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Abstract—This paper presents a robust calibration procedure
for clustered wireless sensor networks. Accurate calibration of be-
tween-node distances is one crucial step in localizing sensor nodes
in an ad-hoc sensor network. The calibration problem is formu-
lated as a parameter estimation problem using a linear calibration
model. For reducing or eliminating the unwanted influence of mea-
surement corruptions or outliers on parameter estimation, which
may be caused by sensor or communication failures, a robust re-
gression estimator such as the least-trimmed squares (LTS) esti-
mator is a natural choice. Despite the availability of the FAST-LTS
routine in several statistical packages (e.g., R, S-PLUS, SAS), ap-
plying it to the sensor network calibration is not a simple task.
To use the FAST-LTS, one needs to input a trimming parameter,
which is a function of the sensor redundancy in a network. Com-
puting the redundancy degree and subsequently solving the LTS
estimation both turn out to be computationally demanding. Our
research aims at utilizing some cluster structure in a network con-
figuration in order to do robust estimation more efficiently. We
present two algorithms that compute the exact value and a lower
bound of the redundancy degree, respectively, and an algorithm
that computes the LTS estimation. Two examples are presented to
illustrate how the proposed methods help alleviate the computa-
tional demands associated with robust estimation and thus facili-
tate robust calibration in a sensor network.

Note for Practitioners—Wireless sensor network is an emerging
technology that finds numerous civilian and military applications
lately. When utilizing the information from a sensor network for
decision making, a statistical estimation procedure is often a nec-
essary intermediate step in order to know about critical system pa-
rameters or state variables. For the estimation purpose, the com-
monly used least-squares estimation (LSE) mechanism is not ro-
bust at all against data corruptions or outliers caused by sensor
and communication failures. Any single corrupted data point may
cause considerable deterioration in an LSE. Applying the robust
estimators available from robust statistics research to a wireless
sensor network, however, faces a number of computational chal-
lenges. This paper offers several useful algorithms to address these
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challenges, making the application of a robust estimator easier and
more efficient.

Index Terms—Ad-hoc sensor network, least-trimmed squares es-
timator, robust regression, sensor localization.

I. INTRODUCTION

A. Background

W IRELESS technologies have changed the design and
operation of sensor networks. Equipped with micro-

electromechanical systems (MEMS), a wireless sensor node be-
comes small, mobile, and multifunctional. One of the most sig-
nificant changes caused by the wireless technologies is the im-
plementation of an ad-hoc networking, referring to those having
a network topology and node positions that are not fixed a priori
[1]. This naturally calls for a solution to the localization or lo-
cation tracking problem because knowing the positions of indi-
vidual sensors is often the prerequisite to many subsequent de-
cision makings. Installing a global positioning system (GPS) [2]
could be a solution but the heavy power consumption and high
equipment cost associated with a GPS deem it impractical to in-
stall it on every microsensor node. In practice, GPS receivers
may be used only on a small portion of sensor nodes, known as
anchor nodes, in a network [3]. The location of a non-anchor
node can be decided and tracked relative to the anchor nodes in
the following manner: 1) measure the distances between itself
and several anchor nodes and 2) compute its location based on
certain geometry principle (such as hyperbolic trilateration, tri-
angulation, and multilateration [4]).

One method of measuring the between-node distance is to use
two types of signals, a radio frequency (RF) one and an acoustic
one, which travel at different speeds. The time difference of ar-
rival (TDOA) between the two signals is then used to calcu-
late the between-node distance [5]. One problem associated with
this distance measuring approach is its inaccuracy. For example,
RF signals are attenuated by metal objects [6] and the speed of
acoustic signals are highly influenced by temperature and mois-
ture [5]. The experiments performed by Whitehouse and Culler
[7] showed that the error of a between-node distance measured
using acoustic time of flight could be as large as 300% of the
true distance. To tackle this issue, Whitehouse and Culler [7]
recommended using a calibration procedure as follows.

• In an offline setting (or during a periodical maintenance
time), the true distance between sensor nodes can be mea-
sured by independent and accurate means.

• Then, establish a mathematical model mapping the dis-
tance measured by TDOA to the true distance.
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• During the service of sensor nodes, the mapping model
established above adjusts the TDOA-based measurements
to a more accurate estimation of the true distances.

Denote by the TDOA-measured distance between trans-
mitter and receiver , by the true distance, and by
the random noise. Whitehouse and Culler [7] discussed sev-
eral common sources of hardware variations: 1) Bias—the time
for a receiver or a transmitter to start sending or receiving a
signal; 2) Gain—the sensitivity of a receiver or a transmitter;
3) Frequency—the frequency difference between a transmitter
and a receiver; 4) Orientation—the relative orientations of a
transmitter and a receiver. With these hardware variations in-
cluded, the calibration model, which maps a measured distance
to a true distance, becomes

(1)

where and are the bias of a transmitter and a receiver
, and are the gain of and , and are related to

the frequencies used by and , and are the orientations
of and , respectively. Here, is a nonlinear function. A
common treatment in the calibration suggested by [7] is to fur-
ther simplify the calibration model (1) by merging the usually
less significant nonlinear terms about frequency and orientation
into so that a linear model structure is used as

(2)

Model (2) is only for a single pair of sensor nodes. For a
sensor network with a number of sensor nodes, we have an ag-
gregated version of model (2) expressed in a matrix format. Sup-
pose we have sensor nodes and each sensor can work as both
a transmitter and a receiver. Indexing sensor nodes from 1 to

, the calibration parameters become . The
number of the pairwise distances among sensors is .
Suppose true distances out of the pairwise dis-
tances are available. In a matrix form, the calibration model for
all sensor nodes becomes

(3)

where is of dimension because each distance is used
twice for a sensor node serving as a transmitter and as a re-
ceiver, is a vector of unknown calibration parameters,

is a matrix having the TDOA
measured distances as some of its entries, and is the vector
of noises. More details are provided in the Appendix regarding
the construction of . During a calibration phase when the mea-
surements in and are known, one estimates the unknown pa-
rameters in ; while during the in-field service time, one will use
the estimated parameter to predict the between-node distance.

Given the linear model structure in (3), it comes as no sur-
prise that the least-squares (LS) estimation is the most popular
method used for estimating ; i.e.,

(4)

In fact, this is what Whitehouse and Culler [7] used in their pro-
cedure. For an LS estimator to be optimal in the sense of min-

imum variance or maximum likelihood, one needs certain as-
sumptions on the noise term— should follow the distribution
of . Statistical research [8] has come to the conclu-
sion that the performance of an LS estimator is sensitive to, and
will deteriorate remarkably in the presence of, model uncertain-
ties and outliers. Absorbing the nonlinear terms in the complete
calibration model into will surely make the model assump-
tion less likely to be true. Another source of concern comes
from the corrupted measurements caused by sensor and com-
munication failures, the presence of which are very likely in a
wireless network since a wireless connection is generally weak
and less reliable, and the TDOA distance-measuring mechanism
is inherently inaccurate. In other words, when a distance mea-
surement is accidentally corrupted, the corresponding data
point could result in a poor estimation of the cali-
bration parameters.

It is worth mentioning that sensor localization is a topic under
intensive studies in recent years ([9]–[12] among others); please
see especially [9] for a comprehensive survey. The term “cal-
ibration” is commonly used in the literature but oftentimes it
entails different meanings. In most of the contexts, calibration
means almost the same thing as “localization,” namely that once
a sensor position is calibrated, it is localized. In this paper, how-
ever, we follow the specific meaning of calibration as defined
by Whitehouse and Culler’s [7] procedure, as outlined above.
Simply put, “calibration” in this article means that the distance-
determining parameters associated with sensor nodes need to be
fine-tuned in order to produce better between-node distance re-
sults. We believe that this calibration problem raised by White-
house and Culler [7] has not been extensively studied in the
sensor localization literature.

B. Robust Estimation and Challenges

Considering the critical role of the calibration parameters in
an ad-hoc network’s service, it is highly desirable to improve its
estimation accuracy and to make the calibration process more
robust with respect to environmental disturbances. For this
reason, robust regression estimators [13] attracted our attention.
Prior research [8] demonstrates that, if properly employed, a
robust estimator can perform very closely to an LS estimation
when the assumptions on strictly hold, and can outperform
an LS estimator otherwise. We are particularly interested in a
class of the so-called high-breakdown point robust estimators.
The concept of a breakdown point was introduced by [14] to
characterize the robustness of an estimator. The breakdown
point is defined as the smallest fraction of data corruptions in
model (3) that can ruin an estimation. Intuitively, the higher
the breakdown point value, the more outliers an estimator can
tolerate.

Applying a high breakdown point estimator (a popular choice
is the least trimmed squares (LTS) estimator [15]) to the sensor
network calibration is, however, not a simple task. There are two
major challenges, both related to some unique features of the
wireless sensor networks. The first is the scale of the system and
the resulting computation cost. A wireless sensor network could
easily have hundreds of sensor nodes, which results in a mathe-
matical model having hundreds even thousands of columns and
rows in the matrix. The sheer scale of the sensor network

Authorized licensed use limited to: Texas A M University. Downloaded on February 5, 2010 at 15:42 from IEEE Xplore.  Restrictions apply. 



CHO et al.: ROBUST CALIBRATION FOR LOCALIZATION IN CLUSTERED WIRELESS SENSOR NETWORKS 83

causes the application of an LTS estimator to be computation-
ally demanding. In the later section of this paper, we present an
example where the FAST-LTS routine in R [16] fails to estimate
the parameters in a moderately large sensor network, even when
a rather long period of time is given.

The second challenge is related to the structure of a wire-
less sensor network. Due to the limited power available on
individual nodes, sensor nodes rarely communicate with all
other sensors in a network. Instead, the whole network is
usually grouped into a number of clusters. A sensor mainly
communicates with the sensors that belong to the same cluster.
The between-cluster communications are limited to a few more
powerful cluster heads or a few nodes that are close to another
cluster. The structure in the network configuration typically
causes the resulting matrix to have structures as well. The
structure in the linear model must be considered when devising
a robust estimator (including the LTS estimator); otherwise,
the estimator may lose its supposed robustness [17]. Mili and
Coakley’s condition is actually a function of a previously de-
fined degree of sensor redundancy of a network (defined in [18]
and [19]). Obtaining the redundancy degree for a large network
once again runs into computation issues. For a large sensor
network, it is almost impossible to compute the redundancy
degree by using the enumerative algorithm proposed in [18]
and [19].

It turns out that the existence of a cluster structure in a sensor
network configuration actually provides the opportunity to over-
come the challenges faced by the application of a robust esti-
mator. Simply put, the existence of a cluster structure allows us
to decompose the whole network into smaller subsystems, of
which the computation becomes much less demanding. In fact,
the decomposition algorithm presented in [20] can compute the
redundancy degree faster for a structured linear model. Our first
objective is to establish a model that enables the decomposi-
tion algorithm in [20] to be applied to clustered wireless sensor
networks.

During our investigation, we notice that for a large sensor net-
work, even the decomposition algorithm in [20] may fall short
of computing the degree of redundancy. Then, the strategy for
a large scale system is that, instead of computing the exact re-
dundancy degree, one may want to compute a lower bound. Re-
search in the robust statistics [15] tells us that using an underes-
timated redundancy degree could still retain certain robustness
at a suboptimal level. Hence, our second objective is to compute
a lower bound of the redundancy degree by utilizing the cluster
structure in a network configuration. Finally, we also devise a
subcalibration procedure that utilizes the clustering information
when computing the LTS estimation. Doing so appears to speed
up the computation of LTS estimators a great deal.

C. Contribution and Organization of the Paper

Our contribution of this paper can be summarized in the fol-
lowing: 1) we establish a model for clustered sensor networks
for the purpose of parameter calibration (Sections II-A and
II-B). This model is essential for the decomposition algorithm
in [20] to be applied; 2) we propose a new algorithm for com-
puting the lower bound of the sensor redundancy (Sections II-C

and II-D); 3) we propose a new way to compute the LTS
estimator based on individual clusters instead of the entire
network (Section II-E). We noticed that clustering was used for
the general localization purpose (for example, in [10]), but to
our knowledge, clustering has not been used in a calibration
problem. In fact, the robustness impact on estimation due to
sensor or communication failures appears to be relatively a new
issue; the estimation methods cited in the survey paper [9] are
mainly LS, weighted LS, or maximum likelihood-based, which
are not robust against the existence of measurement corruptions
or outliers.

The remainder of the paper is organized as follows. Section II
presents a decomposition algorithm for clustered sensor net-
works. It also shows how a lower bound of sensor redundancy
can be computed and how the LTS can be computed on subcali-
bration models. Section III presents two examples of the robust
calibration procedure and compares the performances of dif-
ferent approaches. Finally, we conclude the paper in Section IV.

II. CALIBRATION REDUNDANCY AND ITS LOWER BOUND

Our research development is based on model (3). We include
in the Appendix the details of how such a model can be estab-
lished. Based on this linear model, we will use the LTS estimator
to eliminate the influence of some corrupted measurements. The
LTS estimator is given by

(5)

where is called the trimming parameter, and

are the squared residuals
for arranged in ascending order. Essentially, the
LTS estimator chooses a subset of measurements that are likely
not corrupted to fit the parameters, and the trimming parameter

decides the size of the subset of measurements.
In order to evaluate the robustness of a robust estimator,

Donoho and Huber [14] introduced the concept of finite sample
breakdown point. Based on the theoretical results presented
in Mili and Coakley [17], the maximum attainable breakdown
point can be expressed

(6)

where denotes the largest integer smaller than or equal to
and is the minimum number of the row vectors in ,

whose removal from makes the remaining matrix rank defi-
cient. This is in fact the degree of sensor redundancy as
defined in [18] and [19]. The redundancy degree is also
called calibration redundancy in this paper. Mathematically, it
was defined as

there exists

where represents the rank function of a matrix and
is the reduced matrix after deleting rows in . The physical
interpretation of the calibration redundancy is as follows. The
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Fig. 1. Bordered block form and wireless sensor network. Here and also in Fig. 3, each node cluster is a clique, but this simple structure is constructed for the
sake of illustration. For the proposed algorithms to work, each node cluster is not required to be a clique. (a) Bordered block form. (b) Wireless sensor network
with clusters.

rows in is a vector function of a distance measurement. Par-
ticularly, one can see from (18) (in the Appendix) that the row
vectors in take one of the following vector forms:

• ,
• , or
• ,

where , and are unit row vectors, is a zero row vector,
and is a distance measurement. The distance measurement
in each row vector in is unique, so deleting a row vector in

implies that we disregard the distance measurement corre-
sponding to the deleted row. To that extent, the calibration re-
dundancy indicates the number of distance measurements
that a sensor network can disregard while still uniquely esti-
mating the unknown parameters .

For a better engineering interpretation, can be trans-
formed into an integer as

(7)

and is labeled as the fault tolerance capability. The
benchmarks how many corrupted measurements

an estimator can tolerate before breaking down. Apparently,
is decided by the sensor network configuration that is

modeled by .
The commonly used algorithm to compute this redundancy

degree is the enumerative rank testing algorithm [18], [19],
which literally follows the definition of and tests the
ranks of all the reduced matrices . The computation of

the enumerative rank testing is proportional to
so that the computation time increases rapidly when or

increases.
As mentioned in Section I, a decomposition algorithm devel-

oped in [20] can remarkably improve the computation efficiency
for evaluating the redundancy degree. In the rest of this sec-
tion, we first show how such a decomposition algorithm can be
applied to a clustered wireless sensor network (through a ma-
trix transformation in Sections II-A and II-B). Then, we devise
a recursive procedure to obtain a lower bound of the calibra-
tion redundancy (Section II-C) and show how the lower bound
should be used (Section II-D). Finally, a subcalibration-based
LTS computation procedure is developed (Section II-E).

A. Application of the Decomposition Algorithm

Our research finds that in order to use the decomposition al-
gorithm in [20], one need to transform the model matrix into a
bordered block form (BBF) [refer to Fig. 1(a)]. In a BBF matrix,
the nonzero submatrices along the diagonal are called blocks
and the nonzero submatrix at the bottom is called a border. A
BBF matrix is defined so that the rows of the border submatrix
has nonzero elements in the columns of at least two blocks (for
more discussions on BBF, please refer to [21]).

Suppose that such a transformation can be done (and we will
discuss how to do it in Section II-B). The search for can be
performed in two stages. First, perform the rank testings of the
original matrix until the number of the deleted rows reaches
a bound, and then, perform the rank testings on the submatrices
consisting of the individual blocks and the rows in the border,
until the redundancy is found.

The bound that allows the switch from a full-matrix rank
testing to a submatrix rank testing is decided primarily by the
size of the border rows. A detailed procedure of this algorithm
will be presented for our calibration problem shortly. This de-
composition is much more efficient than the enumerative testing
algorithm because the sizes of submatrices are usually much
smaller than that of the original matrix.

A clustered sensor network, shown in Fig. 1(b), can actually
be modeled, quite ideally, by a BBF matrix. The essence of
a clustered network is that there are abundant communication
channels among the sensor nodes within a cluster, while there
are relatively fewer communication channels between clusters.
The between-cluster communications are generally conducted
by the sensor nodes serving as the cluster heads or those closest
to their neighboring clusters. Using the terms of a BBF matrix,
the communication links between sensor nodes within the same
cluster are modeled as the blocks, and the between-cluster com-
munication links correspond to the border rows.

To see this more specifically, we use a graph representa-
tion. Denote by a graph representation for a wireless
sensor network, where is a set of vertices corresponding
to sensor nodes, and is the set of edges corresponding to
the communications between sensor nodes. The communica-
tions between the anchor nodes are not included in since
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Fig. 2. Graph representations of the wireless sensor network in Fig. 1(b). Here the dashed line represents the communication link between two anchor nodes and
the solid lines represent the communication links between regular nodes or between a regular node and an anchor node. (a) Disconnected clusters. (b) Connected
clusters.

Fig. 3. The design matrix consists of disjoint submatrices. This is corresponding to the case of disconnected clusters in Fig 3(a). � is the TDOA-measuring
distance between nodes � and �.

the calibration parameters associated with those nodes are al-
ready known. For the wireless sensor network in Fig. 1(b),
suppose that the between-cluster communication occurs only
between the anchor nodes (which are micro-calibrated), and
the communication link {(3,5)} does not exist. The graph rep-
resentation of the sensor network of this two-cluster network
is shown in Fig. 2(a), where the communication between the
microcalibrated sensors is depicted as a dashed line. Since the
two subgraphs in is connected by a dashed line,
is considered disconnected. The calibration matrix of this
sensor network is a composition of disjoint submatrices as il-
lustrated in Fig. 3. This calibration matrix form is a special
BBF, known as a block form, where no border row exists. For
such a calibration matrix, the calibration redundancy is
simply the smallest value of the calibration redundancies asso-
ciated with disjoint submatrices.

If both between-cluster communication channels in Fig. 1(b)
are working, then, its graph representation is shown in Fig. 2(b),
where is not disconnected since there is a solid line

connecting vertex 3 in one subgraph to vertex 5 in the second
one. As such, the corresponding is not in a block form but
a bordered block form and is shown in Fig. 4. The tenth and
fourteenth rows of the matrix in Fig. 4 are the border rows,
which are associated with and in the wireless sensor
network, or associated with edge (3,5) of in Fig. 2(b). Appar-
ently, by removing edge (3,5), would become disconnected.
Accordingly, if we eliminate the border rows associated with
edge (3,5), the corresponding calibration matrix would be in a
block form.

In order to denote the blocks and the border rows, we use
the set of row labels and column labels. Denote by the
submatrix of with the row set and the column set , i.e,

; also let and
. Denote by the set of row labels associated

with the border rows. The notation represents the
rest of the original matrix after removing its border rows
so that is in a block form. Let be the number
of blocks in the BBF of the calibration matrix . Denote by
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Fig. 4. The design matrix in a bordered block form. This is corresponding to the case of connected clusters in Fig. 3(b). � is the TDOA-measuring distance
between nodes � and �.

the row sets of the blocks of , and
by the column sets of the blocks of ;
i.e., are the blocks of .
Furthermore, the th cluster of a sensor network is defined as
the set of the sensor nodes, of which unknown calibration pa-
rameters are , i.e., for . The th
cluster matrix, denoted by , is defined as for

.
The decomposition algorithm for computing pro-

posed in [20] can be rewritten using the cluster matrices
. Theorem 4 in [20] that enables the

decomposition of into submatrices is presented below as
Theorem 1 using the notations defined in this paper (the proof
is omitted). The decomposition algorithm is summarized as
Algorithm 1.

Theorem 1: If , then

The computational benefit and scalability of the decomposi-
tion algorithm depends on the network topology. It is not dif-
ficult to see that our approach will demonstrate computational
advantages (or being scalable) under the following settings: 1)
there exist relatively many clusters (i.e., many blocks in the
model matrix); and 2) the number of between-cluster links is
much smaller than the total number of communication links
(i.e., the size of the boarder is much smaller than ). We feel
that these settings are not restrictive since a wireless network is
likely to be arranged in small (yet many) clusters with relatively

few communications between clusters, due to the distributing
nature of targets under detection, as well as the requirements on
communication congestion and for power management.

Algorithm 1: Computing the calibration redundancy of
a matrix .

Parameters: integer .

Input: a calibration matrix , the border
rows of , and the row set and column set of blocks

and .

Set ;

Loop

While

If there exist such that

and stop;

Set ;

Loop

While

If there exists such that

for

and stop;

Set ;
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B. Finding Blocks and Border in

Once a linear calibration model is established, one could
follow a procedure established in [20] to decompose the cali-
bration matrix into blocks and borders so that Algorithm 1 can
be applied. The method in [20] to find blocks and borders took
an additional step to represent a matrix with a hyper-graph,
however. In the wireless sensor network problem, because
the original network can be easily represented by a graph as
illustrated in Section II-A, this additional step becomes unnec-
essary. In fact, we are better off in decomposing the calibration
matrix by directly utilizing the graph representation of a sensor
network. Given a sensor network having nodes, when the
network is modeled by a matrix, the matrix could have up to

rows, which is going to be the number of vertices
of the graph used for decomposition in [20]. By contrast, in
our graph representation of the same network, the number of
vertices is only , which certainly makes the decomposition a
lot easier.

In order to decompose the graph representing a wireless
sensor network, we need to find the minimum cut of a graph

. A cut is defined as the set of edges of if there exist two
vertices such that all paths between and pass
through at least one edge of the cut. The minimum cut is the one
of minimum cardinality. Removing a cut will turn the original
graph into disconnected subgraphs. From the definition of a cut,
it is apparent that the rows in corresponding to the minimum
cut in are the border rows of interest. The blocks can be
easily isolated out from the rows in corresponding to the
subgraphs after the removal of . For example, the minimum
cut of the graph in Fig. 2 is {(3,5)} so the border rows are the
rows in containing and , which are the tenth and
fourteenth rows of in Fig. 4.

A number of efficient algorithms to find the minimum
cut are available in graph theory [22]. Reference [23, p.
131] introduces such an algorithm with the complexity

. For the details of other faster
algorithms, please refer to [24] and [25].

C. Lower Bound of the Calibration Redundancy

Algorithm 1 works very efficiently for a matrix having a small
and small-sized blocks but is not so efficient when the size

of or is large. The problem is that the first loop of Al-
gorithm 1 may take too much computation time since it tests
the ranks of the original matrix. Under that circumstance, com-
puting the exact degree of calibration redundancy may become
unaffordable.

It turns out a lower bound of the calibration redundancy is
valuable for robust estimation. Using an underestimated redun-
dancy degree to construct an LTS estimator can achieve certain
degree of robustness though it may not reach the highest at-
tainable robustness level. It is definitely better than using an
ordinary LS estimator or arbitrarily choosing a redundancy
degree for deciding the trimming parameter of an LTS
estimator.

Searching for a lower bound of the calibration redundancy is
usually easier than for the exact redundancy degree. Algorithm

2 presented in the latter part of this section can compute a
lower bound of the calibration redundancy for a large-sized ,
a large , or both. The computation benefit of Algorithm 2
comes from that it avoids testing the original matrix as much
as it could.

Before presenting Algorithm 2, we introduce the following
theorem and corollaries that allow it. First, define the operator

as

where are are the blocks of . This no-
tation indicates that is constituted by two cluster matrices.
Under that circumstance, Theorem 2 suggests a lower bound of

when . This theorem was proven in a
general form (called matroid, which includes matrix as a special
case) in [20] as Lemma 2. We restate the result using the terms
of matrix but omit the proof here.

Theorem 2: Suppose is the set of row labels of
the border rows in , and . Define

.
1) If ,

2) If ,

In order to better reflect the lower bound aspect, the following
corollary is stated as a direct result from Theorem 2. Note that
computing does not involve
directly but involves the cluster matrices and . So
computing the lower bound becomes easier.

Corollary 1: .
When it comes to decomposing the original matrix, removing

each minimum cut can result in two disjoint blocks (since there
will be only two disconnected subgraphs as the result of such re-
moval), but there could exist multiple minimum cuts having the
same cardinality, of which the removal could result in more than
two blocks. Algorithm 1 could utilize more than two blocks all
at once, while Algorithm 2 will utilize only two blocks at each
time. However, owing to the structural result stated in Theorem
2, Algorithm 2 can recursively decompose the remaining matrix.
Thus, if there is more than one minimum cuts, one can choose
any one of them to decompose the matrix into two blocks. What
we mean to do next is to present the results that allow for a re-
cursive procedure.

Denote by such that ; i.e., is a
lower bound of . A lower bound can be obtained
using Theorem 2. Apparently,

and (8)
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In addition

(9)

Using (8) and (9), it is straightforward to get the following result
from Corollary 1.

Corollary 2: Define
; then

Corollary 2 benefits the computation because and
only evaluate a second-layer (and thus smaller) cluster

matrices embodied in a first-layer cluster matrix. This action
can be applied to the next layer until a cluster matrix can no
longer be decomposed. As the decomposition goes deep, the
computation becomes less and less demanding; on the other
hand, the lower bound found also becomes looser, which is
obvious by noting the two inequalities used in (8) and (9),
but given the scale of typical sensor networks, the battle
is principally on the computation side, suggesting that one
will be better off to go as deep as possible in doing the
decomposition.

We also make an extension from Theorem 1 in Corollary 3,
which returns a lower bound instead of the exact value when the
redundancy degree is relatively large. Corollary 3 is a straight-
forward result from (8) and Theorem 1.

Corollary 3: If , then

Finally, we present the following recursive Algorithm 2
based on Corollary 2 and 3. In addition to , executing Al-
gorithm 2 needs a constant , which sets a threshold of com-
putation load for Algorithm 2. Recall that the lower-bound
algorithm aims at reducing the computation associated with
the rank testings before the bound condition in Theorem 1 is
satisfied, under which circumstance the rank testings are per-
formed in an exhaustive manner and could thus be expensive
for a large . The constant sets an upper bound for the
exhaustive rank testings before the bound condition. This
should be set as large as possible because the danger of using a
small is that it may switch the algorithm to the lower-bound
portion too soon and thus results in a poor lower bound. For
a given hardware setting, suppose that one rank testing of the
model matrix takes seconds. So a total of rank testings
take seconds. If this computation is tolerable for one’s
application, then use it; otherwise decrease . In examples in
Section III, we select to be one million for a computer with
3.6-GHz Pentium CPU and 4-GB memory.

Algorithm 2: Computing the lower bound of

Parameters: a matrix and integers

Input: a calibration matrix and a constant .

Function: Lowerbound {

Find the border rows from a minimum cut and the
corresponding cluster matrices and .

If or %If a network
is densely connected

Run the enumerative rank testing algorithm
starting from , and return ;

Else if %If and/or are large

Set Lowerbound %Finding

Set Lowerbound %Finding

Return
; %Corollary 2

Else

Loop

While

If there exist such that

Return ;

Set ;

Return
Lowerbound Lowerbound ;

%Corollary 3

}

Run Lowerbound

D. Robust Estimation Using the Lower Bound

As we pointed out in Section I, the construction of an LTS
estimator needs to consider the redundancy degree . In
order to attain the maximum breakdown point (or equivalently,
the fault tolerance capability), Mili and Coakley [17] stated that
the trimming parameter of an LTS estimator should be in the
range , where and

. When only the lower bound
of the calibration redundancy is available, the exact range for
the optimal cannot be computed. Instead, using to re-
place shifts both and to a larger value. Denote by

and the new range based on such that

and

(10)
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If we choose from , it is likely that the chosen
is greater than or equal to . When , the breakdown
point of an LTS estimator becomes [17]

(11)

where is an LTS estimator whose trimming parameter
is chosen from the new range. Note that the larger the , the
worse off the breakdown point. In other words, the consequence
of using the lower bound is that the resulting LTS estimator will
reach a robustness level lower than the optimally devised LTS
estimator.

Even though on the surface a smaller may give us a better
robustness in the resulting robust estimator, this is actually only
true for . When , the breakdown point of an LTS
estimator is in a complicated form and depends on as well
as [17]. That is the reason why an LTS estimator loses its
supposed robustness altogether and may perform worse than an
LS estimator when using an overestimated redundancy degree.

Under the circumstances when is not known (because
is unknown) but only and are known, the safest

choice is to let . We denote this value as , but the
maximum breakdown point of the LTS estimator with
depends on where lies.

When is an even number, so that
(11) is valid. Then, the maximum breakdown point of the LTS
estimator is

(12)

From (7) and (11), the fault tolerance capability using is

(13)

When is an odd number, and the situation
becomes complicated. If is still greater than or equal to ,
the maximum breakdown point of the LTS estimator becomes

(14)

and the corresponding fault tolerance capability is

(15)

If is less than , it implies that . This is because
and are both integers that are apart by at most one, and so are

and . The situation that could happen only when
the lower bound is the same as . So the maximum
breakdown point of the LTS estimator and the fault tolerance
capability are the same as those in (6) and (7), respectively.

The difficulty associated with the case where is an odd
number is that one does not know the relationship between
and since is unknown, which is the reason why
is calculated in the first place. If we always use (14) and (15),
it will give an overestimated breakdown point or fault tolerance
capability when , or equivalently, when .
This happens because (15) is derived from (11), which is only

valid for an (and this condition is difficult to verify).
Given this difficulty, we suggest using (12) and (13) to calcu-
late the breakdown point and the fault tolerance capability at
all times but acknowledge that the actual LTS estimator can
probably perform slightly better than what the calculated value
suggests.

E. Subcalibration Model in Computing LTS Estimators

The LTS estimator, as defined in (5), can be computed using a
FAST-LTS routine [26] in several statistical software packages
including R [16], S-Plus [27], and SAS [28]. In order to use the
FAST-LTS routine, the user needs to input the trimming param-
eter to ensure the resulting estimation to retain an appropriate
level of robustness. Our analysis in the previous sections essen-
tially provides the proper way of determining the to be used.

Once is determined, computing an LTS estimator using the
original could still be computationally demanding because
the algorithm needs to solve for the minimum sum of squared
residuals out of all the possible combinations. For a large ma-
trix , we propose a subcalibration model, which makes a few
approximations but can greatly speed up the computation.

The subcalibration applies an LTS estimator to the cluster ma-
trix , instead of the original matrix , to estimate the pa-
rameters associated with sensor nodes in that particular cluster.
In this approach, the calibration parameters are estimated sep-
arately for each cluster in the network. In so doing, we assume
that the sensor nodes that are not in the th cluster but communi-
cate with the sensor nodes in the th cluster are microcalibrated.
This assumption could possibly reduce the accuracy of the esti-
mation, but the nice aspect of using a robust estimator is that the
estimation result is not very sensitive to this assumption. Since
the LTS estimator eliminates suspicious data points, inaccurate
values resulting from the assumption will be disregarded. As
one will see in Section III, doing the calibration for each cluster
separately causes little difference as compared to calibrating the
whole network using the FAST-LTS routine.

More specifics of the subcalibration model is given as fol-
lows. Denote by the parameters associated with the sensor
nodes in the th cluster, by the true distances associated with
the row labels of , and by the corresponding random
noises. Because we assume that the sensor nodes connecting to
the th cluster are microcalibrated, we deem that the parameters
associated with those are constant. Then, we can write the fol-
lowing subcalibration model for the th cluster:

(16)
In the above model, has the same
dimension with the subvector of after is excluded, in
which the constants 0’s and .5’s are the parameters associated
with the sensor nodes communicating with sensor nodes in the
th cluster, and the “ ,” meaning that an arbitrary value can be

chosen, corresponds to the parameters of the nodes that are nei-
ther in the cluster nor communicating with the th cluster. The
computation benefit of using the subcalibration model will be-
come apparent in the numerical examples shown in Section III.
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Fig. 5. Ad-hoc sensor network example. There are a total of 20 sensors, forming
two clusters. The communication limit is one normalized unit of distance.

III. NUMERICAL EXAMPLES AND DISCUSSIONS

A. Examples and Comparisons

This section presents two examples of wireless sensor net-
work with different scales and complexities. Fig. 5 shows the
configuration of a wireless sensor network, where “ ” denotes
the location of a sensor node. Note that the coordinates in Fig. 5
have been normalized for convenience and thus the unit has no
physical meaning. There are a total of 20 sensors, among which
the sensors at locations (1.0, 1.0) and (2.6, 2.6) are microcali-
brated so that their calibration parameters are set to be constants,
and the remaining 18 sensor nodes are ordinary ones whose pa-
rameters are to be estimated. The sensors are assigned an index
from 1 to 20, where the numbers of 19 and 20 are reserved for
the two anchor nodes.

The limit of the communication distance between a pair of
sensor nodes is 1 (that is what we chose as the basic unit to scale
the sensor network), meaning that the sensor nodes that are apart
farther than this limit cannot communicate with each other. Ap-
plying this rule to the sensor network in Fig. 5, we can obtain
a graph representation of the network in Fig. 6, where one can
easily observe two clusters and the between-cluster communi-
cation is through the pair {(9,12)}.

The linear calibration matrix can be established following the
procedure outlined in the Appendix, or a more detailed proce-
dure in [7]. Given that there are four parameters associated with
each sensor node to be calibrated, the dimension of is .
From Fig. 6, we count edges in the graph so that the
size of is . This means the calibration matrix is
a 154 72 matrix. We choose to omit here to save space.

Finding the calibration redundancy of a 154 72 matrix is
computationally difficult. The enumerative rank testing method

Fig. 6. Graph representation of ad-hoc sensor network example. The edge
{9,12} is the minimum cut in the graph, corresponding to the border rows in
the model matrix.

will run up to rank testings. Since we know
in this case from our latter analysis,

. Even for the best case scenario, where the enumerative
algorithm finds at its first rank test right after reaches 5,
it still needs to go through rank
testings. Implementing the enumerative rank testing in C++, we
ran it on a computer equipped with a 3.6-GHz Pentium CPU
and 4-GB memory. The program is terminated after a day of
computing since it has already taken far more time than the de-
composition algorithm.

In order to use the algorithms presented in this paper, we need
to identify the BBF of first. One can find the minimum cut
of the graph in Fig. 6 using the algorithm in [23], or because
of the simple network configuration here, one can actually tell
which set of edges is the minimum cut by simply observing the
graph. The minimum cut is {(9,12)} so the border rows are
associated with and . Subsequently, we
can identify two cluster matrices and corresponding
to the sensors contained in each circle in Fig. 5, respectively.
The is a 80 36 matrix, and is a 76 36 matrix.

Since is less than , the constant used in
Algorithm 2 (recall we set ), Algorithm 2 tests the rank
of for to and finds that

. Then, we can apply Theorem 1 so that should
be the smaller one of the calibration redundancies of the two
cluster matrices. Testing the ranks of and is much
faster, and we get and . By Theorem
1, . The computation of by the decomposition
algorithm took less than two hours on the same computer as
mentioned earlier. The number of rank-testing operations is only
about 1% of that in the best case scenario for the enumerative
algorithm.
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TABLE I
MSE AND COMPUTATION TIME OF THE EXAMPLE IN FIG. 6

To illustrate the robustness of the LTS estimator, we simulate
instances of the calibration process using the above

sensor network and compare the mean of squared errors (MSE)
of the parameter estimation with an ordinary LS estimator. We
use two methods to compute the LTS estimator; one is to run
the FAST-LTS routine [26] in on model (3) and the second
is to run the same routine on the subcalibration models in (16).
We assume that a distance measurement in is contaminated
by a small measurement device error, normally distributed with
zero mean and a standard deviation of .002, and a distance mea-
surement in is contaminated by a relatively large measure-
ment error with zero mean and a standard deviation of .01. We
simulate the corrupted distance measurements due to sensor or
communication failures by adding a substantial deviation (up to
100%) to some of the measurements in . The MSE of the pa-
rameter estimation is calculated as

MSE

Since , we simulate the cases with no, one, and two
corrupted measurements, respectively. Table I summarizes the
MSEs and the computation time of the LTS estimators and the
LS estimator. With the presence of data corruptions, the LTS
estimator is more robust than the LS estimator, as indicated
by its relatively flat MSE value, whereas the MSE values of
the LS estimator escalate rapidly. The former’s MSE is about
one-fifth of the latter’s. Regarding computation, an LTS estima-
tion is obviously much more expensive than an LS estimation,
but it is worth noting that utilizing the cluster structure in the
network can remarkably reduce the computation of an LTS esti-
mator—the LTS estimation using the subcalibration model con-
sumes about only 5% of the time using the original model (3),
while the supposed robustness of an LTS estimator is by and
large maintained.

One alternative method engineers sometimes use to handle
outliers is a self-diagnosis procedure to identify and eliminate
the outliers. It starts with an LS estimation using all measure-
ments, and then, obtain a new LS estimation by hypothetically
eliminating one measurement, and do so for every individual
measurement. Comparing the new LS estimates with the one ob-
tained without eliminating any measurements could potentially
lead to the identification of an outlier. If applying this procedure
to a system where there are two outliers, the self-diagnosis pro-
cedure needs to run until three measurements are eliminated,
implying a total of executions of the LS esti-
mation. Then, the total time spent using this self-diagnosis pro-
cedure is twice more than using the subcalibration based LTS.
Furthermore, this sequential way of performing self-diagnosis
also suffers from a shortcoming that the existence of multiple

Fig. 7. Graph representation of the second ad-hoc sensor network example.
There are 40 sensor nodes, forming four clusters. The anchor nodes are {9, 15,
21, 36}.

outliers makes it difficult to identify the outliers correctly. By
comparison, the proposed method is more robust and techni-
cally sound than the self-diagnosis mechanism.

The second example concerns a network twice larger than
(comprising sensors) that in the first example. The com-
munication limit is the same as before. The graph representation
is shown in Fig. 7, where edges are counted. There
are four microcalibrated anchor nodes in this network so that

parameters are associated with the remaining 36 or-
dinary sensors. The calibration matrix is thus of 318 144.
The size of this matrix makes it almost impossible to use the
enumerative rank testing algorithm for computing the calibra-
tion redundancy.

It is equally difficult to use Algorithm 1 to compute the exact
calibration redundancy in this case. To illustrate this, consider
the following. There are two minimum cuts of equal cardinality:
{(1,12)} and {(24,35)}, and their cardinality is one. We thus
partition into blocks and border rows (since
each edge in the graph corresponds to two rows). Algorithm 1
would have to test a total of ranks
of reduced matrices of before testing any cluster matrices.

For a system of this size, it is safer to start with Algorithm 2,
which decomposes the original matrix recursively. The first step
is to choose either one of the two minimum cuts, say {(1,12)},
to partition the graph and the corresponding matrix. We end
up with two border rows and two cluster matrices,

of 80 36 and of 240 108, which correspond
to C1 and the collection of C2, C3, and C4 in Fig. 7. Since

, we test the rank of
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TABLE II
MSE AND COMPUTATION TIME OF THE EXAMPLE IN FIG. 7

for and find that . After that, we need to find
the minimum of and as stated in the last line
of the function Lowerbound in Algorithm 2.

Second, for the first cluster matrix , it is no longer ben-
eficial to decompose further since the sensors within the cluster
are densely connected; its redundancy degree is computed by
simply testing the ranks of the reduced matrices . Given

its much smaller size, the computation associated with is
very much affordable. We find that . The cluster
matrix can, and should, be decomposed. The minimum
cut for the subgraph associated with is {(24,35)}. After
decomposing the second cluster matrix, we obtain two border
rows (i.e., ) for and two second-layer cluster ma-
trices of 160 72 and of 82 36. Then, we need
to find the minimum of and , as we did in
the first iteration.

Third, it turns out that , which corresponds to C3,
needs no decomposition but does. Testing on ,
we find . Continue carrying out the decom-
position on similar to what was done above. We find
that the minimum cut is {13,32} and {16,32}, so there are
four border rows (i.e., ). The third-layer cluster ma-
trices are of size 86 36 and of size 78
36, which correspond to C2 and C4 in Fig. 7, respectively.
Now, for , , so

we proceed to find using Corollary 1. For that, we
obtain and , so

. By Corollary 1,
.

Finally, we can get a lower bound by by combining the
results given above. We have and

. By Corollary 3, a lower bound of is
. Using Corollary 3 one more time (with
), one can get a lower bound of as .

Given this lower bound , the trimming parameter in LTS
estimation is according to (10). Using this to con-
struct an LTS estimator leads to a robust calibration estimate
with the fault tolerance capability of . The
simulation results of the second example, performed under the
same setup of the previous example, are summarized in Table II.
We report a “fail” under the column of FAST-LTS because it
failed to compute the LTS estimation after continuously run-
ning for two weeks. By comparison, the LTS estimator using the
sub-calibration model is much faster and finishes in about half
a minute. The MSE of the LTS estimator is considerably lower
than that of the LS estimator when there is one sensor fault or
one corrupted measurement but not so much better when the
number of data corruptions becomes two. This numerical result
is consistent with the theoretical analysis of the fault tolerance
capability associated with this LTS estimator (which indicates

). The actual redundancy could be higher
but without knowing the exact redundancy degree it is safer to
use the lower bound value that leads to certain robustness at a
suboptimal level.

B. Discussions on Scalability

We made comments about the scalability issue at the end of
Section II-A and outlined the conditions under which the de-
composition algorithm can work well. Here, we would like to
provide some further elaborations.

The time consumption of using the proposed method comes
from two aspects: the time to decompose the whole system into
subsystems (i.e., decompose a big model matrix into smaller
submatrices) and the time to compute the LTS based on the
subcalibration models (using individual submatrices). The latter
part, i.e., the computational complexity of LTS algorithm is a
subject studied in statistical literatures. Our method does not di-
rectly improve the LTS routine itself. Our method can do better
because it is much faster to conduct the LTS computations on
smaller submatrices. So our focus of discussions here is re-
garding the decomposition.

From Algorithm 1, the computation time of the decomposi-
tion is determined by how many times one needs to evaluate

or . We call such an evaluation of the rank
of a matrix a rank test. The total number of rank tests required
for a system is a function of the number of rows, its border size

, and its calibration redundancy . Suppose that there are
blocks in a matrix, each of which has number of rows, and
the bound condition in Algorithm 1 is indeed satisfied (namely

). Then, the total number of rows in is .
When using our decomposition algorithm, we can calculate the
total number of rank tests that are needed to find as

When using the exhaustive search algorithm, the total number
of rank tests is

Tables III and IV compare the numbers of rank tests from
some selected systems of different sizes when using both
methods. The first author has also performed a numerical study
in his dissertation [29]. It is worth to note that the first example
in [29, Table III], which uses a matrix of 26 rows, matches the
first example in Table IV. The ratio of the number of rank tests
between the two methods is 78, very close to the ratio of the
CPU times in [29, Table III] (which is 80). This verifies that the
CPU time is indeed proportional to the number of rank tests.
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TABLE III
RANK TEST RESULTS WHEN ��� � �, � � ��, � � �

TABLE IV
RANK TEST RESULTS WHEN ��� � �, � � �, � � �

The rank-test results (and the computational results in [29,
Table III] as well) show that the decomposition algorithm has a
reasonably good scalability when the model matrix is properly
structured.

IV. CONCLUSION

This paper discusses the computation aspect of using a ro-
bust regression estimator for a robust calibration of an ad-hoc
wireless sensor network. When an LTS estimator is used, one
can gain certain robustness against outliers, measurement cor-
ruptions, and/or violation of model assumptions, but the down
side is its expensive computation, especially for a large scale
network. Our research presents one model that enables a de-
composition procedure, an algorithm of computing the lower
bound of calibration redundancy, and one subcalibration model
that can greatly reduce the computation of solving for the LTS
estimation. The computational benefit and the gain in robust-
ness are illustrated using two sensor network examples. In our
examples in Section III, we only demonstrate the robustness of
an LTS estimator against data corruptions. In fact, an LTS es-
timator is also able to provide robustness in estimation against
other types of disturbances such as violation of normality and
model uncertainty; please refer to [8] for more details.

Our method provides more accurate estimates of the distance-
determining parameters associated with sensor nodes. The ben-
efit is that the more accurate the parameters are used during
the service time, the more accurate between-node distances an
TDOA mechanism can produce, and then, the more accurate a
sensor node can be localized. Even though our approach helps
improve the computation aspects for robust calibration, the cur-
rent version is still not fast enough in real time. The current ver-
sion is more suitable for offline applications or for periodically
calibrating a sensor network during a downtime maintenance
mode.

Fig. 8. Wireless sensor network example. There are three sensor nodes. � de-
notes the true between-sensor distance.

Please note that in this paper we only perform an analysis
(rather than synthesis) of redundancy and fault tolerance de-
gree for the calibration problem. In the examples presented in
Section III, one can observe that the levels of fault tolerance ca-
pability are not high, suggesting that the LTS can only provide a
safeguard against a few sensor failures. The low fault tolerance
capability observed in the examples points to the necessity of de-
veloping optimization methods that can improve the robustness
level of a sensor network. Maximizing the fault tolerance capa-
bility of a sensor network is certainly computationally expen-
sive, and solving it is more challenging than the analysis work
presented here. Answering this question is outside the scope of
this paper but that is actually where our continual research ef-
forts are going.

APPENDIX

LINEAR CALIBRATION MODEL

This appendix provides additional steps showing how model
(3) is aggregated from model (2).

In model (2), we set four parameters for a single
wireless sensor node because a sensor node is assumed to work
as both a transmitter and a receiver. Denote by the set of the
available true distances. In Fig. 8, for example, suppose that the
available true distances are and ; then, .
The actual number of the true distances used in the model dou-
bles the cardinality of since the between-node communica-
tions are two-way. We need to duplicate the elements in such
that and include them in a new vector . For the
example in Fig. 8,

Denote by the vector of all the calibration parameters

In Fig. 8, we have three sensor nodes, so is a 12 1 vector.
For a given and , it is straightforward to obtain the following
matrix expression from (2)

(17)
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where is a matrix function. For the sensor network
in Fig. 8, the matrix is

(18)

In order to uniquely estimate in (17), should be of full
column rank. A necessary condition is to have . This
condition can be achieved if we include more sensors in a net-
work. The number of pairwise distances increases
faster than the number of parameters.

In many cases, however, even if holds, we may still
run into a that is not of full column rank. It turns out that the
following linear dependence relationship exists:

where denotes the th column vector of . This means that
the original calibration formulation introduced in the wireless
network literature ([7], [30]) over-parameterizes the system. In
order to uniquely estimate the calibration parameters, additional
constraints should be used to make the linear matrix of full
column rank.

The constraint we use here comes from the small number of
anchor nodes; we assume that each cluster has one anchor node,
which is able to communicate with all the nodes in a cluster.
This appears feasible even if the anchor node is not in the center
of a cluster because an anchor node is typically more powerful
in terms of communication. According to [7], the anchor nodes
can be microcalibrated, meaning that these sensor nodes are
regularly maintained and their distance-determining parameters
are accurate. Then, the calibration parameters associated with
the anchor nodes can be set as constants. In this research, the
parameters of the anchor nodes are set as (0, 0, .5, .5), which
were suggested in [7]. Through hardware adjustment, one could
possibly set the parameters to other constant values.

Let be the vector of the calibration parameters of anchor
nodes and be the vector of the unknown calibration parame-
ters. Permute the rows in such that

Likewise, denote by the submatrix of associated with
and by the submatrix of associated with . Permute the
columns in such that

Then, (17) can be rewritten as

(19)

By defining , we construct the calibration model in
(3), of which the number of elements in is denoted by .

In this paper, is assumed to be of full column rank. We also
assume that there exists a central processor that can access the
global information about the network. Once the communication

linkages are established in a sensor network, each node can re-
turn its connectivity information to the central processor, which
can be used to establish a graph structure of the network for the
procedures in Section II.
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