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Recent advances in sensor technology now allow manufacturers to distribute multiple sensors in multi-station assembly processes. A
distributed sensor system enables the continual monitoring of manufactured products and greatly facilitates the determination of the
underlying process variation sources that cause product quality defects. This paper addresses the problem of optimally distributing
sensors in a multi-station assembly process to achieve a maximal variance detection capability. A sensitivity index is proposed for
characterizing the detection ability of process variance components and the optimization problem for sensor distribution is formulated
for a multi-station assembly process. A data-mining-guided evolutionary method is devised to solve this non-linear optimization
problem. The data-mining-guided method demonstrates a considerable improvement compared to the existing alternatives. Guidance
on practical issues such as the interpretation of the rules generated by the data mining method and how many sensors are required
are also provided.

Keywords: Multi-station assembly process, sensitivity, data mining, evolutionary algorithms

1. Introduction

Variation propagation is a common phenomenon in a pro-
duction system and profoundly affects the quality control
practice in a multi-station manufacturing process (Ceglarek
and Shi, 1995). Establishing sound quality assurance strate-
gies hinges upon how well one can observe changes of vari-
ation in the multi-station manufacturing processes. Recent
innovations in sensor technology provide manufacturers
the ability to deploy automated sensing devices at mul-
tiple stations along the production line for tracking the
variation level of a product. A major challenge is where
in the production process to distribute these sensing de-
vices so as to achieve the maximum detection capabil-
ity of variation contributors at an affordable sensor cost.
The complex interaction between various constraint factors
and operational alternatives makes the solution far from
trivial.

Research studies on sensor distribution in discrete manu-
facturing processes were surveyed in Mandroli et al. (2006).
Relevant research efforts can be classified into two cate-
gories: (i) inspection-oriented quality assurance strategies;
and (ii) diagnosis-oriented sensor-distribution strategies.
The goal of an inspection-oriented strategy is to optimally
allocate inspection resources by considering trade-offs of
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various cost components associated with inspection, repair
and scraping due to product defects, and warranty penalties
for the case where defective products have been shipped to
customers. Inspection-oriented strategies do improve the
quality of products customers eventually receive but do
nothing to the underlying manufacturing process to stop
it producing defective products. Diagnosis-oriented sensor
distribution strategies, on the other hand, focus on iden-
tifying as well as eliminating the root causes of product
defects. To establish such strategies, people usually assume
that a set of underlying yet unknown variables (e.g., fixture
errors in assembly processes) is responsible for the prod-
uct quality defects. Since the underlying variables are not
directly observable, statistical inferences have to be made
about them from sensory information in order to deter-
mine which underlying variables cause the product defects.
Therefore, the goal in a diagnosis-oriented strategy is to
find a deployment of sensors such that the root causes of
product defects are identifiable in a certain optimal sense.
This paper intends to address a diagnosis-oriented sensor
distribution strategy.

From the survey made by Mandroli et al. (2006), es-
pecially Tables 5 and 6 therein, it is clear that research
on sensor placement distribution in multi-station systems
is relatively limited; by comparison the majority of work
on sensor placement has focused on a single-station set-
ting (Mandroli et al., 2006). The following is a quick recap
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Sensor distribution in multi-station systems 805

of the relevant literature related to sensor distribution in a
multi-station process. We will review previous work accord-
ing to different performance measures of a sensor system.
Primarily three performance measures have been reported
in the literature: (i) minimum distance between variation
patterns; (ii) diagnosability; and (iii) sensitivity.

Ceglarek and Shi (1996) have developed a pattern match-
ing procedure for variation diagnosis. Based on the varia-
tion patterns, researchers tried to maximize the minimum
distance among different patterns. Using this performance
measure, Khan et al. (1998) studied “end-of-line sensing,”
where the sensing station is located at the end of a manu-
facturing system but variation sources include those from
upstream stations. Khan and Ceglarek (2000) studied “dis-
tributed sensing,” which allows sensors to be placed at
any station. Their methodology is based on a single-fixture
model and thus does not consider interaction effects of vari-
ation sources between stations. However, such interaction
effects between stations are actually the reason causing the
additional complexity in multi-station manufacturing pro-
cesses and thus should be considered. Recently, researchers
developed a recursive station-indexed state space model to
capture the complicated phenomenon of variation prop-
agation in a multi-station process and this technique has
been successfully applied to assembly processes (Jin and
Shi, 1999; Ding et al., 2000; Camelio et al., 2003) as well as
machining processes (Djurdjanovic and Ni, 2003; Huang
et al., 2003; Zhou et al., 2003).

Based on a state space variation model, Ding et al. (2003)
presented a sensor distribution strategy in a multi-station
assembly process to guarantee a full diagnosability, where
all the variation sources can be uniquely identified by the
resulting sensor system. The diagnosability condition is es-
sentially to make the corresponding diagnosability matrix
non-singular but it does not regulate how well-conditioned
a diagnosability matrix should be, or equivalently, how
large should be the eigenvalues of a diagnosability matrix.
When a sensor distribution strategy achieves full diagnos-
ability, it means that any change in the underlying pro-
cess variation will produce a difference in the sensor out-
puts so that such a change can theoretically be detected.
However, in reality, the change in sensor readings could
be very small and therefore easily overwhelmed by back-
ground disturbances, thereby becoming not useful for diag-
nosis purposes. For example, for a fully diagnosable system
with no other requirements, one unit change in the vari-
ance of variation sources might only result in a 0.01 unit
change in the variance of sensor measurements. Moreover,
using the diagnosability criterion alone, as in Ding et al.
(2003), does not differentiate between diagnosable systems
in terms of their capability to detect small changes in vari-
ation sources. Using the diagnosability criterion, the diag-
nosable system in the above example is no different from an-
other diagnosable system that can produce a 10-unit change
in sensor readings for every unit change in the variation
sources.

Another often used criterion for sensor placement is the
sensitivity of a sensor system (Wang and Nagarkar, 1999;
Camelio et al., 2005; Liu et al., 2005) – we will present the
formal definition of the sensitivity in Section 2. Intuitively,
the sensitivity is related to the detection capability of a
sensor system. Mathematically, it regulates the eigenvalues
of a diagnosability matrix to make sure that a change in
the underlying process will produce a large enough change
in sensor readings. Liu et al. (2005) discussed the mathe-
matical relationship between diagnosability and sensitivity,
and stated that “a sensor system that has zero sensitivity to
any one of the variation sources provides no diagnosability,
whereas a sensor system with non-zero sensitivity to all vari-
ation sources possesses a certain level of diagnosability.” In
summary, optimizing the sensitivity criterion will lead to
a maximized detection capability for a sensor system and
ensure a maximum separation of variation sources. The
objective of this paper is to study the sensitivity measure
of a distributed sensor system in a multi-station assembly
process and devise an algorithm that efficiently solves the
corresponding optimization problem.

The aforementioned work using the sensivity criterion
(Wang and Nagarkar, 1999; Camelio et al., 2005; Liu et al.,
2005) was conducted primarily under a single-station set-
ting. This is not surprising because solving the sensor distri-
bution problem for a multi-station system is generally more
difficult, a point argued previously in Ding et al. (2006) and
Mandroli et al. (2006). Unlike the sensor distribution prob-
lem on single-station systems, each sensor in our problem
could be installed at any location of any part at any station.
As a result, the pool of candidate sensor locations is much
larger. The sensitivity measure is a non-linear function of
the sensor locations and is accompanied by complicated
geometric constraints (which typically come from the parts
or subassemblies that the sensors are meant to measure).
According to our experience, the sensitivity measure may
not be continuous over the design space. This is because
when a sensor location is changed from one station to an-
other station or from a part to another part, the value of
the sensitivity measure could have a point of discontinuity.

Given the relationship between the diagnosability and
sensitivity measures, one may wonder if we could integrate
the strategy in Ding et al. (2003) and a single-station sensor
placement algorithm to solve our sensor distribution prob-
lem. The procedure might go as follows. First use the ap-
proach in Ding et al. (2003) to determine on which stations
to distribute sensors in order to achieve full diagnosabil-
ity. Then, optimize the sensor locations within individual
stations to maximize the sensitivity measure. The problem
with this two-step procedure is that solving an optimiza-
tion problem in two suboptimal steps typically does not
produce an optimal or nearly optimal result. As will be
shown in Section 4 for a three-station example, doing so
could incorrectly filter out some promising solution regions
and eventually lead to a solution that is much worse than
solving the optimization problem in an integrated manner.
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806 Ren and Ding

Fig. 1. Illustrative example: a multi-station assembly process.

Thus, this paper solves the sensor distribution problem
using a single optimization formulation. The solution ap-
proach we undertake is a data-mining-guided evolution-
ary approach, following a general idea initially proposed
in Michalski (2000). This data-mining-guided method has
two ingredients: a data-mining procedure that predicts the
subregions where a “good” sensor location could be and an
evolutionary procedure that diversifies, and thus enhances
the quality of, the samples to be used for the data mining
and prediction purposes. Our results demonstrate that this
approach can handle the non-linear optimization problem
for sensor distribution very well and that it can find a better
solution in shorter time as compared with the procedures
using a data-mining approach or an evolutionary approach
alone.

Following this introduction, we unfold our investigation
as follows. Section 2 presents the problem formulation and
discusses the design criterion. Section 3 explains the gen-
eral idea of the proposed approach to solve the optimal
sensor distribution problem, and also presents the details
for realizing the data-mining guided approach. Section 4
implements the proposed method and investigates its per-
formance. Section 5 concludes the paper.

2. Formulation of the sensor distribution problem

Consider as an example the three-station two-dimensional
(2-D) assembly process in Fig. 1. The three-station assem-
bly process proceeds as follows: (i) at the first station, part
1 and part 2 are assembled; (ii) at the second station, the
subassembly consisting of parts 1 and 2 receives part 3 and
part 4; and (iii) at the third station, no assembly operation is
performed but the key dimensional features of the final as-
sembly are measured. The quality assurance objective here
is about the dimensional integrity of the assembly prod-
uct. Optical coordinate sensors M1 to M5 are distributed
throughout the assembly process to monitor the dimen-
sional quality of the final assembly and/or of the interme-
diate subassemblies. The major variation sources in such a
process are associated with the fixture locators on different
stations – as shown in Fig. 1, each part or subassembly is
held by a set of fixtures, which consists of a four-way pin
P1 that constrains the part motion in both the x and the z
directions, and a two-way pin P2 that constrains the part
motion in the z-direction. An optimal sensor distribution
should be able to identify these fixturing variation sources
uniquely and accurately.
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Sensor distribution in multi-station systems 807

In order to calculate the sensitivity index, we first need
to have the relationship between the fixturing variation and
the sensor measurements in a multi-station assembly pro-
cess. This relation is in fact represented using a station-
indexed state space model. The detailed model develop-
ment was reported in Ding et al. (2002). We just summarize
the results that will be used in this paper. For a multi-station
assembly process, the state space model can be expressed
as

xk−1 = Akxk + Bkuk + ξk,

yk−1 = Ckxk + ηk, (1)

where k ∈ 1, 2, . . . , N is the station index, and N is the
number of stations. The state vector xk and input vector
uk are the product accumulated deviations and the fixture
deviation on station k. The process disturbances and sen-
sor noises are denoted by ξk and ηk, respectively. Product
measurements at station k are included in yk. In Figure 1,
for instance, y3 comprises the deviations measured by sen-
sors M3 to M5. The Ak is the state transition matrix which
links the part deviation states on adjacent stations, Bk is the
input matrix which represents the effect from the fixture de-
viations and Ck is the observation matrix corresponding to
the number and locations of sensors.

By eliminating the intermediate state variables and aggre-
gating the information associated with individual stations,
Equation (1) could be further formulated into an input–
output relation as

y = � × u + �0 × x0 + ε. (2)

where yT ≡ [yT
1 yT

2 . . . yT
N], uT ≡ [uT

1 uT
2 . . . uT

N], εT ≡ [εT
1

εT
2 . . . εT

N], εk ≡ �k
i=1Ck�k,iξ i + ηk, �k,i ≡ Ak−1Ak−2· · · Ai ,

and

� ≡

⎡
⎢⎢⎢⎣

C1B1 0 · · · 0
C2�2,1B1 C2B2 · · · 0

...
...

. . .
...

CN�N,1B1 CN�N,2B2 · · · CNBN

⎤
⎥⎥⎥⎦ ,

�0 ≡

⎡
⎢⎢⎢⎣

C1�1,0

C2�2,0
...

CN�N,0

⎤
⎥⎥⎥⎦ . (3)

Our goal is to detect the variance change in the variation
sources u. For that purpose, we transform model (2) into a
variation model. We assume that the product deviation x0,
the fixture deviation u and the noise term ε are independent,
and we have

�y = � × �u × �T + �0 × �x0
× �T

0 + �ε. (4)

Note that �u is a diagonal matrix since the fixture devia-
tions are physically uncorrelated. As such, diag(�u) is the
vector of the variances of variation sources. For the sake of
notational simplicity, we use σ to represent diag(�u) in the

following discussions. The following simplification follows
what was done in Ding et al. (2002) and Ding et al. (2003).
Consider that �x0

is known from measurements at the end
of the precedent fabrication process and that �ε can be esti-
mated using data from a normal process condition when no
outstanding fixture deviation occurs, then a new covariance
matrix is introduced as �̃y = �y − �0 × �x0

× �T
0 − �ε to

summarize the known quantities. Then Equation (4) can
be rewritten as

�̃y = � × �u × �T. (5)

Using the π (·)-transform introduced in Ding et al. (2002),
Equation (5) can be expressed as

vec(�̃y) = π(�) × diag(�u) = π(�) × σ , (6)

where vec(·) is the vector operator (Schott, 1997), π (·) is a
matrix transform defined as

π (�) = [(τ 1 ⊗ τ 1)T · · · (τ 1 ⊗ τ n)T · · · (τ n ⊗ τ 1)T · · ·
(τ n ⊗ τ n)T]T, (7)

τ j is the jth row of �, j = 1, . . . , n, and ⊗ represents the
Hadamard product (Schott, 1997).

The diagnosability criterion used in Ding et al. (2003) en-
sures that π (�) is full rank so that the variance components
in σ are uniquely identifiable. Under a single-station setting,
Liu et al. (2005) defined the variance-detecting sensitivity
as the ratio of the change in the variance of measurements
over a perturbation of the variance components in σ , that
is to say

S ≡ min
δσ �=0

tr(δ�̃
T
y δ�̃y)

(δσ )T(δσ )
= min

δσ �=0

vec(δ�̃y)T × vec(δ�̃y)

(δσ )T(δσ )
, (8)

where δ denotes the perturbation operator. Using Equa-
tion (6) and the eigenvalue property of a symmetric matrix
(Schott, 1997, Theorem 3.16, pp. 105), it is easy to show
that:

S = λmin(π (�)Tπ (�)), (9)

where λmin(·) is the smallest eigenvalue of a matrix. It is now
clear that the variance-detecting sensitivity actually belongs
to the family of the so-called alphabetic optimality criteria
in the optimal experiment design, including A-optimality,
D-optimality, and E-optimality, which were defined using
an algebraic form of the eigenvalues of the Fisher informa-
tion matrix (Pukelsheim, 1993). Here, π (�)Tπ (�) is actually
the Fisher information matrix for detecting the variance
components and this index S is in fact the E-optimality
criterion. Liu et al. (2005) further stated that maximizing S
is also equivalent to minimizing the maximum variance of
a linear parametric function of the variation components
to be estimated.

Apparently, the sensitivity index defined in Equation (8)
is quite general and is not limited to a single station pro-
cess. We therefore adopt this E-optimality sensitivity index
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808 Ren and Ding

as the design criterion for our multi-station assembly prob-
lem. Then, our optimal sensor distribution problem is to
maximize the sensitivity index in Equation (9), i.e., max-
imize the smallest eigenvalue associated with the Fisher
information matrix π (�)Tπ (�).

To formulate this optimization problem, denote by s the
number of sensors, by Xi , Yi and Zi the coordinates of
where the ith sensor is located and by Ti the station on
which the ith sensor is placed. Then, the design of the sensor
distribution can be represented by w = [X1 Y1 Z1 T1. . . Xs
Ys Zs Ts ]. The geometric constraint (since a sensor can
only measure some valid area on a product) is represented
by G(w) ≥ 0. As such, the sensor distribution problem for
a specified number of sensors is to find the optimal sensor
locations that maximize S, namely:

max
w

S(w) ≡ λmin(π (�)Tπ (�)),

subject toG(w) ≥ 0. (10)

Several optimization methods have been applied to solve
the sensor distribution problem; please refer to Table 6
in Mandroli et al. (2006) for the applications of spe-
cific algorithms. These optimization methods include non-
linear programming methods such as sequential quadratic
programming (Khan et al., 1999), exchange algorithms
(Camelio et al., 2005; Liu et al., 2005) and Genetic Algo-
rithms (GAs) (Djurdjanovic and Ni, 2004). Recently, data-
mining methods have also been used to solve optimization
problems in engineering designs (Schwabacher et al. 2001;
Igusa et al., 2003; Kim and Ding, 2005). In this paper, we
use a data-mining-guided evolutionary approach, which
borrows strengths from both methods and compensates
the weakness of the individual ones in solving a non-linear
optimization problem. Our research finds that integrating
the two methods produces a desirable outcome in solv-
ing the sensor distribution problem at hand – it can find
a good solution in a timely fashion as compared to other
alternatives.

In order for the subsequent data-mining method to be
easily applied, which needs to perform sampling operations
and other operations on datasets, we first discretize the con-
tinuous design space to form a dataset of all potential sen-
sor locations. For the 2-D assembly process demonstrated
in Fig. 1, we discretize the valid geometric area of each
part using a resolution of 10 mm (which is the size of a
locator’s diameter). Our engineering experience and prior
studies (e.g., Liu et al. (2005)) indicate that this resolution
is fine enough for a part size of several hundred millimeters.
For an s-sensor design problem (i.e., the sensor number is
fixed at s), denote by Nc the resulting number of candidate
locations for any single sensor and by θk the index of the
location of the kth sensor, where 1 ≤ θk ≤ Nc, k = 1, 2,
. . ., s. An instance of sensor distribution can be denoted by
θ = [θ1,. . . θ s ].

After discetization, we label each candidate sensor lo-
cation uniquely so that the original representation w of a

location in the continuous design space, comprising the co-
ordinates, (X, Y, Z), and the station index T, is replaced
by a single index θ . Consequently, the original continuous
design space, which is 4s-dimensional, is reduced to an s-
dimensional discrete space, denoted by � = [1, Nc]s∩Zs ,
where Zs is the set of s-dimensional vectors with integer el-
ements. Since all s sensors to be installed are assumed to be
identical, the cardinality of the set � is |�| = CNc

s , where Cb
a

denotes the number of ways to choose a objects from a set
of size b. The continuous formulation has a station index T
because two sensor locations having the same (X, Y, Z) but
on different stations are considered to be different. Having
this station index would have created additional complexity
for the subsequent data-mining methods to be applied and
for the mined knowledge to be utilized. The discretization
streamlines the representation, where the station index is
no longer needed.

Given the new discrete design space for sensor distribu-
tion, the optimal sensor distribution problem in Equation
(10) can be rewritten as follows: for a given number of sen-
sors, find the optimal sensor locations that maximize S,
namely:

max
θ∈�

S(θ ) = λmin(π (�)Tπ (�)). (11)

For the assembly process shown in Fig. 1, the 10 mm resolu-
tion level will result in the number of candidate sensor loca-
tions on each part as n1 = 6650, n2 = 7480, n3 = 2600 and n4
= 2600. Because parts 1 and 2 appear on all three stations,
parts 3 and 4 appear on the second and the third stations,
there is a total of 3 × (n1 + n2) + 2×(n3 + n4) = 52 790
candidate locations for each sensor. Thus, Nc = 52 790
in this paper. Suppose that s = 5, then the total number of
design alternatives, namely |�|, is C52 790

5 ≈ 3.4 × 1021. Ap-
parently this number is overwhelmingly large, which makes
the exchange algorithms difficult to apply or a GA-based
random search less likely to be efficient.

3. Optimal sensor distribution by a data-mining-
guided evolutionary approach

3.1. Basic idea

Applying data-mining methods to optimization problems
is a recent development (Schwabacher et al., 2001; Igusa
et al., 2003; Kim and Ding, 2005). By data-mining meth-
ods, people typically refer to sampling, classification and
clustering methods. The basic idea is to consider an opti-
mization problem as selecting the best solution (or a better
one) from a large set of solution alternatives. If treating the
solution alternatives as a dataset, a data-mining method
may be able to discover valuable structures within it and
then generalize insightful selection rules that could eventu-
ally lead to a better solution, or when lucky enough, to the
optimal solution. There are a few recent successes in ap-
plying this idea to various optimal design problems. Igusa
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Fig. 2. General framework of combining an evolutionary algorithm and the data-mining approach.

et al. (2003) and Kim and Ding (2005) demonstrated that
the data-mining ingredients could greatly speed up com-
putation; the former reported a 15-fold time reduction (as
compared to GAs) in their civil structure optimization and
the latter reported a 10-fold time reduction (as compared
to a simulated annealing algorithm) in their optimal fixture
layout design.

However, there are also some limitations in the current
version of a data-mining-guided method. For example, one
of the reasons behind the computation benefit shown in
Igusa et al. (2003) and Kim and Ding (2005) is because
a set of feature functions is used to replace the computa-
tionally more expensive objective function at some stage.
However, introducing the appropriate set of feature func-
tions is ad hoc and may not be universally applicable. A
more common shortcoming of data-mining-guided meth-
ods is that their effectiveness strongly depends on how rep-
resentative the initially and subsequently sampled solution
alternatives are of the solution space (also called the design
space). Without representative data of the solution alter-
natives, data mining can give us inaccurate information,
leading to the choice of a wrong direction. In particular,
when the design space is too large and the good solution
candidates are too sparse, data obtained from a uniform
sampling may not be sufficiently representative. Taking the
sensor distribution in the three-station assembly process as
an example, when the number of sensors is five, we found
that only 5% of the solution alternatives can be considered
as promising candidates, having relatively large sensitiv-
ity values. Consequently, purely based on a data-mining
method, we might not be able to obtain enough represen-
tative solution candidates to produce informative guide-
lines. If we proceed with non-informative guidelines, our
efforts to find good designs could become tainted or even
wasted. For this reason, we feel that an effective procedure is
needed to compensate the ability of the current data-mining
methods to find good solution alternatives with which to
work.

It turns out that evolutionary algorithms, though slow
as a stand-alone optimization tool, are able to improve the

quality of the solution alternatives for their use in the data-
mining methods. This is because when conducting random
searches over a design space, an evolutionary algorithm
will iteratively and stochastically direct the current solu-
tion sample toward the local optima so that the candidate
solution alternatives are more representative of the solu-
tion space. With the representative datasets produced by
an evolutionary algorithm, a data-mining method could
generate more informative and accurate solution-selecting
rules to characterize the promising subregions of the orig-
inal design space. Also, this knowledge obtained in the
data-mining process will be fed back to the evolutionary
algorithm so that the subsequent evolution process can be
guided to search only in promising regions to gather more
representative data.

The above arguments actually point to integrating a
data-mining method and an evolutionary algorithm and
execute them alternately in a fashion as shown in Fig. 2.
In fact, some efforts exploring this integration have been
reported recently. Michalski (2000) presented a new evo-
lutionary process called the Learnable Evolution Model
(LEM), which employs both evolutionary algorithms and
machine learning to generate new solutions. The LEM
switches between a Darwinian evolution mode and a ma-
chine learning mode and enables possible quantum leaps.
Huyet (2006) applied Michalski’s idea to the analysis of
simulated production systems.

We follow the general framework of the LEM to solve
the sensor distribution problem. However, we make a num-
ber of modifications so that it better fits our problem.
First, a Classification And Regression Tree (CART), in-
stead of the AQ-learner (Michalski, 2000), is used as our
data-mining method because a CART is computationally
efficient (Hastie et al., 2001). Since the data-mining method
will be repeatedly used, being computationally efficient is
essential otherwise it will significantly slow down the whole
optimization process. Second, because of the difficulty in
obtaining a representative dataset in our sensor distribu-
tion problem (due to the sparsity of the good solutions),
we run the evolutionary algorithm at the beginning of
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810 Ren and Ding

the combined procedure to collect enough representative
data for the subsequent data-mining operation. Michalski
(2000) did the opposite, which does not work well in our
problem. Third, we use the information learned from data
mining to regulate the evolutionary algorithm, i.e., limiting
the evolutionary algorithm to search in promising regions
in order to increase the convergence rate to the optimal so-
lution. Michalski (2000) did not have this regulation com-
ponent. A similar idea of limiting the search space was
proposed in Mandal et al. (2006), where they proposed a
modified genetic algorithm that utilizes the idea of a forbid-
den array and weighted mutation to reach the best solution
in fewer runs. However, using a forbidden array may not be
well suited for large-scale problems such as the one intro-
duced in Section 2, where the decision variables could have
52 790 levels (in Mandal et al. (2006), the number of levels
for each decision variable is 11). Having a large number of
levels would make the required orthogonal array unattain-
able. Details of our proposed methods will become clear
in the next subsection. We label this modified LEM as a
data-mining-guided evolutionary approach.

Including the data-mining ingredient is beneficial to the
optimal sensor distribution problem in the sense that in ad-
dition to obtaining the optimal solution for the current pro-
cess configuration, one also garners guidelines about how
to construct good sensor distribution alternatives, which
can facilitate future optimization. For example, in the three-
station assembly process, if the shape of a part is changed,
a previously determined sensor location could become un-
feasible. With the guidelines mined from previous design
optimization processes, manufacturers could adjust their
previous sensor distribution without having to run the op-
timization procedure again from the beginning.

3.2. Data-mining guided evolutionary approach

Borrowing the language used in a standard GA, each solu-
tion (or design) alternative of sensor distribution θ is called
an individual; a sample or collection of individuals is called
a population, denoted by P; a collection of populations is
called a database, denoted by �, and obviously, θ ∈ P ⊆
�. Moreover, if θk ∈ [1, Nc] ∩ Z for any k, we say θ ∈ �,
and if for any θ ∈ P, θ ∈ �, then we say P ⊆ �.

The first step of the proposed method is to sample an ini-
tial population P0 of sensor distribution alternatives from
the candidate design space �, where P0 = {θ1

0, θ
2
0, . . . , θ

M
0 }

and M is the population size. At the stage of initial sam-
pling, people typically do not have detailed knowledge
about which regions of the space might contain good in-
dividuals. Under this circumstance, the most sensible way
to perform the initial sampling has been suggested to be
to sample individuals from � as evenly as possible, a con-
cept also known as “space-filling” design (Fang and Wang,
1994; Santner et al., 2003). In our proposed method, a uni-
form sampling will be repeatedly used to obtain samples
from some sub-regions of �. Thus, the sampling method

should be easy to implement and computationally eco-
nomic, which makes the sampling method based on the
minimax or maximin criteria inappropriate for our ap-
plication. We instead choose the Latin Hypercube Sam-
pling method. Empirical evidence indicates that its use for
uniform sampling purposes is satisfactory (Santner et al.,
2003).

After getting the initial population P0 ⊂ �, there will be
two modes of operations executed alternately, the evolution
mode and the data-mining mode. The evolution mode goes
first, where an evolutionary algorithm (we use the standard
GA as described in Holland (1992)) is used to randomly
search over � and gather representative individuals for the
subsequent data-mining mode. The fitness (or representa-
tiveness) of an individual θ is measured by its sensitivity
value S(θ ). Each iteration is called a generation, indexed by
t. We denote the population in the tth generation (t starts
from zero) by Pt = {θ1

t , θ
2
t , . . . , θ

M
t }, where the population

size is always kept at M. At this stage, the evolutionary
algorithm selects the parental individuals from the current
population according to their fitness, such that Prob(θ is
selected) ≥ Prob(θ ′ is selected) if S(θ ) ≥ S(θ ′). Then, the
crossover operators are applied with probability pc on two
parental individuals to produce an offspring; and the mu-
tation operators are employed with probability pm to inject
variation into a population.

After running evolutionary algorithms for a number of
generations, we are ready to switch to the data-mining mode
that is supposed to produce a new population for the sub-
sequent evolution search. Each iteration in the data-mining
mode also counts as a generation. Denote the database we
have retained up to generation t by �t ⊂ �. We classify �t
into three categories: (i) those with relatively high sensitiv-
ity values (high-performance individuals, or HPI); (ii) those
with relatively low sensitivity values (low-performance in-
dividuals, or LPI); and (iii) the others between the first two
classes. The HPI and LPI are the representatives of the
most and the least promising search regions, respectively.
These two classes of individuals inform us about where to
search and where to avoid. The individuals with a fitness
in between, i.e., the category (iii) as mentioned above, are
considered non-informative and will not be directly uti-
lized. We denote the h and l percentiles of the S values in
�t by S(h)

t and S(l)
t , respectively. Then the class of HPI, Ht,

and the class of LPI, Lt, at generation t, are defined as
follows:

Ht = {θ : θ ∈ �t and S(θ) ≥ S(h)
t }, (12)

Lt = {θ : θ ∈ �t and S(θ) ≤ S(h)
t }. (13)

Naturally, h > l so that the two classes of data do not
overlap. As such, the three classes are represented by Ht,
Lt and �t\(Ht∪Lt), respectively, where A\B represents the
set of elements that are in A but not in B.
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Sensor distribution in multi-station systems 811

The method we recommend for the data-mining mode
is CART (Breiman, 1984). The reason is as follows. Our
goal of solving an optimization problem places several re-
quirements on the data-mining method. As we mentioned
earlier, first and foremost, it must be fast and computa-
tionally scalable to accommodate the large dataset of indi-
viduals. Since the data-mining method is repeatedly used
to select new samples of individuals, a complicated, com-
putationally expensive method will unavoidably slow down
the optimization process. Second, the data-mining method
should generate explicit descriptions that could differenti-
ate several classes of individuals. These requirements and
preferences make CART a favorable candidate to be used
in the data-mining mode for optimization purpose.

CART is applied to both Ht and Lt and produces a set
of “if–then” rules. In fact, the set of rules is the mined
knowledge characterizing the design space and will be used
to determine the promising search subareas. When the set
of rules is applied to �, the candidate design space will be
partitioned into a number of rectangular regions, generally
expressed as atk ≤ θtk ≤ btk, k = 1, . . . , s, where atk and
btk are between one and Nc, defining each region. Applying
the set of rules learned from Ht and Lt, we can identify
the most promising search regions, denoted by Dt and the
least promising search regions, denoted by Vt. CART may
produce multiple, non-connected regions in both Dt and
Vt; denote by rt the number of rectangular regions in Dt
and by qt as the ones in Vt. We have:

Dt = ∪rt
i=1Dti and Vt = ∪qt

j=1Vt j , (14)

where Dti = [ati1, bti1] × · · · × [atis, btis ], Vt j = [ctj1, dtj1]
× · · · × [ctjs, dtjs ], atik and btik are for region i of Dt, i = 1,
. . . , rt, and ctjk and dtjk are for region j of Vt, j = 1, . . . , qt.

Subsequently, Dt and Vt are used to guide the next evo-
lutionary search. Specifically, Dt is used for pointing out
where to search. We uniformly sample individuals in Dt
(instead of in �) and then deliver the sampled individuals
to the evolutionary algorithm for further runs. The samples
of individuals are generated as follows. For region i of Dt,
we first obtain a uniform design {φm

ik} of
⌈

M
/

rt
⌉

points,
m = 1, . . . ,

⌈
M

/
rt

⌉
, over a unit cube Cs = [0,1]s , where

�x� denotes the smallest integer larger than or equal to x.
Then, we map the design onto Dti by calculating:

θm
tik = atik + (btik − atik) × ϕm

ik, i = 1, . . . , rt,

m = 1, . . . ,
⌈

M
/

rt
⌉

, k = 1, . . . , s. (15)

Then, θm
ti = [θm

ti1 · · · θm
tis ] is an individual in Dti . The set

∪rt
i=1{θ1

ti , θ
2
ti , . . . , θ

�M/rt�
ti } is the new sample of individuals

generated by the data-mining mode. Combining this set
with the current population Pt produces a new population
Pt+1. The individuals sampled over Dt are expected to have,
on average, larger sensitivities than a uniform sample of in-
dividuals over �. Hence, the optimization procedure could
converge to a better solution faster than the traditional,
“blind” Darwinian-type evolution.

In the meanwhile, Vt is used to regulate the evolutionary
algorithm to avoid certain “unwanted” individuals pro-
duced during the evolution process. Due to its nature of
random search, the evolutionary algorithm may produce a
new individual that is actually not a good choice for sensor
distribution. Thus, we need to check if θ∈Vt once a new
individual θ is generated by the Darwinian-type operations
(crossover or mutation). If θ is indeed in the least promising
region, we discard it and generate another individual until
we have M individuals in the new population. In this way,
we can prevent the evolutionary algorithm from going into
some search regions that are not promising.

Because there is always misclassification in the data-
mining mode and randomness in the evolution mode, the
above procedure needs to iterate a number of times until a
stopping rule is met.

One more thing we want to articulate is the construc-
tion of database �t, on which the most and least promis-
ing search regions Dt and Vt are identified in the data-
mining mode. Huyet (2006) constructed �t by using only
the populations from the most recent generations, i.e.,
θ t = ∪B

t=B−b+1Pt, where B is the generation count of the
current population, and b is the number of generations
used to construct �t. Doing so may make the optimiza-
tion process converge relatively quickly to an optimum.
However, it also becomes more difficult for the algorithm
to find a way of escaping a local optimum when only the
recently sampled individuals are considered and the infor-
mation from earlier generations is discarded. In this paper
we instead choose to keep all the populations we obtained
so far in �t, i.e., �t = ∪B

t=1Pt. The benefit of retaining
all the available information up to the current generation
is that it can help prevent all the individuals in �t being
from a narrow region. That certainly boosts the algorithm’s
ability to avoid local optima. Of course, retaining all the
populations could make the learning process in the data-
mining mode slower. For our application of sensor distribu-
tion, it does not show any significant adverse effects on the
computation.

3.3. The algorithm and discussions

We present a summary of the data-mining-guided evolu-
tionary approach in the following.

Step 1. Set the generation count t = 0. Start with a
random population P0 = {θ1

0, θ
2
0, . . . , θ

M
0 } by uni-

formly sampling M individuals over �, and evalu-
ate the sensitivity S of each individual. Let D0 =
�, V0 = Ø and �0 = P0.

Step 2. Evolution mode: run the GA until a switching con-
dition is met.
2.1. Set t = t + 1, Dt = Dt−1 and Vt = Vt−1. Set

m = 1. Let Pt = Ø. Repeat the following ac-
tions until |Pt| = M.
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812 Ren and Ding

Select two individuals from Pt−1 according
to their fitness, and generate a new offspring
θm

t with a crossover rate pc. If no crossover
was performed, the offspring is an exact
copy of its parents. Mutate new offspring
with a mutation rate pm. If θm

t /∈ Vt, Pt =
Pt∪{θm

t }, set m = m + 1.
2.2. Let �t = �t−1 ∪ Pt. Evaluate the sensitivity

index S for Pt.
Step 3. Run the data-mining mode until a switching con-

dition is met.
3.1. Update Ht and Lt from �t. Apply CART to

update Dt and Vt. Uniformly sample �M
/

rt�
individuals from Dti , i = 1, . . ., rt, and denote
by ∪rt

i=1{θ1
ti , θ

2
ti , . . . , θ

�M/rt�
ti } the set of new in-

dividuals from Dt.
3.2. Set t = t + 1, and Pt = (∪rt

i=1{θ1
t−1i , θ

2
t−1i , . . . ,

θ
�M/rt�
t−1i }) ∪ Pt−1. Sort the elements in Pt in de-

scending order according to their sensitivity
values and delete the last rt × �M/rt� elements
so that the population size is always M (i.e.,
|Pt| = M). Let �t = �t−1 ∪ Pt.

Step 4. Alternate between the two modes until the stopping
rule is met. The algorithm could terminate when
the computational budget (the number of genera-
tions) is consumed or when the change in the best
sensitivity value does not exceed a given threshold
for several generations.

In order to implement this algorithm, there are a few
more details that need one’s attention. We discuss them in
the following remarks.

Remark 1. We omit most of the details associated with the
evolutionary algorithm because we use a standard GA in
the proposed optimization procedure. When implementing
a GA, we use binary encoding, rank selection, one-point
crossover and uniform mutation. Commonly, pc should
be relatively large, (e.g., between 0.6 and 0.9), and pm
should be small, (e.g., between 0.001 and 0.1). The opti-
mal choice of the control parameters (M, pc, and pm) for
the GA strongly depends on the nature of the objective
function S(θ) (Lobo and Goldberg, 2004). In this paper,
we fine-tune the control parameters and find that pc =
0.9 and pm = 0.01 provide the best performance in our
application.

Remark 2. In order to truly adopt the strengths of the
two modes (evolutionary algorithm and data mining) and
compensate their weakness, proper switching conditions
are needed to guide the proposed optimization procedure
to select an appropriate mode of operations. One typically
runs the evolution mode for fo generations, then switches
to the data-mining mode and runs it for fd generations,
and then switches back to the evolution mode, as illus-
trated in Fig. 3. Because of the inability of a stand-alone
data-mining mode to find representative individuals (will
be shown in Section 4), it is not beneficial to run the

Fig. 3. Switching condition for the data-mining-guided evolution-
ary algorithm.

data-mining mode for multiple generations. Thus, a nat-
ural choice is fd = 1. On the other hand, running the evo-
lutionary algorithm for a large number of generations will
make the combined procedure virtually a pure evolution-
ary algorithm by overshadowing the learning effect from
the data-mining mode, and it will certainly slow down the
convergence of the whole procedure. Thus, we recommend
running the proposed algorithm for fo values between one
and five and selecting the one producing the most desirable
outcome.

Remark 3. The correct choices of h and l could vary
for different problems. For a maximization problem, too
small an h value could bring many uninteresting indi-
viduals into the set of supposedly high-performance so-
lutions which will slow down the optimization process.
On the other hand, too large an h value would increase
the chance of the algorithm falling into local optima.
However, the danger of falling into local optima is not
grave because the data-mining mode is followed by a
GA that randomizes the population again and makes it
possible to escape from local optima. In light of this,
we recommend an aggressive choice for the h value, i.e.,
h ≥ 90%.

Selection of the l value requires greater care because
the supposedly unpromising regions will be completely ex-
cluded in the subsequent optimization process. A large l
value might filter out the regions containing desirable so-
lutions. Thus, we recommend a conservative choice for l,
namely, l ≤ 20%.

Apparently, the current selection of h and l values is still
ad hoc. It is not difficult to see that the values of h and
l should not stay constant but may need to be adjusted
adaptively when the whole algorithm is progressing. That
is indeed what our on-going research tries to achieve, an
adaptive control that sets the correct h and l values in the
optimization process.

4. Examples and performance comparisons

To illustrate the potential of the proposed method, we ap-
ply it in two different applications: the sensor distribution
problem and neural network training. We show the perfor-
mance of the data-mining-guided method in three differ-
ent versions: the stand-alone data-mining method (i.e., no
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Sensor distribution in multi-station systems 813

Fig. 4. Algorithm performance when s = 5.

evolution mode), the data-mining-guided GA without us-
ing regulation from Vt, and the data-mining-guided GA
using the regulation from Vt (i.e., the full version as de-
scribed in Section 3.3). For the tuning parameters in the
proposed algorithm we choose values of fo = 2, fd = 1,
h = 95% and l = 20%. We also compare the results of the
proposed algorithm with a standard GA. All optimization
algorithms are implemented in the MATLAB environment,
and all reported algorithm performances are the averaged
results of five trials.

4.1. Sensor distribution examples

We use the data-mining guided GA to solve the sensor dis-
tribution problem in the three-station 2-D assembly process
under two settings: when s = 5 and s = 9; we will explain
why we choose the two sensor numbers at the end of this
section. For the scenario where s = 5, we set the population
size M = 80. The result is shown in Fig. 4. The x-axis uses
50 as its increment before 200 and 500 as the increment
after 300. This is done in order to clearly present both the

early generation transient rate and the steady-state perfor-
mance. Please also note that the value associated with the
x-axis is the number of generations. To translate it to the
number of objective function evaluations, one would need
to multiply it by the population size M = 80. For example,
the GA reaches S = 0.057 at the 50th generation, which is
equivalent to 4000 objective function evaluations.

Apparently, the data-mining-guided evolutionary ap-
proach outperforms the GA both in terms of finding a bet-
ter sensitivity value and the computation time. This is more
obvious for the regulated data-mining-guided evolutionary
approach, whose performance curve covers almost all the
other curves. It demonstrates a key advantage of using the
regulation from Vt in the proposed procedure, that is, it will
expedite the algorithm’s convergence to the best solution
compared to the one that did not use the regulation. As
can be seen in Fig. 5, at 80 generations, the regulated data-
mining-guided GA reaches its steady-state performance,
where it achieves about a 30% improvement over the GA
(0.077 versus 0.060). The stand-alone data-mining method
performs similarly to a stand-alone GA (both are inferior to

Fig. 5. Sensor distribution strategy when s = 5.
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814 Ren and Ding

Table 1. Generated rules about high-performance solutions

Rules Meaning

After 10 generations
1 ≤ θ1 ≤ 15 193 Sensor 1 is put on part 1 or 2 on station I
13 868 ≤ θ2 ≤ 15 193 Sensor 2 is put on part 1 on station II
13 868 ≤ θ3 ≤ 40 617 Sensor 3 is put on any part on station II or part 1 on station III
44 000 ≤ θ4 ≤ 52 790 Sensor 4 is put on part 2, 3 or 4 on station III
49 649 ≤ θ5 ≤ 52 790 Sensor 5 is put on part 3 or 4 on station III
8605 ≤ θ1 ≤ 8811 Sensor 1 is put on part 2 on station I
8605 ≤ θ2 ≤ 20 335 Sensor 2 is put on part 2 on station I or part 1 on station II

After 100 generations
39 893 ≤ θ3 ≤ 48 831 Sensor 3 is put on part 1, 2 or 3 on station III
48 783 ≤ θ4 ≤ 48 831 Sensor 4 is put on part 3 on station III
50 346 ≤ θ5 ≤ 50 351 Sensor 5 is put on part 4 on station III

the combined procedure), which to some extend verifies our
previous arguments on the shortcomings of each individ-
ual algorithm. In order for a GA to considerably narrow its
difference from the regulated data-mining-guided method,
it needs to run for more than 1800 generations, which de-
mands a great deal of computational effort. The sensor
distribution strategy with the largest S value is presented in
Fig. 5.

Our proposed algorithm, thanks to its data-mining in-
gredients, also generates several rules describing the high-
performance solutions. Table 1 presents the rules that are
generated after a certain number of generations. With
more generations evolved and more data mined in the pro-
posed procedure, the rules become more and more specific.
Figure 6 visualizes the rules after 100 generations by high-
lighting the areas on a part where a sensor should be placed
in order to get a good sensitivity. From Fig. 6, we observe
that: (i) more sensors should be put on latter stations; (ii) if
multiple sensors are placed on the same station, they are
more likely to be distributed on all parts within that station
instead of being clustered on individual parts (station III
is a good example); and (iii) at least one sensor should be
put on each part. These observations are largely consistent
with, but not completely the same as, a set of guidelines
regarding the strategy of sensor distribution obtained in
Section 3.3 of Ding et al. (2003), when the same assembly
process was studied.

As mentioned before, one may wonder if we could em-
ploy the results in Ding et al. (2003) to help solve our
sensor distribution problem, i.e., use the approach in Ding
et al. (2003) to obtain a diagnosable sensor system first and
then maximize the variance-detecting sensitivity measure
among those diagnosable systems. The result from Ding
et al. (2003) says that four sensors should be installed on
station III (and install one sensor on every part) and one
sensor should be installed on station I (either on part 1
or part 2). Then, use a single-station sensor placement ap-
proach to optimize the sensor location on each part, the
best sensitivity of the whole assembly process we could find
is 0.049, which is only about 60% of the best sensitivity
value shown in Fig. 4. This is in part due to a difference
between the guidelines found from our data-mining-guided
approach and the results in Ding et al. (2003): as can been
seen from Figs. 5 and 6, the best sensor distribution strat-
egy installs sensors on every station but the strategy in Ding
et al. (2003) chose to skip the second station because in-
stalling a sensor on it does not make a difference in their
diagnosability criterion.

In Fig. 4, the best sensitivity value is 0.078. It indicates
that, for some sensor distribution strategies, although the
full diagnosability is guaranteed (S > 0 implies full diag-
nosability), only 7.8% of variation changes in the variation
sources is reflected in the sensor measurements. Thus, for
this kind of sensor distribution strategy, practically it is

Fig. 6. Generated rules about high-performance solutions.
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Sensor distribution in multi-station systems 815

Fig. 7. Algorithm performance when s = 9.

not very useful to detect the small variation changes in the
variation sources. Consequently, more sensors are needed
to increase the variance-detecting capability of the sensor
system. Thus, we study the scenario with s = 9 sensors.

For the scenario of s = 9, we set the population size M =
100. The performance results of various methods are pre-
sented in Fig. 7, where the x-axis uses 100 as its increment
before 300 and 500 as the increment after 400. Figure 7
also demonstrates a clear advantage of the data-mining-
guided methods over the stand-alone GA or the stand-
alone data-mining and places the regulated version as the
clear winner. The regulated data-mining-guided method
comes close to its steady-state value at 250 generations,
where it does 25% better than the GA (1.219 versus 0.988).
For a GA to catch up with the performance of a regulated
data-mining method, it needs to run more than 2000 gener-
ations, almost ten times longer. It is also worth noting that
the stand-alone data-mining method performs much worse
than other algorithms. We believe this happens mainly be-
cause it is more difficult to gather representative data in
a higher-dimensional solution space. Figure 8 presents the
best (i.e., the largest S) sensor distribution strategy found
in this example.

From both Fig. 4 and Fig. 7, it is not difficult to no-
tice that the performance curves of all four algorithms

are very similar in early generations. However, the data-
mining-guided methods take the lead after a small number
of generations (it is about 40 generations in Fig. 7). What
this tells us is the following. During the early generations
when not enough individuals are generated by the GA, a
data-mining method may not get “sufficient” knowledge
to guide the evolution search. When enough representative
individuals are collected after a number of generations, the
knowledge learned by a data-mining method starts to lead
the evolution process in a better direction and thus boosts
the performance of the proposed algorithm.

So far, we have used the data-mining-guided evolutionary
algorithm to solve the optimal sensor distribution problem
when the sensor number is specified. One may wonder how
the sensor number s is determined. According to Liu et al.
(2005), the sensitivity S is defined as the ratio of the change
in the variance of sensor measurements over a perturbation
of the variance of the input variation sources. Thus, S = 1
implies that the measurement sensitivity of the input vari-
ation sources is as good as if they were measured directly
by a set of coordinate sensors. It is preferable for S to be
larger than or equal to one so that the detection capabil-
ity of the input variation sources will not be compromised
when the sources cannot be directly measured. Thus, we set
a lower bound c for S and c ≥ 1. One way to determine s,
as explained in Liu et al. (2005), is to start from a small s
and obtain the corresponding optimal sensor distribution.
Then, add one more sensor sequentially, which maximizes
the resulting sensitivity value, until S ≥ c. However, this
routine may miss the optimal sensor distribution, because
the sensor distribution with s sensors may not be a sub-
set of the one with (s + 1) sensors. Nevertheless, we can
find a sensor number which yields S ≥ c by this sequential
routine and then use the data-mining-guided evolutionary
approach to find the optimal sensor distribution for a given
sensor number. In practice, it works quite effectively and
often offers as good a solution as exhausting the optimiza-
tion for every sensor number. When applying to the three-
station assembly process by setting c = 1, it turns out that
the smallest number of sensors yielding S ≥ 1 is nine; that
is one of the scenarios we tested above. The other choice
of sensor number s = 5 is the minimum number of sensors
that can make the three-station process fully diagnosable,
as shown in Ding et al. (2003). In other words, if s < 5, the

Fig. 8. Sensor distribution strategy when s = 9.
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S value will always remain zero no matter how the sensors
are distributed.

Finally, please note that the integrated approach will
see its limit when the scale of a manufacturing process
gets very large. Under that circumstance, using the two-
step procedure is warranted. For a large-scale system, one
may first partition the whole system into smaller segments.
Subsequently, use the method proposed in Ding et al. (2003)
to find out how many sensors are needed for each segment
and then use our proposed algorithm to find out the optimal
layout within individual segments.

4.2. Neural network training example

To show the potential of our proposed method in other ap-
plications, we use it to train a neural network for classifica-
tion problems. Multiple-layer Perceptrons (MLPs) (Minksy
and Papert, 1969) have become popular as an effective data-
mining method. Given a group of connection weights z =
(α, β, γ ), the MLP predictor is written as

f̂ (xk|z) = ϕ0

⎛
⎝α0+

p∑
j=1

γ j xjk+
O∑

i=1

αiϕh

(
βi0 +

p∑
j=1

βi j xkj

)⎞
⎠,

(16)
where p is the number of inputs, xk = (xk1, . . ., xkp) is the
kth input pattern, O is the number of hidden units in the
MLP, αi , β i j , γ j are the weights on the connections from
the ith hidden unit to the output, from the jth input to
the ith hidden unit, and from the jth input to the output,
respectively. The functions ϕ0(·) and ϕh(·) are called activa-
tion functions. A common choice for ϕh(·) is the sigmoid
function. For regression problems, ϕ0(·) is usually set to be
ϕ0(x) = x; and for classification problems, ϕ0(·) is usually
set to the sigmoid function. Training a MLP is to minimize
the error function

U(z) =
R∑

k=1

(
f̂ (xk|z) − yk

)2

+λ

⎛
⎝ O∑

i=0

α2
i +

O∑
i=1

p∑
j=0

β2
i j +

p∑
j=1

γ 2
j

⎞
⎠ , (17)

with respect to the connection weights αi , β i j , γ j . Here
yk is the observed output associated with xk, and R is the
number of input patterns. The second term is the regula-
tion term which avoids overfitting problems. Minimizing

Fig. 9. Algorithm performance for neural network training.

the function (17) is generally difficult (Hastie et al., 2001),
because one has to escape many local optima to reach the
global minimum.

In this paper we train a MLP for the breast cancer
classification problem (Mangasarian, 1993). The breast
cancer dataset is collected at the University of Wisconsin
Hospitals and is available at http://www.ics.uci.edu/∼
mlearn/MLRepository.html. There are 683 samples of nu-
clear features of fine needle aspirates from patients’ breasts.
Each sample consists of nine components, with each com-
ponent having values from one to ten. The samples are
classified into two classes, benign and malignant. The
benchmark classification error in the literature is 2%
(Mangasarian, 1993).

The breast cancer data is modeled by a MLP with
three hidden units, and there are totally 43 connections
weights. Each weight is restricted to the interval [−10,
10]. The first 342 samples are used as training data and
the remaining 341 samples are test data. We applied the
proposed methods to minimize Equation (17) on the
training data. The population size is set to M = 100.
We run each algorithm for 500 iterations. The algorithm
performances are shown in Fig. 9. One can notice that
the performances of the regulated data-mining-guided
GA, the non-regulated data-mining-guided GA and the
stand-alone data-mining method are comparable, and they
all outperform the GA. Numerical results are presented in
Table 2. The regulated version of our proposed algorithm

Table 2. Algorithm performance comparison

Training error Test error

Algorithms Average U(x) Classification error (%) Average U(x) Classification error (%)

Regulated data-mining-guided GA 13.36 3.4 6.73 1.7
Non-regulated data-mining-guided GA 14.16 3.3 8.28 1.9
Stand-alone data mining 13.68 3.6 8.34 2.1
GA 32.00 5.2 33.82 6.3
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outperforms others both in terms of training error and test
error. Both data-mining-guided methods perform better
than the 2% test error reported in Mangasarian (1993).

5. Concluding remarks

This paper investigates the problem of maximizing the
variance-detecting capability of a distributed sensor sys-
tem in a multi-station assembly process. The sensitivity
index to be optimized is the smallest eigenvalue of the as-
sociated Fisher information matrix and optimizing it can
provide a guarantee of a sensor system’s capability to de-
tect the underlying process variance changes. We devised
a data-mining-guided approach to solve the optimization
problem, which outperforms some popular alternatives in-
cluding the GA approach.

The data-mining-guided evolutionary approach pre-
sented in this paper is essentially a heuristic method for op-
timization. Fundamentally, a data-mining method is also
an optimization routine. Thus, a data-mining-guided ap-
proach is equivalent to breaking an originally complex op-
timization into a set of simpler problems that may be solved
by the optimization routines embedded in the data-mining
methods. The method is realized in this paper to solve a
sensor distribution problem but should be extendable to
other types of applications as well.

In the proposed method, because CART is used as the
data-mining method, the design space is sliced into rect-
angles. There could be situations where a rectangular par-
tition may not be optimal, for example, when the origi-
nal design space is of more complex, non-regular shape.
However, finding a good replacement for CART may not
be straightforward because the repeated use of the data-
mining method demands that any viable candidate must be
time-efficient and simple. Some other data-mining meth-
ods, such as artificial neural networks, are computationally
expensive themselves, and are therefore less likely to be a
good candidate for the proposed combination.
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