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We provide a new necessary and sufficient check for testing the isomorphism of two 2-level
regular fractional factorial designs. The approach is based on modeling fractional factorial de-
signs as bipartite graphs.We employ an efficient canonical graph labeling approach to compare
two designs for isomorphism. We then improve upon the existing non-isomorphic fractional
factorial design generation algorithmby reducing the number of candidate designs fromwhich
isomorphs need to be removed. Not only does our method generate non-isomorphic designs
much faster, it is also able to generate designs with run sizes of 2048 and 4096 runs, which
were not generated by the existing methods.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fractional factorial designs are a popular choice in designing experiments for studying the effects of multiple factors simul-
taneously. A good introduction to factorial designs can be found in Wu and Hamada (2000) and Box and Hunter (1961, 2000).
Recently, there has been greater interest in designing experiments for studying large-scale systems. The first step in planning such
an experiment is the selection of an appropriate fractional factorial design. An appropriate design is one that has the statistical
properties of interest of the experimenter and has small number of runs. This requires that a catalog of candidate designs be
available (or be possible to generate) for searching for the `good' design. In the attempt to generate the catalog of candidate
designs, the problem of design isomorphism must be addressed.

Two designs with the same number of runs, factors and levels are called equivalent or isomorphic to each other if one can be
obtained from the other by some relabeling of factor labels, changes in run order or relabeling of level labels in the design matrix.
This is also known as combinatorial isomorphism in literature (Cheng and Ye, 2004). A catalog of candidate designs should only
contain those designs that are distinct or non-isomorphic to each other. This is so because statistical properties of two isomorphic
designs are the same. Keeping isomorphic designs wastes the effort of the experimenter when searching for a design. Moreover,
the size of the catalog can be greatly reduced by discarding isomorphs. For example, according to Chen et al. (1993), the total
number of 215−10 designs is 5,311,735, where the number of unique or non-isomorphic designs of resolution �3 is only 144.

The objective of this paper is to provide an efficient method for generating all the distinct 2-level regular fractional factorial
designs. The typical solution procedure primarily involves discarding isomorphs from the large collection of designs by using
some isomorphism check. The problem of checking two designs for isomorphism, however, is combinatorial as the total number
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Table 1
Isomorphism checks proposed in literature.

Isomorphism check Type of check Type of design Relevant papers

1 Word length pattern (WLP) Necessary Regular, multi-level Draper and Mitchell (1967), Chen et al. (1993)
2 Letter pattern matrix Necessary Regular, multi-level Draper and Mitchell (1970)
3 Hamming distance based Necessary and sufficient General, multi-level Clark and Dean (2001)
4 Centered L2 discrepancy Necessary General, multi-level Ma et al. (2001)
5 Extended word length pattern Necessary General, 2-level Sun et al. (2002)
6 Minimal column base Necessary and sufficient General, 2-level Sun et al. (2002)
7 Indicator function representation based Necessary and sufficient General, 2-level Cheng and Ye (2004)
8 Moment projection pattern Necessary Regular, multi-level Xu (2005)
9 Coset pattern matrix Necessary Regular, 2-level Zhu and Zeng (2005)
10 Eigenvalues of word pattern matrices Necessary (and conjectured sufficient) Regular, 2-level Lin and Sitter (2008)

of relabelings of a 2n−k designs is (n!)(2!)n(2n−k!). Also, in general, the total number of 2n−k designs is ( (2
n−k−1)−(n−k)

k ). Thus,
the problem of generating non-isomorphic designs, given an efficient isomorphism check, involves comparing a combinatorially
large number of designs. For these reasons this problem of generating fractional factorial designs is computationally tough. The
best results, for generating the collection of non-isomorphic 2-level regular fractional factorial designs, have so far been reported
by Lin and Sitter (2008). Their partial check is a fast method for comparing two fractional factorial designs for isomorphism. The
partial check is proven necessary but appears to be necessary and sufficient in practice (Lin and Sitter, 2008). The largest catalogs,
of non-isomorphic designs, that they could generate were the set of 512-run designs with resolution �5 and 1024-run even
designs with resolution �6. The generation of 217−8 (512-run) designs with resolution �5 took them about 12 days (Lin and
Sitter, 2008).

We provide a new approach for testing the isomorphism of two 2-level regular fractional factorial designs by modeling them
as simple bipartite graphs. The problem is now transformed into a graph isomorphism problem. We use an efficient graph
isomorphism check algorithm (McKay, 1981) to provide a necessary and sufficient check for design isomorphism. For generating
the complete set of non-isomorphic 2-level fractional factorial designs, we improve Lin and Sitter (2008)'s generation algorithm
by using our isomorphism check and reducing the size of the collection of designs from which isomorphs are to be eliminated.
We extend some results from graph isomorphism literature to develop this reduction procedure.

The contributions of our paper are twofold: (i) we provide a new necessary and sufficient check for design isomorphism;
(ii) we provide a design generation algorithm that can generate non-isomorphic designs much faster than any of the previous
methods. As a result of this we are able to generate designs with run sizes of 2048 and 4096 runs, which were not generated by
any existing methods.

The rest of this paper is organized as follows. Section 2 surveys the literature on fractional factorial design isomorphism. In
Section 3, we give details on the proposed isomorphism check. Next, we give details on the isomorph-free design generation
algorithm in Section4. Section5presents the computational results using theproposeddesign generation algorithmand compares
themwith othermethods.We conclude in Section 6, giving insights into the improvements and possible extensions of the current
work.

2. Literature review

There are two main components in the procedure for generating fractional factorial designs—the isomorphism check and the
design generation algorithm. The isomorphism check gives a condition that can be used to test if two designs are isomorphic
or not. The design generation algorithm provides a procedure to generate the entire non-isomorphic set without considering all
possible comparisons among all the designs.

2.1. Isomorphism checks

Isomorphism checks can be categorized by their classification capability—whether they are necessary or, both, necessary
and sufficient1 conditions. Necessary checks are usually faster than necessary and sufficient checks but are not always able to
differentiate between two isomorphic designs. Table 1 summarizes the major isomorphism checks in literature. We do not claim
that we have listed all the approaches proposed in literature but we do list the most promising approaches proposed for regular
fractional factorial designs. For a comprehensive review, see Katsaounis and Dean (2008).

Most of the criteria summarized in Table 1 provide necessary conditions only, except Clark and Dean (2001), Sun et al. (2002)
and Cheng and Ye (2004), who give a necessary and sufficient check, and possibly Lin and Sitter (2008), who conjecture that
their proposed check may be sufficient also. Ma et al. (2001) extended Clark and Dean (2001)'s work and proposed a necessary
check, which they conjectured as sufficient, by using the Hamming distance matrix to define the centered L2-discrepancy, a
uniformity measure, between two designs. We found that Ma et al. (2001)'s sufficiency conjecture does not hold true for 2-level

1 We do not have a sufficient (and not necessary) category since we did not find any isomorphism checks that would fall in this category.
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regular fractional factorial designs (see Appendix B for counterexample). It may be noted that, among the checks listed in Table 1,
Clark and Dean (2001) and Ma et al. (2001) are applicable to general (regular and non-regular) multi-level fractional factorial
designs. Sun et al. (2002) and Cheng and Ye (2004) are also applicable to non-regular designs but are limited to 2-level designs
for checking for (combinatorial) isomorphism. Xu (2005)'s check is applicable to multi-level designs but is limited to regular
fractional factorial designs. Zhu and Zeng (2005) and Lin and Sitter (2008)'s checks are restricted to the class of 2-level regular
fractional factorial designs.

It is also essential to note that there is a fundamental difference between the working of the eigenvalue check (Lin and Sitter,
2008) and the other necessary and sufficient checks. For comparing a collection of m designs, the eigenvalue check involves
running m expensive computations, one for each design and then comparing pairs of eigenvalues (which is computationally
cheap). The other methods, on the other hand, run the expensive computations on each pair of designs to determine if they are
isomorphic or not, which is m(m − 1)/2 runs, in the worst case. This fundamental difference makes the eigenvalue check more
attractive for use in a design generation algorithm.

2.2. Design generation algorithm

The trivial way of finding all the non-isomorphic designs for a given number of factors, n, and fraction, k (or equivalently, the
number of runs, 2n−k) is to generate all the 2n−k designs and compare them for isomorphism. But this approach is impractical due
to the excessively large number of designs (even for small n and k) and the costly isomorphism check. The approaches in Chen
et al. (1993), Xu (2005), and Lin and Sitter (2008) reduce the computational burden by generating a subset of the entire set of 2n−k

designs. Chen et al. (1993) generated this subset by constructing 2n−k designs by adding defining words only to non-isomorphic
2(n−1)−(k−1) designs. Bingham and Sitter (1999) further reduced this set by allowing only those defining words to be used that
follow certain ordering. Chen et al. (1993), Xu (2005), and Lin and Sitter (2008) then decompose this set of designs into smaller
subsets, using a necessary condition (e.g., word length pattern in Chen et al., 1993, or eigenvalue criterion in Lin and Sitter, 2008,
among others), such that two designs belonging to different subsets are non-isomorphic to each other. Isomorphs within each
subset are then discarded using some necessary and sufficient check.

3. The isomorphism check

A 2-level regular fractional factorial design, 2n−k, has n factors, each with two levels, and consists of 2a (a = n − k) runs. Thus,
it is the 1/2kth fraction of a 2n full factorial design, where the fraction is determined by k defining words. Each word consists of
letters (e.g., A, B, C, D) denoting factors. Each letter, denoting a factor, is an element of Galois field GF(2). The defining words
form an abelian group called the defining contrast subgroup. The defining words are a set of generators for this group. The group,
therefore, consists of 2k words, including the identity element which is usually denoted by I.

A fractional factorial design is usually presented in a table, the experimental plan, listing the (ordered) runs and the factor
levels at each run. A design table (or design matrix) is similar to the experiment table but without any specific ordering of the
runs. A 2-level regular fractional factorial design table is uniquely defined by the number of factors, n, and its defining contrast
subgroup, S (or equivalently, a set of defining words). We denote this representation by the tuple {n, S}. It must be noted that
the defining words are not unique for a given design, i.e., two distinct sets of defining words may exist that generate the same
defining contrast subgroup.

3.1. 2-Level regular fractional factorial design isomorphism problem

Since a designmatrix is uniquely defined by its defining contrast subgroup, we have Lemma 3.1, which essentially paraphrases
Theorem 5 of Chen (1992). Hence, we omit its proof.

Lemma 3.1. Two 2-level regular fractional designs, d1 ≡ {n, S1} and d2 ≡ {n, S2}, are isomorphic to each other if and only if one of S1
or S2 can be obtained from the other by some permutation of factor labels and reordering of words.

Lemma 3.1 provides a way of testing if two designs are isomorphic by comparing their defining contrast subgroups for
isomorphism. To solve this, we introduce a graph representation for the defining contrast subgroup.

3.2. 2-Level regular fractional factorial designs as graphs

A simple undirected graph G(V , E) consists of disjoint finite sets V of vertices, and E of edges. Each edge is a pair of distinct
vertices, and no two edges repeat in the edge set E. We provide a new bipartite graph representation of a 2-level regular fractional
factorial design. A bipartite graph G(Va,Vb, E) is a graph in which the vertex set V can be partitioned into disjoint subsets Va and
Vb such that each edge has one vertex in Va and one in Vb.
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Fig. 1. Bipartite graph for the 27−3 design with defining contrast subgroup {ABE,ACF,BDG,ADEG,BCEF,CDEFG,ABCDFG}. Vertices on the left, set Va , correspond to
factors, and vertices on the right, set Vb , correspond to words in the contrast subgroup.

Algorithm 1. Construction of bipartite graph G(Va,Vb, E) for design d ≡ {n, S}
Input: design d ≡ {n, S}

(1) Start with an empty graph with no vertices, i.e., Va = � and Vb = � (and hence, no edges, i.e., E = �).
(2) For each factor in the design d, add a vertex in Va, i.e., add vertices va1, . . . ,van in Va.
(3) For each word in the defining contrast subgroup S, except I, add a vertex in Vb, i.e., add vertices vb1, . . . ,vb(|S|−1) in Vb, where |S|

denotes the cardinality of set S.
(4) For eachword in S, except I, add edges between the vertex (in Vb), corresponding to the word, and the vertices (in Va), corresponding

to the factors in the word.

Fig. 1shows the graph representation of the 27−3 design with contrast subgroup {I,ABE,ACF,BDG,ADEG,BCEF,CDEFG,ABCDFG}.
The vertex ABE in Vb, for example, is connected by edges to vertices A, B, and E in Va.

An alternate graph representation of the design can be obtained by using the treatment combination subgroup, T, of the
design instead of the defining contrast subgroup, S. The treatment combination subgroup of a design is the group formed by the
runs in the design matrix. For example, for the 27−3 design in Fig. 1, the treatment combination group consists of 16 elements
{I,DG,CF,CDFG,BEG,BDE,BCEFG,BCDEF,AEF,ADEFG,ACE,ACDEG,ABFG,ABDF,ABCG,ABCD}, each corresponding to the runs in the
principal fraction. Since the relationship between the defining contrast subgroup and the treatment combination subgroup
is well known to be one-to-one (see for instance Bailey, 1977), it is clear that Lemma 3.1 holds when the defining contrast
subgroup is replaced with the treatment combination subgroup in the lemma. The alternate graph representation for a design
{n, T} is also obtained by following Algorithm 1, but with S replaced with T. For fixed n, since the size of the constructed graph
depends on the size of S or T, the alternate representation gives a smaller graph whenever |T| = 2n−k <2k = |S| or n<2k.
Thus, when converting a design to a graph, we may choose one of the two representations depending on whether n<2k
or not.

3.3. Graph isomorphism and fractional factorial design isomorphism

The graph isomorphism problem is to check, given two graphs, if there exists a relabeling of the vertices of one graph that
would make it identical to the other. The relabeling should preserve the vertex adjacency of the vertices, i.e., if vertices v1 and v2
have an edge between them then the relabeled vertices v′

1 and v′
2, respectively, should also have an edge between them. Fig. 2

shows an example of isomorphic graphs. The graphs in Fig. 2 are essentially mirror images of each other, and one can be obtained
from the other by exchanging vertex labels Awith B and Cwith D.
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Fig. 2. (a) and (b) show two simple graphs isomorphic to each other. Exchanging vertex labels Awith B and Cwith D gives the other graph.

The fractional factorial design isomorphism problem can be translated to the problem of checking isomorphism between the
corresponding graph representations of the twodesigns. The relabelings of factors of a design then correspond to thepermutations
of vertex labels that preserve the partitions and vertex adjacencies in the graph. This is the set of all vertex adjacency preserving
permutations that allow permutations only within each of the partitions.

Theorem 3.2. Two 2-level regular fractional factorial designs, d1 ≡ {n, S1} and d2 ≡ {n, S2},with graph representationsG1(Va1,Vb1, E1)
and G2(Va2,Vb2, E2), respectively, are isomorphic to each other if and only if G1 and G2 are isomorphic to each other.

Proof. See Appendix A.

Theorem 3.2 gives a necessary and sufficient condition for checking the isomorphism between two fractional factorial designs
by solving the graph isomorphism problem. It is clear that a version of Theorem 3.2 can also be written for the case when the
design is represented by its treatment combination subgroup. Since the extension is straightforward we skip the details here.
Our approach to solving the graph isomorphism problem is discussed in Section 3.4.

3.4. Solving the graph isomorphism problem

The graph isomorphism problem has been extensively studied in mathematics and computer science. Much effort has been
put in developing efficient algorithms for this problem. For a review on the history of the problem and algorithmic developments
towards solving this problem, see Read and Corneil (1977) and Fortin (1996). The graph isomorphism problem has its special
place in complexity theory. It is known to be in NP, but it is not known whether it is in P or NP-complete. The graph construction
for a design, as given in Algorithm 1, has time complexity O(n · |S|) (all steps other than step (4) of the construction take linear
time in n or |S|, the number of words in S), or O(n · |T|), if the treatment combination subgroup is used instead. Thus, a design
can be transformed into a graph in polynomial time (polynomial in the number of factors and the number of words in S or T).
Therefore, the problem of determining whether two designs are isomorphic or not is no tougher than the graph isomorphism
problem.

There are two primary approaches to solving the graph isomorphism problem. One is to test the isomorphism between two
graphs by directly attempting to find a relabeling map that makes one graph identical to the other. The other approach, which
we use, is the so-called canonical labeling approach. In this approach, a canonical graph is obtained for each graph. The canonical
graph is computed in such a way that if two graphs are isomorphic to each other, then the canonical graphs computed for the
two graphs are identical.

The most efficient canonical labeling algorithm is implemented in a C package nauty based on McKay (1981). This package is
available freely for research purposes from the developer's website (McKay, 2004). The algorithm is known to take exponential
running time, in the number of vertices, in the worst case (Kocay, 1996). This suggests that, in the worst case, the design
isomorphism problem can be solved in exponential time in the number of words in the defining contrast subgroup or treatment
combination subgroup (since Algorithm 1 requires O(n · |S|) or O(n · |T|) running time to transform a design to a graph). But in
practice nauty has been found to be extremely efficient for most graphs and outperforms all other graph isomorphism algorithms
(Kocay, 1996). Therefore, we expect our isomorphism check to also be very efficient for most 2-level regular fractional factorial
designs.

4. Generating isomorph-free collections of 2-level fractional factorial designs

We generate the set of non-isomorphic 2n−k designs in a recursive manner, as in Chen et al. (1993) and Lin and Sitter (2008).
We start with the only 2a (a = n − k) full factorial design, generate all non-isomorphic 2(a+1)−1 designs, then all non-isomorphic
2(a+2)−2 designs, . . . , and finally all non-isomorphic 2(a+k)−k (i.e., 2n−k) designs. Each intermediate step involves constructing
larger (children) designs by adding a new factor and defining word to smaller (parent) designs.

For generating the set of non-isomorphic 2(n+1)−(k+1) designs from the set of 2n−k designs, we propose an algorithm similar
to Lin and Sitter (2008). This algorithm differs from Lin and Sitter (2008) in two ways. The first difference is the choice of the
isomorphism check used. We replace their eigenvalue check with our graph-based check. The second difference is the added
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Fig. 3. (a) is the graph representation of the 26−2 design with defining contrast subgroup {ABE,ACF,BCEF}. The relabeling B ↔ C and E ↔ F is an automorphism of
this design as the graph in (b) is identical to that in (a).

candidate word reduction method, which reduces the number of candidate designs generated from which isomorphs need to be
removed. We first describe the generation algorithm proposed by Lin and Sitter (2008) in Section 4.1, followed by the candidate
word reduction method in Section 4.2 and then finally give our proposed algorithm in Section 4.3.

4.1. The basic algorithm

The basic algorithm proceeds by first constructing the set of all candidate words C. Candidate words are defining words
constructed from the first a (=n − k) factors. The set C is an ordered set, ordered first by word lengths and then by lexicographic
ordering to break the ties. Then, candidate 2(n+1)−(k+1) designs are constructed by adding a candidate defining word to each
design d in Dn,k, the set of all non-isomorphic 2n−k designs. Those candidate designs for which the last added defining word
(when constructing the 2n−k design from a 2(n−1)−(k−1) design) lies before the newly added defining word are not allowed (Lin
and Sitter, 2008; Bingham and Sitter, 1999). These candidate designs make up the set D+

n+1,k+1. This set is then partitioned into
subsets G1, . . . ,Gm using a necessary isomorphism check.We use theword length pattern check, also used in Lin and Sitter (2008),
in our implementation, as it is computationally inexpensive. We then use our graph based isomorphism check to remove the
isomorphs from each subset. The subsets, together, now form the set Dn+1,k+1, the set of non-isomorphic 2(n+1)−(k+1) designs.

Since the basic algorithm described above is similar to that in Lin and Sitter (2008) and Bingham and Sitter (1999), except
for the graph based isomorphism check, we skip the proof that the algorithm actually finds all the non-isomorphic designs. The
algorithm reduces the number of 2n−k designs considered for finding the non-isomorphic designs, i.e., the set D+

n+1,k+1 is smaller

than the set of all possible 2(n+1)−(k+1) designs. It seems obvious that the smaller the set D+
n+1,k+1 is the faster the algorithm is

going to work. A method for further reducing D+
n+1,k+1 is described in the next subsection.

4.2. Reducing candidate designs

In this section, we extend an idea suggested by McKay (1998), which proposes an algorithm for generating non-isomorphic
graphs, to reduce the candidate words in C. Before we present the main result, we first extend the concept of automorphisms of
a graph (Cameron and Mary, 2004) to automorphisms of fractional factorial designs.

Definition 4.1. An automorphism of a design d ≡ {n, S} is a relabeling of factor labels of d, such that the design obtained after
relabeling is identically d.

Fig. 3(a) shows the graph representation of a 26−2 design with defining contrast subgroup {ABE,ACF,BCEF}. Fig. 3(b) shows
the graph obtained by relabeling factors B with C and E with F. Clearly, the two graphs, and hence the designs, are identical.
Therefore, the relabeling—B with C and Ewith F—is an automorphism of the 26−2 design in Fig. 3.

Theorem 4.2. Suppose d ≡ {n, S} is a parent design, and c1 and c2 (not identically equal to c1) are two candidate defining words.
Further suppose that there exists an automorphism � of d, such that c1 is isomorphic to c2 under this factor relabeling �. Then, the child
designs d ∪ c1 and d ∪ c2, obtained by adding the defining words c1 and c2 to d, respectively, are isomorphic to each other.

Proof. See Appendix A.

As an example, consider the 26−2 design in Fig. 3. Among the many different possible defining words, consider the two
candidate defining words BDG and CDG to be added to the 26−2 design. Under the relabeling B ↔ C and E ↔ F, which is an
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automorphism of the 26−2 design in Fig. 3, BDG and CDG are clearly isomorphic to each other. The designs obtained from adding
BDG (Fig. 1) and CDG are isomorphic to each other.

The result in Theorem 4.2 allows us to reduce the candidate defining words in C to C′ by keeping only the defining words that
are non-isomorphic under all the automorphisms of the parent design. That is, for each designwe compute all the automorphisms
and then reduce the set C to C′ by keeping only non-isomorphic defining words. For obtaining the automorphisms of a design,
we compute the automorphisms of the corresponding graph representation, which we obtain using nauty.

4.3. Proposed enumeration algorithm

Algorithm 2 summarizes our enumeration algorithm by combining the graph based candidate word reduction method of
Section 4.2 with the basic algorithm described in Section 4.1.

Algorithm 2. Generating non-isomorphic 2(n+1)−(k+1) designs from non-isomorphic 2n−k designs
Input: Dn,k, set of all non-isomorphic 2n−k designs

(1) Construct all possible 2a − 1 words, except I, from the first a = n − k factors, and order them first by their word lengths and then
break ties by lexicographic ordering. Call this ordered set C.

(2) For each design d ∈ Dn,k
(a) Find the set C′, of unique defining words, under the action of the automorphisms of d on C.
(b) Construct a set of 2(n+1)−(k+1) designs by adding to d a defining word c ∈ C′, where c lies below the last added word in the

ordered set C.
(3) Combining all the designs constructed for each d, form the set D+

n+1,k+1, the set of candidate designs.
(4) Partition the set D+

n+1,k+1 into subsets G1, . . . ,Gm, such that designs in each subset have the same word length pattern but designs
in different subsets have distinct word length pattern.

(5) Use the graph based isomorphism check of Section 3 to compare designs within each subset Gi, i = 1, . . . ,m, to remove isomorphs
from each subset.

(6) Collect all the remaining designs (in these subsets) in Dn+1,k+1, the set of non-isomorphic 2(n+1)−(k+1) designs.

In step (5) of Algorithm 2, we construct the graphs for the designs either from their defining contrast subgroups or the
treatment combination subgroups depending on whether n�2k or not. Since the designs are generated recursively, starting
from the full factorial design, the first few iterations (while n�2k) use defining contrast subgroup to construct the graph. Once
n<2k (so that |S|> |T|), the treatment combination subgroup is used to construct the graph. Thus, the size of the graph does not
increase exponentially (in multiples of 2) forever with each iteration (as n and k increase) but only linearly (in n).

Theorem 4.3. Algorithm 2 generates the complete set of non-isomorphic 2(n+1)−(k+1) designs.

Proof. The proof follows from the basic algorithm and Theorem 4.2. We skip the details here. �

5. Results

Using Algorithm 2 we were able to generate all the designs generated by Chen et al. (1993) and Lin and Sitter (2008).
Additionally, we could generate all of 1024-run (resolution�6), 2048-run (resolution�7) and 4096-run (resolution�8) de-
signs. The designs are available for download from the corresponding author's website (http://ise.tamu.edu/metrology/, click on
Publications). Table 2 shows the number of non-isomorphic designs generated by our algorithm. The numbers in the table
match with those in Chen et al. (1993) and Lin and Sitter (2008). We do not present here the catalog of designs. But these can be
obtained from the authors.

We compare the computational efficiency of our method with three methods—Clark and Dean (2001)'s algorithm for defining
contrast subgroup (DeseqCS), Ma et al. (2001)'s algorithm (MaCD2) and Lin and Sitter (2008)'s eigenvalue check (EigVal). All
the computations were done on a Windows Server 2003 R2 Standard x64 edition with an Intel Xeon 3GHz processor and
16GB RAM. The programs were written in C++ and built as 32-bit applications with the Microsoft Visual C++ 8.0 compiler.
Our implementation of Lin and Sitter (2008)'s eigenvalue check uses LAPACK++ (Stimming, 2007), a C++ library for high
performance linear algebra computations, that uses LAPACK (Anderson et al., 1999) and BLAS (Lawson et al., 1979) libraries. Since
our implementations may not be most efficient, we will not be interested in small differences in performance.

Tables 3–5 show the cumulative run times for DeseqCS, MaCD2, EigVal, our graph-based algorithm without the candidate
reduction step (GBAnoR), and our graph-based algorithm with the candidate reduction step (GBA) for generating 128-, 256- and
512-run designs, respectively. These run times include the time needed to generate a design through the recursive procedure
starting from the full factorial design. Between DeseqCS, MaCD2 and EigVal, the run times for EigVal are the best in all cases.
Compared to EigVal, for k�3, the run times for GBAnoR are reduced by over 95% for 128-, 256-, and 512-run designs. Since the
only difference between EigVal andGBAnoR is the isomorphism check used, these large differences indicate that our isomorphism
check is significantly faster than the eigenvalue check in Lin and Sitter (2008). Better yet, our check is proven to be necessary and
sufficient whereas theirs is only proven necessary. The improvement in run times by including the candidate reduction method
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Table 2
Number of non-isomorphic designs by run size.

n Run size (resolution � r)

16(3) 32(3) 64(3) 128(4) 256(5) 512(5) 1024(6) 2048(7) 4096(8)

5 3 1 * * * * * * *
6 4 4 1 * * * * * *
7 5 8 5 1 * * * * *
8 6 15 14 5 1 * * * *
9 5 29 38 13 5 1 * * *
10 4 46 105 33 9 6 1 * *
11 3 64 273 92 11 16 6 1 *
12 2 89 700 249 14 36 14 6 1
13 1 112 1794 623 15 92 24 9 6
14 1 128 4579 1535 11 282 47 7 7
15 1 144 11,635 3522 6 1011 98 7 4
16 * 145 29,091 7500 1 4019 185 7 5
17 * 129 ** 14,438 1 13,759 380 3 5
18 * 113 ** 25,064 * ** 919 2 2
19 * 91 ** ** * ** 1701 1 1
20 * 67 ** ** * ** 1682 1 1

A `*' means that no such designs exist. A `**' means that no existing algorithms, including ours, can return a valid result for such a problem size.

Table 3
Comparison of cumulative CPU time (in s) for generating 128-run (R�4) designs.

n − k DeseqCS MaCD2 EigVal GBAnoR GBA

8 − 1 0.078 0.297 0.062 0 0
9 − 2 0.484 1.609 0.249 0.015 0
10 − 3 5.484 9.437 1.843 0.046 0.015
11 − 4 55.109 (54.014) 12.484 0.218 0.125
12 − 5 911.421 (307.742) 84.029 1.109 0.671
13 − 6 14,322.5 (1539.8) 523.646 5.39 3.531
14 − 7 ** (6808.46) 3290.970 25.765 18.484
15 − 8 ** (27,747.5) 21,401.300 73.719 57.219
16 − 9 ** ** (9.3 days) 211.362 175.752

The values in parenthesis for MaCD2 are the cases in which MaCD2 did not detect all non-isomorphic designs. The values in parenthesis for EigVal are the ones
reported in Lin and Sitter (2008); for the corresponding case our implementation of their algorithm could not handle the problem size. A `**' means that the
problem size is too large for our implementation of the corresponding algorithm to give valid results.

Table 4
Comparison of cumulative CPU time (in s) for generating 256-run (R�5) designs.

n − k DeseqCS MaCD2 EigVal GBAnoR GBA

9 − 1 0.156 2.25 0.046 0.015 0
10 − 2 1.171 9.296 0.312 0.031 0.015
11 − 3 7.046 37.453 1.906 0.078 0.031
12 − 4 44.25 110.11 6.609 0.203 0.093
13 − 5 179.75 260.05 17.671 0.484 0.265
14 − 6 486.593 407.052 31.530 0.921 0.546
15 − 7 941.046 486.084 41.467 1.359 0.921
16 − 8 1025.16 492.99 42.858 1.656 1.203
17 − 9 1025.34 493.178 43.061 1.843 1.296

is much less but is still impressive. For k�3, the run times for GBA are between 30% and 80% of the run times for GBAnoR.
Compared to EigVal, the total reduction in run times is over 98% in most cases.

The improvement due to candidate reduction is better reflected in Table 6. The number of designs left in D+
n,k, from which

isomorphs need to deleted, is about 4000–8000 fewer for 128-run designs with k�7, when candidate reduction is used. This is a
16–28% reduction in the number of designs in D+

n,k. For larger designs, for which the calls to nauty could be more expensive, such
reductions may lead to considerable reduction in computation times.

6. Conclusion and discussion

We develop a new necessary and sufficient check for testing the isomorphism of two 2-level fractional factorial designs based
on a graph representation of the design. This isomorphism check differs from other necessary and sufficient checks (Chen et al.,
1993; Clark and Dean, 2001) in that it does not directly compare two designs. Instead, the method generates a canonical
representation of a design such that two isomorphic designs always have the same canonical representation. Our comparisons
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Table 5
Comparison of cumulative CPU time (in s) for generating 512-run (R�5) designs.

n − k DeseqCS MaCD2 EigVal GBAnoR GBA

10 − 1 0.562 23.469 0.203 0.015 0.015
11 − 2 6.046 119.829 2.109 0.093 0.031
12 − 3 85.265 741.353 20.155 0.484 0.14
13 − 4 912.046 (3863.61) 126.341 2.265 0.75
14 − 5 13,683.7 (19,168.6) 750.344 11.047 5.453
15 − 6 ** (89,653.8) 5119.450 57.219 38.641
16 − 7 ** (100h) (30h) 320.91 271.534
17 − 8 ** ** (12 days) 1877.18 1796.54

The values in parenthesis for MaCD2 are the cases in which MaCD2 did not detect all non-isomorphic designs. The values in parenthesis for EigVal are the ones
reported in Lin and Sitter (2008); for the corresponding case our implementation of their algorithm could not handle the problem size. A `**' means that the
problem size is too large for our implementation of the corresponding algorithm to give valid results.

Table 6
Number of designs in D+

n,k before discarding isomorphs: comparison between our graph-based algorithm with no candidate reduction (GBAnoR) and our graph-
based algorithm with candidate reduction (GBA).

k 128 run (R�4) 256 run (R�5) 512 run (R�5)

GBAnoR GBA GBAnoR GBA GBAnoR GBA

1 98 98 162 162 381 381
2 185 62 227 68 703 166
3 495 177 409 146 2063 496
4 1273 703 480 206 4739 1497
5 3346 2026 453 267 11,077 5731
6 7560 4952 205 137 25,913 18,444
7 15,336 11,110 51 42 60,545 52,917
8 28,766 22,572 2 2 132,909 128,292
9 49,708 41,421 0 0 * *

A `*' means that the problem size is too large and it prevents our algorithm to return a valid result.

indicate that our proposed isomorphism check runs significantly faster than Lin and Sitter (2008)'s (necessary and possibly
sufficient) eigenvalue check, Clark and Dean (2001)'s (necessary and sufficient) method for defining contrast subgroup and Ma
et al. (2001)'s (necessary) isomorphism check.

The other necessary and sufficient checks, proposed in Sun et al. (2002) and Cheng and Ye (2004), compare each pair of designs,
similar to Clark and Dean (2001)'s method, to determine if they are isomorphic or not. Even if thesemethods are faster, we do not
expect them to have better performance than our isomorphism check for large n. This is because the collection of designs from
which isomorphs are to be removed rapidly increases with n. Ifm is the size of one such collection of designs, then thesemethods
would require m(m − 1)/2 expensive computations compared to m for our isomorphism check. Moreover, Katsaounis and Dean
(2008) compared Cheng and Ye (2004)'s method and Clark and Dean (2001)'s method (which seems to be much slower than our
method), among other methods, but did not find enough evidence to conclude that Cheng and Ye (2004)'s method should be
faster than Clark and Dean (2001)'s method.

Further, our graph representation allows us to extend results in non-isomorphic graph generation literature to the non-
isomorphic design generation problem. Using results from the graph isomorphism problem we improve the existing design
generation algorithm of Lin and Sitter (2008) by reducing the number of designs to be tested for isomorphism. We use this
algorithmtogenerate 2-level designs for run sizes up to4096andgive comparisons of the computational effort. The computational
results indicate remarkable improvement in run times and ability to handle large designs, compared to Lin and Sitter (2008).

For Lin and Sitter (2008), it should be noted that even if the eigenvalue check is also sufficient to check the isomorphism of
two fractional factorial designs, it may run into a potential problem due to the unavoidable round off errors in floating point
computation. The eigenvalues of the matrices constructed in Lin and Sitter (2008)'s methodmay not all be integers so computing
eigenvalues must involve floating point computations, and the eigenvalues computed need to be rounded off. Rounding off
eigenvalues may lead to declaring isomorphic designs as non-isomorphic. It is not clear as to what round off level should be
chosen and it is not clear, either, how serious this problem could be. Our experience in using the eigenvalue check has turned
out positive. We rounded off the eigenvalues to the nearest integer and this worked flawlessly in our implementation. It is also
interesting to note that we did not find a single case where the eigenvalue check failed to distinguish between two isomorphic
designs.

Further extensions of our isomorphism check and the design generation algorithm to 2-level fractional factorial split plot
designs are trivial consequence. The graph constructed in this case is a colored bipartite graph. The vertices corresponding to the
factors will need to be partitioned into two sets—one corresponding to the whole-plot factors and the other corresponding to the
sub-plot factors. Each set of vertices has a distinct color. The graph isomorphism, in this case, also needs to preserve the colors of
the vertices. The extensions to regular multi-level and non-regular designs are non-trivial. They are part of our future work.
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Table 7
Distribution of CD2

2 values.

Fj CD2
2 Freq.

F1 −0.984375 10
F2 −0.992188 45
F3 −0.996094 116

−0.992188 4
F4 −0.998047 174

−0.996094 36
F5 −0.999023 120

−0.998047 128
−0.996094 4

F6 −0.999023 163
−0.998047 47

F7 −0.999023 110
−0.998047 10

F8 −0.999023 44
F9 −0.999023 10
F10 −0.999023 1

Appendix A. Proofs of theorems

Proof of Theorem 3.2. First, assume that d1 and d2 are isomorphic. Then ∃ a permutation � of factor labels such that S�
1 = S2,

i.e. S1 is isomorphic to S2 (subscript) under the action of �. Consider some word w1 = f1,1 . . . fm,1 ∈ S1, where f1,1, . . . , fm,1 denote
factor labels in d1. Then ∃ a wordw2 = f1,2 . . . fm,2 ∈ S2, where f1,2, . . . , fm,2 denote factor labels in d2, such thatw�

1 =w2 (� S�
1 = S2).

Therefore, the edges in G�
1 are of the form {f �1,1,w�

1}, where f1,1 ∈ V�
a1 and w1 ∈ V�

b1, corresponding to the edges {f1,2,w2}, where
f1,2 ∈ Va2 and w2 ∈ Vb2 in G2. Since V�

a1 = Va2 and V�
b1 = Vb2, G1 is isomorphic to G2.

Now, assume that G1 and G2 are isomorphic, with V�
a1 =Va2 and V�

b1 =Vb2. Letw1 = f1,1 . . . fm,1 ∈ S1. Let vb1 ∈ Vb1 correspond to
w1, and v1,a1, . . . ,vm,a1 correspond to f1,1, . . . , fm,1, respectively. Similarly, let w2 = f1,2 . . . fm,2 ∈ S2, vb2 ∈ Vb2 correspond to w2, and

v1,a2, . . . ,vm,a2 correspond to f1,2, . . . , fm,2, respectively. Since, G
��
1 =G2, we have for edges {v�

1,a1,v
�
b1} = {v1,a2,vb2}. Since the choice

of v1,a1 was arbitrary in the last statement, we have, for the corresponding words, w��
1 = w2. Again, since the choice of w1 ∈ S1

was arbitrary, we have S1 isomorphic to S2. Therefore, d1 is isomorphic to d2. �

Proof of Theorem 4.2. Since d ≡ {n, S}, we have d ∪ c1 = {n + 1, {S, c1S}} and d ∪ c2 = {n + 1, {S, c2S}}, where {S, ciS} is the defining
contrast subgroup of d ∪ ci, i = 1, 2. Since � is an automorphism of d, we only need to show that (c1S)

� = c2S to prove that
(d ∪ c1)

� = d ∪ c2. Let w ∈ S, then, since c�1 = c2, we have (c1w)� = c�1w
� = c2w� ∈ c2S. Since, the choice of w ∈ S is arbitrary, we

have (c1S)
� = c2S. �

Appendix B. Two 2-level regular fractional factorial designs for which Ma et al. (2001)'s sufficiency conjecture fails

Consider the two 210−5 designs d1 and d2 given by defining contrast subgroups generated by g1 and g2, respectively:

g1 = {ABF,ACG,ADH,BEI,BCDJ}
g2 = {ABF,ACG,BDH,CDI,BCEJ}

Designs d1 and d2 were found to be non-isomorphic by our graph based isomorphism check, Lin and Sitter (2008)'s eigenvalue
check and Clark andDean (2001)'s isomorphism check for defining contrast subgroups. Table 7 gives the identical CD2

2 distribution
of the two designs.
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