based solely on
the dimensions of a design matrix. Considering the foregoing
assembly example, suppose that the design matrix is unstruc-
tured. Then its degree of redundancy is d∗ = 15, and M = 11,
so that the maximum breakdown point, ε∗

max,n = 8
26 , is achieved

if an LTS estimator is used with h = 19.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-000.jpg&w=416&h=177

36 JUNG JIN CHO, YONG CHEN, AND YU DING

In fact, the design matrix of the assembly example is struc-
tured so that its degree of redundancy, d∗, is much smaller than
15 because of cancellations resulting from between-row lin-
ear dependencies. (Our later analysis shows that d∗ = 5 for the
foregoing example.) In turn, a smaller d∗ makes M larger and
the maximum breakdown point smaller. To choose a proper h
and assess the maximum breakdown point, computing M (or,
equivalently, d∗) for a structured linear regression is critical.

The foregoing line of argument regarding the choice of h is
made in an attempt to attain the maximum breakdown point, an
important robustness consideration. Keep in mind that other ro-
bustness considerations also need to be taken into account when
choosing h, the discussion of which is deferred to Section 3.

Calculating M for a structured linear model can be computa-
tionally expensive, however. Improving the computational effi-
ciency does not appear to be straightforward. The algorithm for
finding M was not given explicitly by Mili and Coakley (1996).
Previous authors have found that computing M for a structured
linear model is in fact an nondeterministic polynomial-time
hard problem (Vardy 1997; Cho, Chen, and Ding 2007b).

In this work we study a special case of structured linear mod-
els, those that are (or can be converted into) sparse linear mod-
els. Sparse linear models are encountered in many applications
in the engineering field and physical sciences. The foregoing
example is one such application; we discuss others in Sec-
tion 2.3.

For a sparse linear model, we can devise a decomposition al-
gorithm for calculating M efficiently. This algorithm uses the
linear dependencies among the rows in a sparse X and decom-
poses the original design matrix into smaller submatrixes. Per-
forming the computation on the submatrixes should provide
substantial computational savings compared with alternatives
that deal with the original matrix. This algorithm is based on
a decomposition property established for a connected matroid
by Cho, Chen, and Ding (2007b), but we attempt to present
our algorithm without involving the concepts from matroid the-
ory. For a certain class of nonsparse structured design matrixes,
we provide a transformation procedure that will convert these
into sparse matrixes, allowing the use of the proposed decom-
position algorithm. Of course, our method has its own limita-
tions; some conditions on the sparsity of the design matrixes
are needed to provide the promised computational savings. We

discuss the conditions and their implications after presenting
our method.

The rest of the article is organized as follows. Section 2
presents the decomposition algorithm for computing M and dis-
cusses its applicability conditions. Section 3 explores how to set
the trimming parameter for an LTS estimator. Section 4 revisits
the multistation assembly process and illustrates the applica-
tion of the algorithm in finding the maximum breakdown point.
Section 5 concludes the article.

2. CALCULATING M

Given the relationship between d∗ and M, a rudimentary ex-
haustive procedure that can calculate M of a design matrix X is
to test the rank of X after removing a certain number of rows.
In fact, this is the procedure used in engineering applications to
compute the degree of redundancy d∗ (Stanley and Mah 1981;
Luong et al. 1994; Staroswiecki, Hoblos, and Aïtouche 2004).
The specific procedure is as follows, where X(−d) is the reduced
design matrix after d rows are removed:

1. Set d = 1.
2. If there exists X(−d) such that rank(X(−d)) < rank(X),

stop. The corresponding d is d∗. Then M = n − d∗.
3. d = d + 1, and return to step 2.

Using this exhaustive rank testing procedure can be computa-
tionally expensive when X is large and M is small, however.

The basic idea of our decomposition algorithm is as follows.
If a sparse X matrix can be decomposed into smaller subma-
trixes, then rank testing of the submatrixes can be done much
faster than testing on the original matrix. To an extreme, if X
comprises a set of r > 1 disjoint submatrixes, B1, . . . ,Br , as il-
lustrated in Figure 2(a), then d∗ is simply the smallest value of
the d∗’s associated with Bi for i = 1, . . . , r, and then M can be
computed accordingly. This matrix format is called a block di-
agonal form. In terms of regression, when a design matrix is in
a block diagonal form, r linear regression problems can simply
be solved separately.

Of course, a design matrix in a sparse linear regression may
not take a block diagonal form. A more common manifestation
of a structured design matrix is a bordered block diagonal form
(BBDF), as shown in Figure 2(b), where nonzero submatrixes,
Bi for i = 1, . . . , r, are called blocks and S = (S1 · · · Sr) is the

(a) (b) (c)

Figure 2. The design matrix structures. [In (c), “*” denote nonzero elements in the matrix. Elsewhere, the elements are 0s.] (a) Block diagonal
structure; (b) bordered block diagonal structure; (c) hidden block diagonal structure.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-001.png&w=93&h=74
http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-002.png&w=94&h=107
http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-003.png&w=96&h=127

CALCULATING THE BREAKDOWN POINT OF SPARSE LINEAR MODELS 37

border submatrix. The rows of S have nonzero elements in the
columns of at least two diagonal blocks. (See Aykanat, Pinar,
and Çatalyürek 2004 for more discussion on the BBDF.) In the
sequel, we refer to the rows in the border submatrix as simply
border rows. The common feature of BBDF matrixes is that
once the border rows are identified and removed, the rest of the
matrix can be decomposed into smaller disjoint submatrixes, on
which rank testing can be performed and computational effort
can be reduced.

A sparse design matrix established solely from specific ap-
plications may present a complicated appearance, such as that
shown in Figure 2(c), which looks different than a BBDF.
A sparse matrix X can be transformed into a BBDF (Aykanat,
Pinar, and Çatalyürek 2004); however, such a transformation is
not straightforward. In Section 2.1 we present a sophisticated
procedure based on graph theory devised to fulfill this trans-
formation. A nonsparse matrix also may be transformed into a
BBDF; we defer the discussion of this to Section 2.3.

As we discuss later, M cannot always be determined by
simply using the smaller submatrixes after decomposition. We
demonstrate that this can be done only when M is smaller than
a bound or, equivalently, when d∗ is known to be greater than a
bound. We show that the bound is determined by the number of
border rows and the number of blocks of X.

In light of the foregoing, we present a bound-and-decompose
algorithm. This bound-and-decompose algorithm applies the
exhaustive search algorithm until d reaches a bound. Then,
it decomposes the original matrix and also intelligently de-
cides which combination of the resulting submatrixes should be
tested to gain the greatest saving in computation. We give the
details of this bound-and-decompose algorithm in Section 2.2.

In Section 2.3 we present a transformation for possibly con-
verting a nonsparse structured matrix into a sparse one without
affecting its M value. This transformation is based on the re-
duced row echelon form (Lay 1997) of a matrix. We also dis-
cuss the conditions under which the proposed decomposition
method can provide the promised computational savings and
explore their practical implications.

Figure 3 summarizes the aforementioned procedure for find-
ing M. Note that the steps shown in the Figure 3 are associated
with the subsections in Section 2.

2.1 Graph-Based Decomposition of X Matrix

Here we present a procedure that decomposes a sparse design
matrix into blocks and border rows. In graph theory, a matrix
is typically represented by a bipartite graph. Existing methods
in graph theory, such as the algorithm of Even (1979), can help
fulfill the foregoing decomposition objective. Consequently, we
start by introducing a bipartite graph representation of the ma-
trix and the relevant graph-related concepts and methods. De-
composition based on a bipartite graph does not guarantee the
production of border rows, however; it could produce border
columns, which are not useful in the current context. For this
reason, we introduce a second graph, a row-only graph on top
of the bipartite graph, to handle this technical detail.

A bipartite graph, also called a bigraph, is a graph whose
vertexes can be partitioned into two disjoint sets, represented

Figure 3. Overview of the steps involved in calculating M.

by V+ and V−, such that no arc exists between any two ver-
texes within the same set. Given X, let Row(X) and Col(X) de-
note its row set and column set, that is, X = (xij|i ∈ Row(X), j ∈
Col(X), where xij is the (i, j) entry. A bipartite graph on X
is a graph G(V+,V−,A) with a vertex set V+ = Row(X) and
V− = Col(X) and an arc set A = {(i, j)|xij 	= 0}. By definition,
each arc has the initial vertex in Row(X) and the terminal vertex
in Col(X). Figure 4(b) shows the bipartite graph representation
of the design matrix given in Figure 4(a).

The decomposition procedure must first identify a separating
set of the bigraph. A separating set, S, is defined as the set of
vertexes if there exist two vertexes, a,b /∈ S, such that all paths
between a and b pass through at least one vertex of S (Even
1979, p. 121). Even (1979, pp. 121–129) provided a detailed
algorithm for obtaining the smallest separating set. To find bor-
der rows (not border columns), we need to restrict the final sep-
arating S to be a subset of Row(X), but directly applying the
algorithm of Even (1979) does not guarantee this.

To handle this problem, we introduce a second graph, a row-
only graph, which can be derived from the bigraph as follows:
Add a new arc between any two vertexes in Row(X) that are
connected through a vertex in Col(X), and then delete the ver-
texes in Col(X) and their associated arcs. Figure 4(c) shows the
row-only graph created from the bigraph in Figure 4(b). Then
the algorithm of Even (1979) can be applied to the row-only
graph to identify an S that is a subset of Row(X).

Once a separating set S that corresponds to the border rows is
identified, the next step is to partition the rest of the matrix into
disjoint submatrixes. Let X[I, J] denote the submatrix of X with
the row set I and the column set J, namely, X[I, J] = (xij|i ∈
I, j ∈ J); also let R = Row(X) and C = Col(X). The notation
X[R − S,C] represents the rest of the original X matrix after
removal of a separating set S. To identify each disjoint subma-
trix of X[R − S,C], the depths-first search (DFS) algorithm can
be applied to the disconnected bipartite graph G(R − S,C,Ar),
where Ar denotes the arc set {(i, j)|xij 	= 0, i /∈ S}. (For the de-
tails of the DFS algorithm, please refer to Even 1979, pp. 53–
57.)

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-004.png&w=251&h=206

38 JUNG JIN CHO, YONG CHEN, AND YU DING

(a) (b) (c)

Figure 4. A bipartite graph representation of X, where xij represents a nonzero element at ith row and jth column. (a) The design matrix;
(b) the associated bipartite graph; (c) the row-only graph.

Combining the foregoing two steps, the procedure for iden-
tifying the structure of a design matrix can be summarized as
follows:

1. For all v1, v2 ∈ Row(X) and v1 	= v2, if there exists v3 ∈
Col(X) such that v1 and v2 are connected through v3, then
create a new arc connecting v1 and v2.

2. Delete all of the nodes corresponding to Col(X) and their
associated arcs. Then we have a row-only graph with the
vertexes corresponding to Row(X).

3. Using the algorithm of Even (1979), find the smallest sep-
arating set Q1 of the row-only graph from step 2.

4. Find vc ∈ Col(X), which has the fewest number of neigh-
bors in the bipartite graph. Let Q2 ⊆ Row(X) be the set of
all of the neighbors of vc.

5. If |Q1| ≤ |Q2|, then S = Q1; otherwise, S = Q2.
6. Run DFS on G(Row(X) − S,Row(X),Ar) to find the

blocks.

In the foregoing procedure, after applying the algorithm of
Even (1979) in step 3, the resulting smallest separating set of
the row-only graph generally is also the smallest separating sub-
set of Row(X) for the original bigraph. But there can be an ex-
ception to this, as captured by steps 4 and 5. By the definition
of a bigraph, Q2, obviously a subset of Row(X), is also a sep-
arating set. Q2 could be smaller than Q1. If that were the case,

then step 5 could simply select the smaller of Q1 and Q2. It is
not difficult to prove that S in step 5 is the smallest separating
subset of Row(X) for the bipartite graph.

Consider, for example, the design matrix shown in Figure 4.
Figure 5 illustrates the foregoing procedure. First, the sixth
row is identified as the separating set, which is also the bor-
der row. After the sixth row is removed, the DFS algorithm
will decompose the rest of the bipartite graph into two dis-
connected subgraphs that represent two disjoint submatrixes,
X[{2,3,5}, {1,2,3}] and X[{1,4}, {4}], which are the blocks in
the BBDF.

In terms of permuting a sparse matrix into a bordered block
form, several research groups in parallel computing have de-
veloped other effective methods (e.g., Ferris and Horn 1998;
Aykanat, Pinar, and Çatalyürek 2004). Ferris and Horn (1998)
used a two-phase approach, which first transforms a matrix
into a format with both border rows and border columns and
then replaces the border columns with border rows using var-
ious heuristics. Aykanat, Pinar, and Çatalyürek (2004) mod-
eled the matrix using a hypergraph and decomposed the matrix
through partitioning of the corresponding hypergraph. These
approaches are quite involved, and their use requires several
inputs, such as the number of blocks and balancing criteria for
regulating relative sizes of blocks, which may not seem intu-
itive to practitioners outside the area of parallel computing. In

Figure 5. In (a), node “6” has been identified as the separating set and removed from the rest of the bipartite graph. Moving from (a) to (b)
shows the identification of blocks on the bipartite graph after removal of the separating set. In (b), xij corresponds to the matrix entry in Figure 4
but is placed at a permuted position in the resulting BBDF matrix.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-005.png&w=116&h=107
http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-006.png&w=75&h=146
http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-007.png&w=52&h=146
http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-008.jpg&w=395&h=125

CALCULATING THE BREAKDOWN POINT OF SPARSE LINEAR MODELS 39

comparison, our approach is easier to understand and simpler
to implement. It automatically identifies the structure in a ma-
trix and yields a matrix decomposition with the smallest border
size, which also can be found by the hypergraph partitioning
method when no balancing is enforced.

2.2 Finding M

Suppose that applying the foregoing decomposition pro-
cedure yielded r disconnected subgraphs (disjoint blocks).
Let the set of vertexes in V− associated with each these
subgraphs be denoted by (C1, . . . ,Cr), which correspond to
the columns for each block, and let Ri denote the nonzero
row labels of X[R,Ci]. Then we partition the original matrix
into submatrixes X[R1,C1], . . . ,X[Rr,Cr]. Note, however, that
X[R1,C1], . . . ,X[Rr,Cr] are not necessarily disjoint, because
they contain the rows from the separating set S. For exam-
ple, in Figure 4, (C1,C2) = ({4}, {1,2,3}), which can be iden-
tified directly from the partitioned bigraph in Figure 5. The
(R1,R2) = ({1,4,6}, {2,3,5,6}), which include the border row
{6}, so that R1 and R2 are not disjoint.

For submatrix testing, we can test not only a submatrix that is
an individual block, but also a submatrix that combines several
individual blocks, that is, a combination of X[Ri,Ci] for i =
1, . . . , r. Let X (k) denote a collection of submatrixes of X as

X (k) =
{

X

[⋃
i∈U

Ri,
⋃
j∈U

Cj

]
:∀U ⊆ {1,2, . . . , r} s.t. |U| = k

}
.

For a given k, there are Ck
r elements in X (k); a submatrix

X(k) ∈ X (k) is called a k-block submatrix. Obviously, the col-
lection of one-block submatrixes, X (1) (i.e., k = 1), is the
collection of matrixes X[R1,C1], . . . ,X[Rr,Cr]. The collec-
tion of r-block submatrices, X(r) (i.e., k = r), includes only
the original matrix X. For the example shown in Figure 4,
X (1) includes X[R1,C1] and X[R2,C2], and X (2) includes only
X[R1 ∪ R2,C1 ∪ C2], which is the same as X.

As implied in the definition of M, the algorithm that calcu-
lates M will compute d∗ first and then compute M as n − d∗.
The algorithm starts by testing the rank of a design matrix while
eliminating a certain number of rows from it until d, the num-
ber of eliminated rows, reaches a bound. The following theorem
(from Cho, Chen, and Ding 2007b, but rewritten in matrix nota-
tion) specifies the bound for switching. The notation d∗(X[I, J])
denotes the d∗ of submatrix X[I, J].

Theorem 1. For any k ∈ {1,2, . . . , r}, if d∗(X) ≥ k+1
k |S| − 1,

then

d∗(X) = min
U

{
d∗

(
X

[⋃
i∈U

Ri,
⋃
j∈U

Cj

])
:

U ⊆ {1,2, . . . , r} and |U| = k

}
.

Theorem 1 says that d∗(X) can be obtained from d∗’s of sub-
matrixes, provided that d∗(X) ≥ k+1

k |S| − 1. Note that Theo-
rem 1 holds for any k ∈ {1,2, . . . , r} and that the minimization
is over U. After d∗ is obtained, M is simply n − d∗.

The bound-and-decompose algorithm based on Theorem 1 is
shown in a flowchart in Figure 6.

In the flowchart, we begin with d = 1 and increase d by 1
at each iteration, with the knowledge that d∗ ≥ current d. The
dashed line in the middle divides the algorithm flow into two
segments. The first segment is for the rank testing of the origi-
nal matrix, the same as for exhaustive rank testing. The second
segment is for the rank testing of submatrixes.

Theorem 1 also suggests that the value of the bound allowing
testing of the ranks of submatrixes depends on what combina-
tions of submatrixes are to be tested, because the bound condi-
tion k+1

k |S| − 1 contains the block-combination parameter k.
When testing one-block submatrixes (i.e., k = 1), the bound
on d is d ≥ 2|S| − 1, meaning that the rank of the original
matrix should be tested until d = 2|S| − 2, after which one-
block submatrix rank-testing can be done. For testing the rank
of (r − 1)-block submatrixes (i.e., k = r − 1), the bound on d
is d ≥ r

r−1 |S| − 1, meaning the original matrix should be tested
until d = � r

r−1 |S|� − 2, where �a� is the smallest integer ≥ a,
after which (r − 1)-block submatrix testing can be done. Ev-
idently, the bound for the (r − 1)-block submatrix testing is
not greater than that for the one-block testing for any r > 2
and |S| > 1. In Theorem 1, although k takes values up to r, the
bound for r-block submatrix testing does not differ from that for
rudimentary exhaustive rank testing, because the r-block sub-
matrix is the same as the original matrix. On the other hand,
when |S| = 0 or 1, the condition stated in Theorem 1 always
holds, so one-block submatrix testing can be done without first
testing the original matrix. In other words, there is no bound
for d when |S| = 0 or |S| = 1.

As such, when a matrix decomposition results in r subma-
trixes, X[R1,C1], . . . ,X[Rr,Cr], the smallest bound on d allow-
ing for testing a submatrix is r

r−1 |S| − 1, that for the (r − 1)-
block testing. It then becomes clear that our algorithm runs
the exhaustive rank testing for d from 1 up to � r

r−1 |S|� − 2
and then switches to the submatrix testing. As d increases,
rank testing for submatrixes with smaller blocks may be al-
lowed; however, when d ≥ minj(|Rj| − |Cj|) + 1, M is simply
n − minj(|Rj| − |Cj|) − 1, precluding the need for further rank
testing. That is why we verify that d is >minj(|Rj|−|Cj|)−1 at
the beginning of each iteration. If it is not, then the operations
shown in the upper part of the flowchart are simple, including
comparing d with the bound condition and, if d is smaller than
the bound, performing the same action as for exhaustive rank
testing.

In the bottom part of the flowchart in Figure 6, for a given d,
there are multiple possibilities for rank testing of the k-block
submatrixes. The approach involving the least computation
time should be chosen. The computation time for rank testing
depends on the number of possible reduced matrixes, X(−d),
that can be generated by removing d rows from X. Let N(−d)(k)
denote the total number of reduced matrixes generated from all
of the submatrixes in X (k). For a given d, k∗ should be chosen
that minimizes N(−d)(k), namely,

k∗ = arg min
k

N(−d)(k),

and then the ranks of the resulting reduced matrixes, X(k∗)
(−d),

should be tested for X(k∗) ∈ X (k∗).
Suppose that we apply this algorithm to the simple exam-

ple shown in Figure 4, following the procedure illustrated in

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

40 JUNG JIN CHO, YONG CHEN, AND YU DING

Figure 6. Bound-and-decompose algorithm.

Figure 6. Based on the matrix decomposition described in Sec-
tion 2.1, we know that the design matrix has two blocks and one
border row, meaning that r = 2 and |S| = 1. The decomposed
submatrixes are X[R1,C1] and X[R2,C2], where R1 = {1,4,6}
and C1 = {4} and R2 = {2,3,5,6} and C2 = {1,2,3}, so that
|R1| = 3, |R2| = 4, |C1| = 1, |C2| = 3, and minj(|Rj| − |Cj|) +
1 = 2.

The algorithm starts with d = 1. Because d = 1 is less than
minj(|Rj|−|Cj|)+1, the algorithm takes the “No” branch. Then
we can verify that d = 1 is not strictly less than r

r−1 |S| − 1
(which is 1 here). Thus the algorithm takes the “No” branch
again and moves to the next step, determining k∗. Here k can
take only one of two values: 1 or 2. When k = 1, X (1) contains
two submatrixes, 3 × 1 X[R1,C1] and 4 × 3 X[R2,C2]. For d =
1 and k = 1, the total number of reduced matrixes that can be
generated from X (1) is 3+4 = 7, so N(−1)(1) = 7. When k = 2,
X (2) contains only one matrix, the 6 × 4 X[R1 ∪ R2,C1 ∪ C2],
which is the same as X. For d = 1 and k = 2, the total num-
ber of reduced matrixes that can be generated from X (2) is
6, so N(−1)(2) = 6. This gives k∗ = 2, meaning that the orig-
inal matrix X is used for the rank testing. In the next step,
six reduced submatrixes, X(−1)’s (after each one of the six
rows is removed), are tested, but none is found to be rank-
deficient; thus the algorithm takes the “No” branch, increases
d to 2, and then determines whether the new d is the same as
minj(|Rj|−|Cj|)+1. This time, it is. Thus the algorithm stops at

d = 2, implying that d∗ = 2. Subsequently, M can be computed
as M = n − d∗ = 6 − 2 = 4.

For this simple problem, we did not use the decomposed sub-
matrixes to determine M, because we tested only the case when
d = 1; in this case, whether the whole matrix or the submatrixes
are tested makes little difference. For more complicated prob-
lems involving larger values of d, matrix decomposition will
greatly benefit the computation, as shown in the example pre-
sented in Section 4.

2.3 Applicability of the Bound-and-Decompose Method

A structured matrix may not contain sufficient number of
zero elements to qualify as a sparse matrix. Consider, for ex-
ample, a structured matrix X such as

XT =
(1 1 1 1 0 0 1

1 1 0 0 1 1 1
0 0 1 1 1 1 1

)
. (7)

This X is structured, meaning that there are linearly de-
pendent rows in X, but it is not sparse. When directly ap-
plying the procedure described in Section 2.1, we end up
with rows {3,4,5,6,7} as the border rows, plus one block
X[{1,2}, {1,2}]. Apparently, this decomposition is not very
useful for the subsequent bound-and-decomposition procedure.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-009.png&w=426&h=355

CALCULATING THE BREAKDOWN POINT OF SPARSE LINEAR MODELS 41

One way to transform X into a sparse matrix without chang-
ing its M values is to use the reduced row echelon form (RREF)
of X. (See the Appendix for a definition of the RREF.) Theo-
rem 2 guarantees that using the RREF of a matrix will not alter
the value of M.

Theorem 2. Denote by W the transposed RREF of XT . Then

M(W) = M(X).

The proof of Theorem 2 necessarily involves matroid theory
(see Oxley 1992, pp. 80–81, for a proof).

Returning to the matrix in (7), we obtain WT = RREF(XT)

such as

WT =
(1 1 0 0 0 0 0.5

0 0 1 1 0 0 0.5
0 0 0 0 1 1 0.5

)
.

Then we have a sparse matrix W and can obtain a useful BBDF
for the bound-and-decomposition algorithm. (This WT itself is
in a BBDF.)

Unfortunately, the RREF of a structured matrix is not always
sufficiently sparse to confer a significant computational benefit
to the bound-and-decompose algorithm. This raises the ques-
tion of applicability or “usefulness” conditions for our method.
To have a significant computational benefit, the following con-
ditions must be satisfied:

• X or the RREF of its transpose can be transformed to
BBDF with r > 1.

• The maximum number of columns in any Bi submatrix is
much less than p.

• The number of rows in (S1 S2 · · · Sr) is much less than n.

Another question is what type of structured linear models en-
countered in practice are likely to meet these conditions. Our
experience suggests that engineering systems, especially those
comprising subsystems linked through an interconnecting ele-
ment, are likely to have a “useful” (according to the aforemen-
tioned “usefulness” conditions) BBDF design matrix. Row and
column exchange operations may be needed to permute a model
matrix with hidden bordered block structures, as shown in Fig-
ure 2(c), into an explicit BBDF; this can be done by using the
graph-based procedure described in Section 2.1. Each Bi sub-
matrix in the BBDF corresponds to the unique measurements
and of an individual subsystem, and the [S1 S2 · · · Sr] border
matrix corresponds to measurements that interconnect the sub-
systems.

The practical implications of the “usefulness” conditions are
that the number of subsystems should be more than 1, each of
the subsystems should be much smaller than the whole system,
and the number of observations in the interconnecting element
should be much lower than the total observations n. The multi-
station assembly process introduced in Section 1 is an example
of this. In that process, the sensors placed at Stations 1 and 2
can measure locator deviations only at their respective stations,
making these the subsystems, and the two sensors at Station 3
are the interconnecting elements, the measurements of which
are affected by locator deviations at all three stations. There
are a total of r = 4 subsystems, each of which is roughly one-
quarter the size of the whole system. The number of observa-
tions in the interconnecting element is 2, much smaller than
n = 26.

Other suitable applications that we have encountered include
clustered wireless sensor networks (Cho et al. 2007a) and the
state estimation problem in electrical power systems (Alvarado
and Tinney 1990; Mili, Phaniraj, and Rousseeuw 1990; Mili
and Coakley 1996). When studying a calibration problem for a
clustered sensor network, Cho et al. (2007a) found that the re-
sulting design matrix appeared to be sparse and could be trans-
formed into a useful BBDF, with the blocks corresponding to
individual sensor clusters and the border rows corresponding
to the set of the between-cluster links. For the electrical power
systems, this consists of a number of interrelated branches. The
whole system could be large, with tens or hundreds of states to
be estimated. According to Alvarado and Tinney (1990), Mili,
Phaniraj, and Rousseeuw (1990), Mili and Coakley (1996), de-
sign matrixes in their applications were very sparse, because
most of the measurements were related to only a handful of
states, and the number of nonzero elements in a design matrix
ranged from 5% to 10%. We expect that this sort of design ma-
trix can be transformed into a useful BBDF, with the blocks
corresponding to individual branches and the border rows cor-
responding to the interconnecting links.

Along with engineering models, general regression problems
also can have sparse model matrixes. Mili and Coakley (1996)
noted that “large-scale regression models” are likely to have
sparse design matrixes. To be more specific, consider a regres-
sion problem based on text data. Each predictor may correspond
to a word, with xij = 1 if the jth word occurs in the ith document
and 0 otherwise. Given a large collection of documents, if the
words appear in only a small number of documents, then the re-
sulting X matrix will be sparse. Generally, a common source of
sparseness in regression model matrixes is the inclusion of cat-
egorical variables. These categorical variables must be coded
using a set of dummy variables. For example, suppose that we
have a four-level categorical variable; that is, the variable can
take one of four permissible values. We can use the following
dummy variables to represent the four levels: (1 0 0) for level 1,
(0 1 0) for level 2, (0 0 1) for level 3, and (−1 −1 −1) for
level 4. This specific coding scheme is known as effect code in
categorical variable regression problems. If dummy variables
are used to represent the categorical variables, then the model
matrixes will contain many 0’s and thus will be sparse.

3. MORE ABOUT THE BREAKDOWN POINT
OF LTS ESTIMATION

Section 2 provides a computational procedure for the quan-
tity M, which is important for assessing the breakdown point as
well as determining the trimming parameter h for an LTS esti-
mator. When h is chosen such that hL ≤ h ≤ hU , the resulting
LTS estimator is guaranteed to attain the maximum breakdown
point ε∗

max,n in Equation (4). A question naturally follows: What
happens if an h outside the maximum breakdown range, namely
h < hL or h > hU , is used?

Because h is the number of data points used for estimation, a
higher breakdown point may be expected when using a smaller
h, and a lower breakdown point may be expected when using
a larger h. It is in fact true that using h > hU results in a lower
breakdown point than ε∗

max,n, as formally stated in theorem 5.2
of Mili and Coakley (1996).

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

42 JUNG JIN CHO, YONG CHEN, AND YU DING

Theorem 3 [From theorem 5.2 of Mili and Coakley (1996)].
An LTS estimator satisfying h ≥ hU has a breakdown point
given by (n − h + 1)/n.

When M ≈ p − 1 [then hU ≈ (n + p)/2], using h > hU is
sometimes a practical choice. From Theorem 3, the resulting
breakdown point of using h > hU can be estimated. If working
with relatively clean data with only a few outliers, then trim-
ming almost half the observations is unnecessary. Even though
using h > hU could result in a lower breakdown point, depend-
ing on circumstances, such a choice could be sound and prefer-
able. Choosing a good value of h necessarily involves other con-
siderations, including the expected frequency of outliers.

Using h < hL means that more measurements are trimmed
off. Doing this does not guarantee that the resulting LTS esti-
mator can achieve the maximum breakdown point as achieved
by using the h in the maximum breakdown range. On the other
hand, using h < hL can be beneficial when considering the pos-
sibility of breakdown of such an LTS estimator. An LTS es-
timator with h slightly smaller than hL may break down only
in the presence of outliers to the y values corresponding to a
set of “worst-case” rows of X, but this estimator still could
provide robustness to a larger number of outliers (larger than
the maximum breakdown point) falling in other rows. The set
of “worst-case” rows of X is defined as the smallest row set
whose removal will make the resulting X rank-deficient; we
give an example of this later. If the likelihood of outliers falling
in the “worst-case” row is small (as might be expected when
M � p − 1), then in practice settings, using a smaller h could
provide better overall robustness than using hL ≤ h ≤ hU .

To illustrate this, consider a design matrix with dimension
100 × 3 (namely n = 100;p = 3),

XT =
(1 1 · · · 1 0 0 0

1 2 · · · 97 0 0 0
0 0 · · · 0 1 1 1

)
. (8)

Given this matrix’s relatively simple structure, it is straightfor-
ward to determine that M = 97, hU = hL = 99, and ε∗

max,n =
2/100. Thus the maximum breakdown choice of h is 99, mean-
ing that the LTS estimator with h = 99 can tolerate one out-
lier regardless of the row in which the outlier occurs. But this
LTS estimator will always break down when more than one out-
lier exists. Suppose that we use h = 98, a value smaller than
hL. Even though two measurements are trimmed off, the LTS
still could break down with the presence of two outliers. Re-
call that, intuitively, the robust estimation mechanism involves
using most of the observations to protect against the effects
of outliers. Bearing this in mind, it is not difficult to see that
the LTS estimator with h = 98 has a high likelihood of break-
ing down only when both outliers occur in rows {98,99,100},
whereas the LTS estimator will not break down when the two
outliers occur in rows {1, . . . ,97} and is much less likely to
break down when one outlier occurs in rows {1, . . . ,97} and the
other occurs in rows {98,99,100}. For this reason, we call rows
{98,99,100} the “worst-case” rows. This is consistent with the
definition of “worst-case” rows, because {98,99,100} is the
smallest row set whose removal from X will cause X to be sin-
gular. If we assume that the outlier(s) can occur independently
of all of the rows with equal probability, then the likelihood
of both outliers occurring in rows {98,99,100} is rather small,

meaning that the LTS estimator with h = 98 has a low likeli-
hood of breakdown.

Using the LTS estimator with h = 98 entails an additional
risk for not being able to tolerate a single outlier, a problem not
posed by the LTS estimator using the maximum breakdown h.
To see this, suppose that y98 is an outlier; then trimming off
y99 and y100 and setting β̂3 = y98 will always lead to an exact
fit of y3, while producing good fits of the other observations.
Thus, if y98 is a single outlier and h = 98, then it is possible
that {99,100} will be trimmed off, causing a breakdown. But
again, the likelihood of this is rather low, especially when n is
large.

To get a more quantitative sense of the likelihood of break-
downs as mentioned earlier, we ran a simulation using an LTS
estimation with h = 98 and the matrix in (8). We used β =
[0 0 0]T with a set of n random errors following N(0, 1)
to generate y, and added a large magnitude of 15 to y98 as the
outlier. We performed 10,000 LTS regressions by using h = 98.
The percentage of trimming off rows 99 and 100 (i.e., y98 stays
and the LTS estimator breaks down) was 1.0%. Furthermore,
keeping the first outlier at row 98, we added the second outlier
at a randomly chosen row. Out of 10,000 simulations, 224 runs
had the second outlier in the last two rows (either y99 or y100),
and 9,776 runs had the second outlier in the first 97 rows. When
the second outlier was in the last two rows, the likelihood of re-
taining both outliers (namely the good observation among the
last three rows is trimmed off) was 98.2%. But when the second
outlier was not in the last two rows, both outliers were always
correctly trimmed off in the simulations. Overall, the likeli-
hood of including both outliers (so the estimation breaks down)
was 2.2%. This relatively low overall percentage suggests that
the LTS estimation using h = 98 provides fairly robust estima-
tion for the matrix X in (8). In general, for a case with a good
possibility that more than n − hL outliers are present, one cer-
tainly should not be bound by the maximum breakdown h when
choosing the trimming parameter; a smaller h could confer an
extra degree of robustness.

4. REVISIT THE ASSEMBLY PROCESS EXAMPLE

The Design Matrix

Here we revisit the assembly example in Figure 1 and use it
as an illustrative example. The design matrix X for this system
is shown in Figure 7.

Calculating M

First, we use the bigraph-based method to transform X into a
BBDF. For the X in Figure 7, R = Row(X) = {1,2, . . . ,26} and
C = Col(X) = {1,2, . . . ,12}. Using the bipartite graph proce-
dure described in Section 2.1, we find that S = {10,14}. Then
we remove S and decompose the reduced bipartite graph as-
sociated with X[R − S,C]. Finally, we obtain C1 = {1,2,3},
C2 = {4,5,6}, C3 = {7,8,9}, and C4 = {10,11,12}. Hence,
r = 4 and r

r−1 |S| = 2.67.
Second, we use the decomposition algorithm given in Sec-

tion 2.2 to find M; the computation procedure is illustrated in
Figure 8. Given r

r−1 |S| = 2.67, the bound on d that allows us

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

CALCULATING THE BREAKDOWN POINT OF SPARSE LINEAR MODELS 43

Figure 7. The design matrix of the multistation assembly process. The numbers outside the bracket on the right are the row numbers.

to switch to submatrix testing is � r
r−1 |S|� − 1 = 2. Thus we run

the rank testing on X for d = 1, and because X(−1) is of full
column rank, we conclude that M < 25. Starting with d = 2,

we can test the k-block submatrixes. When d = 2, we may test
the 2-block, 3-block, and 4-block submatrixes, and it turns out
that N(−2)(4) is the smallest of the three alternatives. From Fig-

Figure 8. Execution of the decomposition algorithm for the multistation assembly example.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-010.png&w=334&h=298
http://pubs.amstat.org/action/showImage?doi=10.1198/TECH.2009.0004&iName=master.img-011.jpg&w=405&h=284

44 JUNG JIN CHO, YONG CHEN, AND YU DING

Table 1. Computation time for M by exhaustive search and bound & decomposition

Design matrix Computation time

Dimension |S| r M Exhaustive search Bound & decompose

26 × 12 2 4 21 8 sec 0.1 sec
67 × 24 3 8 59 >120 h 6.1 min
222 × 55 2 11 207 >120 h 16.5 min
1009 × 252 1 41 993 >120 h 38.2 min

ure 8, N(−2)(2) = 6 × C2
14 = 546, N(−2)(3) = 4 × C2

20 = 760,
and N(−2)(4) = C2

26 = 325. Thus k∗ = 4 for d = 2, and we test
the ranks of X(−2). Again, we find that M < 24. We repeat the
procedure for d = 3,4,5. In those cases, k∗ = 1. Eventually, we
test the ranks of submatrixes X(1)

(−5) for X(1) ∈ X (1) and find that
d∗ = 5, so M = 21.

The computational path is highlighted by the solid arrows in
Figure 8, where the dashed line indicates other possible alterna-
tives. Adding the numbers on the solid arrows gives the number
of the maximum iterations used by the algorithm: 1079. In com-
parison, had we used the exhaustive rank testing on X entirely,
then the iteration number could have been as large as 83,681,
which actually equals the total of the numbers of the right-
most arrows. The algorithm, coded in MATLAB, goes through
904 actual iterations in 0.1 second, whereas the exhaustive rank
testing takes 8 seconds to complete 45,565 actual iterations.
A larger X can result in greater potential savings. We also cre-
ated larger systems with design matrixes 67 × 24, 222 × 55,
and 1009 × 252. The computational results are summarized in
Table 1, where “>120 hours” is reported for the three large sys-
tems, because we manually stopped the exhaustive rank testing
procedure when it had run for 120 hours (i.e., 5 days).

The LTS Estimator

Using the assembly process (n = 26, p = 12, and M = 21),
we illustrate the robustness of an LTS estimator with dif-
ferent trimming parameters in the presence of outlier(s). We
show the performance only in the “worst-case” application.
In this application, we identify a set of “worst-case” rows as
{13,20,21,25,26} because this is one of the smallest row
sets whose removal will cause the design matrix to be rank-
deficient. In what follows, the outliers are added to the rows
selected from this “worst-case” row set.

We include three choices for the trimming parameter:

1. Given M = 21, we have hL = hU = 24, so that the h
recommended by Mili and Coakley (1996) is 24. This
suggests that the LTS with h = 24 can tolerate up to
n · εmax,n = 2 outliers.

2. The trimming parameter using the formula of Rousseeuw
(1984), which is designed for the general position, is h =
[n/2] + [p/2] = 19.

3. We also choose h = 22 as an intermediate value.

We simulated K = 1000 observations using the following para-
meters: e and β generated following a normal distribution with
mean 0 and standard deviation 0.1, and an outlier simulated by
adding a large value of magnitude 50 to the y value correspond-
ing to a fixed row.

We consider the scenarios of zero, one, two, and three out-
liers. Outliers were added to the following rows: y26 for one
outlier, {y25, y26} for two outliers, and {y13, y25, y26} for three
outliers.

We wished to determine how often an LTS estimator broke
down, with a breakdown counted when at least one outlier was
not trimmed off correctly. We also computed the mean squared
error (MSE) as follows:

MSE = 1

K

K∑
t=1

(β t − β̂ t)
T(β t − β̂ t).

Table 2 summarizes the number of breakdowns and the corre-
sponding MSE values, given different h’s and numbers of out-
liers.

Table 2 shows that the LTS (h = 24) never breaks down
when the number of outliers is less than or equal to two, but al-
ways breaks down when there are more than two outliers. This
is as expected based on the theoretical results given by Mili
and Coakley (1996). The likelihood of breakdown of the LTS
(h = 19 or h = 22) is not high when only one outlier is present,
but it increases substantially when two outliers are present (10%
to 20%). Bear in mind that the outliers are added to the “worst-
case” rows in this study. Had we added the outliers randomly,
fewer breakdowns would be expected. When there are more
than two outliers, the LTS with h < hL outperforms the LTS
(h = 24) by breaking down far fewer times, but in this case,
the LTS (h = 19) does not perform as well as the LTS (h = 22)
under all scenarios.

The absolute magnitude of the MSEs is not very significant,
because the large MSE values given in Table 2 are clearly a
result of using outliers of large magnitude. Note that the values
in parentheses after an MSE value represent the MSE when no
breakdown occurs and the MSE when breakdown does occur;
for example, 648.6 (1.27, 3,143) indicates that the MSE for LTS
(h = 19) with the presence of two outliers is 648.6, whereas the
MSE for the 794 instances when no breakdown occurs is 1.27,
and the MSE for the 206 instances when breakdown does occur
is 3,143.

In the absence of outliers, an LS estimator outperforms an
LTS estimator because the latter uses only a subset of sensor
measurements, so that its efficiency suffers. With the presence
of outliers, the increase in MSE value depends on how often
an estimator breaks down, how many outliers are included in
the resulting estimators, and how many “good” observations
are trimmed off. With no breakdown at one and two outliers,
the LTS (h = 24) produces an MSE comparable to that of no
outlier, whereas the MSEs of the other estimators increase sub-
stantially.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

CALCULATING THE BREAKDOWN POINT OF SPARSE LINEAR MODELS 45

Table 2. Number of breakdowns and MSEs of LS estimator and LTS (h = 19,22,24) estimators. The number in parentheses after the number
of breakdowns represent how many times an LTS estimator includes one, two, or three outliers; for example, 281 (151, 130, 0) indicates 281
total breakdowns, 151 including only one outlier, 130 including two outliers, and 0 including three outliers. The value in parentheses after the
MSE value represents the MSE when there is no breakdown and when there is breakdown; for example, 648.6 (1.27, 3,143) indicates that the

MSE for LTS (h = 19) with the presence of two outliers is 648.6, the MSE for the 794 instances when no breakdown occurred is 1.27,
and the MSE for the 206 instances when breakdown occurred is 3,143

Number of outliers LS LTS (h = 19) LTS (h = 22) LTS (h = 24)

0 # breakdowns 0 0 0 0
MSE 0.048 0.872 0.241 0.097

1 # breakdowns 1000 25 4 0
MSE 588.9 205.0 (0.481, 8,182) 23.40 (0.275, 5,780) 0.106

2 # breakdowns 1000 206 (199, 7) 95 (94, 1) 0
MSE 1164 648.6 (1.27, 3,143) 240.2 (1.01, 2519) 0.210

3 # breakdowns 1000 281 (151, 130, 0) 125 (64, 61, 0) 1000 (1000, 0, 0)
MSE 3,123 1.86 × 105 (1.63, 6.63 × 105) 6.89 × 104 (1.59, 5.51 × 105) 1197

With the presence of three outliers, the MSE of LTS estima-
tor h = 19 or h = 22 is larger than that of LTS estimator h = 24.
This difference is rooted in the manner in which the outliers, as
well as the good observations, are trimmed. With h < hL (as is
the case for h = 22 and h = 19), the trimming occurs in a highly
unpredictable fashion. Depending on what is trimmed and what
remains, certain fits can have a very large sum of squared errors
(SSE), because the outliers dominate the fit. For example, in
one of the runs in which rows {12, 21, 25, 26} are trimmed, the
resulting SSE of the fit is 3.87×106; however, in another run in
which rows {12, 13, 21, 25} are trimmed, the resulting SSE is
6.04 × 103. As such, those trimmings resulting in a very large
SSE eventually contribute to the high MSE value. When h = 24,
the situation is different. With h in the maximum breakdown
range, LTS is able to always trim off two (out of three) outliers
without removing any good observations. For all of the simula-
tion runs, LTS produces consistent fits with SSEs on the order
of 103. The action of trimming off good observations while re-
taining outliers produces an undesirable escalation in MSE val-
ues, so that the LTS with h = 19 or h = 22 produces an even
greater MSE than the LS estimator with three outliers; the LS
estimator can be considered as an LTS with h = 26, but, on the
other hand, does not trim off any “good” observations.

5. CONCLUSION

In this articles we have presented an efficient algorithm for
computing the maximum breakdown point for sparse linear re-
gressions. The output of the algorithm can aid assessment of the
robustness level of a regression estimator and guide the choice
of trimming parameter to use in the LTS estimator. We expect
that our methods will be useful in regression problems involv-
ing categorical variables or engineering systems consisting of
many interconnected subsystems.

Through our research, we also have discovered that even
though the trimming parameter chosen from the maximum
breakdown range can guarantee the promised robustness in es-
timation, using a trimming parameter lying outside that range
can have a benefit as well. In particular, using a smaller trim-
ming parameter can confer an extra degree of robustness in
cases when a breakdown is not likely.

A natural follow-up to the present analysis is to investigate
how the design can be improved to increase the breakdown
point. We believe that the relationships between the potential
design variables and the breakdown point are not straightfor-
ward. Sophisticated optimization algorithms need to be devised
for this purpose. On the other hand, the following intuition from
our understanding may be useful for design. A design matrix
with balanced block sizes will be beneficial, because a very
small block will keep the breakdown point low for the whole
system even if the other blocks are large. Because block size is
related to the size of subsystems in physical settings, this sug-
gests that designing size-balanced subsystems will benefit the
system’s estimation robustness.

ACKNOWLEDGMENTS

Financial support was provided by National Science Foun-
dation Grants CMMI-0348150, CMMI-0528735, and CMMI-
0726939/0727305. The authors thank the editors and the refer-
ees for their valuable comments and suggestions.

APPENDIX: DEFINITION OF RREF (LAY 1997)

A matrix is in RREF if it satisfies the following requirements:

• All nonzero rows are above any rows of all 0’s.
• The leading coefficient of a row is always to the right of

the leading coefficient of the row above it.
• All leading coefficients are 1.
• All entries above a leading coefficient in the same column

are 0.

A matrix can be reduced to RREF using elementary row opera-
tions.

[Received June 2006. Revised August 2008.]

REFERENCES

Alvarado, F. L., and Tinney, W. F. (1990), “State Estimation Using Augmented
Blocked Matrices,” IEEE Transactions on Power Systems, 5, 911–921.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

46 JUNG JIN CHO, YONG CHEN, AND YU DING

Aykanat, C., Pinar, A., and Çatalyürek, Ü. V. (2004), “Permuting Sparse Rec-
tangular Matrices Into Block-Diagonal Form,” SIAM Journal on Science
Computing, 25, 1860–1879.

Cho, J., Ding, Y., Chen, Y., and Tang, J. (2007a), “Robust Calibration for Local-
ization in Clustered Wireless Sensor Networks,” in Proceedings of the 2007
IEEE Conference on Automation Science and Engineering, Scottsdale, AZ.

Cho, J. J., Chen, Y., and Ding, Y. (2007b), “On the (Co)Girth of Connected
Matroids,” Discrete Applied Mathematics, 155, 2456–2470.

Coakley, C. W., and Mili, L. (1993), “Exact Fit Points Under Simple Regression
With Replication,” Statistics & Probability Letters, 17, 265–271.

Davies, P. L. (1993), “Aspects of Robust Linear Regression,” Annals of Statis-
tics, 21, 1843–1899.

Donoho, D. L., and Huber, P. J. (1983), “The Notion of Breakdown Point,” in
A Festschrift for Erich L. Lehman, eds. P. Bickel, K. Doksum, and J. L.
Hodeges Jr., Belmont, CA: Wadsworth, pp. 157–184.

Even, S. (1979), Graph Algorithms, Potomac, MD: Computer Science Press.
Ferris, M. C., and Horn, J. D. (1998), “Partitioning Mathematical Programs for

Parallel Solution,” Mathematical Programming, 80, 35–61.
Jin, J., and Shi, J. (1999), “State–Space Modeling of Sheet Metal Assembly

for Dimensional Control,” ASME Transactions, Journal of Manufacturing
Science and Engineering, 121 (4), 756–762.

Lay, D. C. (1997), Linear Algebra and Its Applications, New York: Addison-
Wesley.

Luong, M., Maquin, D., Huynh, C. T., and Ragot, J. (1994), “Observability,
Redundancy, Reliability and Integrated Design of Measurement Systems,”
in Proceedings of 2nd IFAC Symposium on Intelligent Components and In-
struments for Control Applications, SICICA’94, Budapest, Hungary.

Mili, L., and Coakley, C. W. (1996), “Robust Estimation in Structured Linear
Regression,” Annals of Statistics, 24, 2593–2607.

Mili, L., Phaniraj, V., and Rousseeuw, P. (1990), “High Breakdown Point Es-
timation in Electric Power Systems,” in Proceedings of the 1990 IEEE In-
ternational Symposium on Circuits and Systems, Vol. 3, New Orleans, LA:
IEEE, pp. 1843–1846.

Oxley, J. G. (1992), Matroid Theory, New York: Oxford University Press.
Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal of the

American Statistical Association, 79, 871–880.
Stanley, G. M., and Mah, R. S. H. (1981), “Observability and Redundancy in

Process Data Estimation,” Chemical Engineering Science, 36, 259–272.
Staroswiecki, M., Hoblos, G., and Aïtouche, A. (2004), “Sensor Network De-

sign for Fault Tolerant Estimation,” International Journal of Adaptive Con-
trol and Signal Processing, 18, 55–72.

Vardy, A. (1997), “The Intractability of Computing the Minimum Distance of a
Code,” IEEE Transactions on Information Theory, 43, 1757–1766.

Wilcox, R. R. (2005), Introduction to Robust Estimation and Hypothesis Test-
ing, San Diego, CA: Academic Press.

TECHNOMETRICS, FEBRUARY 2009, VOL. 51, NO. 1

	Introduction
	Calculating M
	Graph-Based Decomposition of X Matrix
	Finding M
	Applicability of the Bound-and-Decompose Method

	More About the Breakdown Point of LTS Estimation
	Revisit the Assembly Process Example
	The Design Matrix
	Calculating M
	The LTS Estimator

	Conclusion
	Acknowledgments
	Appendix: Definition of RREF (Lay 1997)
	References

