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Proofs

Proof of Proposition 4

Let π2
i and (πP )i denote the ith position of the row vector π2(= π′(π)) and πP , respectively.

Then, we have ∑
i≥j

π2
i =

∑
i≥j

(πP )i
R(π)

≤
∑
i≥j

(πP )i
R(π̂)

≤
∑
i≥j

(π̂P )i
R(π̂)

=
∑
i≥j

π̂2
i (1)

The two inequalities in (1) hold due to Proposition 1(a) and Proposition 3(b), respectively.

Proof of Proposition 5

(a) We prove the claim by induction method. Without loss of generality, suppose that CM0(em+1) =

CCM and PM0(π) = CPM . Then, CM1(em+1) − CCM = PMn(π) − CPM = τ . Suppose that

CMn(em+1)− CCM ≥ PMn(π)− CPM . Then,

CMn+1(em+1)− CCM

= (1−WCM)(τ + CCM + Vn(e1)) +WCM(τ + CMn(em+1))− CCM (2)

= τ + Vn(e1) +WCM(CMn(em+1))− CCM − Vn(e1)) (3)

≥ τ + Vn(e1) +WPM(PMn(em+1))− CPM − Vn(e1)) (4)

= PMn+1(π)− CPM , (5)

where (4) is from induction hypothesis. Therefore, CMn(em+1)−CCM ≥ PMn(π)−CPM holds

for ∀n.
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(b)

CMn(em+1) = (1−WCM)(τ + CCM + Vn−1(e1)) +WCM(τ + CMn−1(em+1)), (6)

= τ + CCM + Vn−1(e1) +WCM(CMn−1(em+1)− CCM − Vn−1(e1)) (7)

≥ τ + CPM + Vn−1(e1) +WPM(PMn−1(π̃)− CPM − Vn−1(e1)) (8)

= PMn(π). (9)

Inequality in (8) is due to the result of Proposition 5(a) and the fact that CCM ≥ CPM and

WCM ≥ WPM . Also, note that PMn(π̃) = PMn(π). Consequently, CMn(em+1) ≥ PMn(π) for

all n.

Proof of Lemma 1

By induction, we can show that Vn(π) is non-decreasing in ≺st when P is IFR. Suppose that

n ≥ T + 1 because one cannot carry out corrective maintenance when the system fails and the

number of remaining periods is less than, or equal to, the lead time. Without loss of generality,

we suppose that VT+1(π) = 0, ∀π. Then, NAT+2(π) = (τT + CM1(em+1))(1 − R(π)) is

non-decreasing in ≺st from Proposition 3(a), and PMT+2(π) is constant in π. OBT+2(π) =

COB +
∑m

i=1min{NAT+2(ei), PMT+2(ei)}πi. Since ei ≺st ej for i ≤ j and NAT+2(ei) is

nondecreasing in i, OBT+2(π) is also non-decreasing in ≺st due to Proposition 2. Therefore,

VT+2(π) is non-decreasing in ≺st. Suppose that Vn(π) is non-decreasing in ≺st for ∀n ≥ T +1.

Then, for π ≺ π̂,

NAn+1(π) = (τT + CMn−T (em+1))(1−R(π)) + Vn(π
2)R(π) (10)

≤ (τT + CMn−T (em+1))(1−R(π)) + Vn(π̂
2)R(π) (11)

= (τT + CMn−T (em+1))− (τT + CMn−T (em+1)− Vn(π̂2))R(π) (12)

≤ (τT + CMn−T (em+1))− (τT + CMn−T (em+1))− Vn(π̂2))R(π̂) (13)

= (τT + CMn−T (em+1))(1−R(π̂)) + Vn(π̂
2)R(π̂)) = NAn+1(π̂) (14)

(11) follows from the induction assumption and Proposition 4. (13) follows from Proposition 3(a)

and the fact that τT + CMn−T (em+1) ≥ Vn(π),∀π (Note that τT + CMn−T (em+1) is the

corrective maintenance costs plus revenue losses during the lead time when the system fails,
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so it is always greater than the optimal value function for any operating state. Also, this

can be easily proved mathematically by induction). It is obvious that OBn+1(π) = COB +∑
imin{NAn+1(ei), PMn+1(ei)}πi is also non-decreasing in ≺st with the similar reason ex-

plained above. Consequently, Vn+1(π) is nondecreasing in ≺st, ∀n ≥ T + 1.

Since b(π) can be obtained by taking limits of Vn(π), b(π) is nondecreasing in ≺st, which

concludes the claim.

Proof of Lemma 2:

bNA(π)− bPM(π) = C ′CM(1−R(π)) + b(π2)R(π)− g − C ′PM (15)

= (C ′CM − C ′PM)(1−R(π))− g + (b(π2)− C ′PM)R(π) (16)

Note that b(π2) ≤ C ′PM . Consequently, if (C ′CM − C ′PM)(1 − R(π)) − g ≤ 0 (or equivalently,

R(π) ≥ 1− g
C′

CM−C
′
PM

), NA is preferred to PM .

Next, Consider the case that (C ′CM−C ′PM)(1−R(π))−g > 0. Let us assume that δ∗(π) = NA.

Then,

b(π2)− b(π) = b(π2)− (C ′CM(1−R(π)) + b(π2)R(π)− g) (17)

= (b(π2)− C ′PM)(1−R(π))− (C ′CM − C ′PM)(1−R(π)) + g (18)

(17) holds from the assumption δ∗(π) = NA and thus, b(π) = C ′CM(1−R(π))+ b(π2)R(π)−g.

Note that in (18), b(π2) ≤ C ′PM . Therefore, when (C ′CM − C ′PM)(1 − R(π)) − g > 0, b(π2) ≤

b(π) with the assumption of δ∗(π) = NA. But, this result contradicts that b(π2) ≥ b(π) for

π ≺st π
′(π) from Lemma 1. Therefore, when (C ′CM −C ′PM)(1−R(π))− g > 0, or equivalently,

R(π) < 1− g
C′

CM−C
′
PM

, NA cannot be optimal.

Proof of Theorem 1: The first part is straightforward from Lemma 2 and the above discussions.

Regarding the second part, NA cannot be optimal at π̂ from the fact that R(π̂) ≤ R(π) for

π ≺st π̂. Also, since b(ei) is non-decreasing in i,
∑

i b(ei)πi is also non-decreasing in ≺st-

ordering from Proposition 2, and so is bOB(π). This leads to bOB(π̂) ≥ bOB(π). But, bPM(π) is

constant. Thus, when δ∗(π) = PM , OB cannot be optimal at π̂ as well, which concludes the

second part of the Theorem.
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Proof of Corollary 1

It follows directly from Lemma 2 and the fact that OB is preferred to PM when C ′PM ≥

COB +
∑
b(ei)πi.

Proof of Lemma 3:

We use similar technique used in Lemma 2.

bNA(π)− bOB(π) (19)

= C ′CM(1−R(π)) + b(π2)R(π)− g − COB −
∑

b(ei)πi (20)

= (C ′CM − COB −
∑

b(ei)πi)(1−R(π))− g +R(π)(b(π2)− COB −
∑

b(ei)πi) (21)

= (C ′CM − COB −
∑

b(ei)πi)(1−R(π))− g +R(π)
∑

b(ei)(π
2
i − πi)

+R(π)(b(π2)− COB −
∑

b(ei)π
2
i ), (22)

Note that b(π2) ≤ COB +
∑
b(ei)π

2
i . Therefore, if (C ′CM −COB −

∑
b(ei)πi)(1−R(π))− g +

R(π)
∑
b(ei)(π

2
i − πi) ≤ 0, bNA(π) ≤ bOB(π). Re-arranging the condition yields

(C ′CM − COB −
∑

b(ei)πi)(1−R(π))− g +R(π)
∑

b(ei)(π
2
i − πi) < 0 (23)

⇔ R(π) ≥ C ′CM − COB −
∑
b(ei)πi − g

C ′CM − COB −
∑
b(ei)π2

i

(24)

The last inequality (24) comes from b(ei) ≤ C ′PM for all i = 1, · · · ,m and from COB +C ′PM ≤

C ′CM (Note that COB + CPM ≤ CCM by assumption).

Proof of Corollary 2

It follows directly from Lemma 2 and Lemma 3.

Proof of Lemma 4:



IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 2, JUNE 2010 5

We will use contradiction. Assume that δ∗(π) = NA. Then,

b(π2)− b(π)−
∑

b(ei)(π
2
i − πi) (25)

= b(π2)− C ′CM(1−R(π))− b(π2)R(π) + g −
∑

b(ei)(π
2
i − πi) (26)

= (b(π2)− C ′CM)(1−R(π)) + g −
∑

b(ei)(π
2
i − πi) (27)

= (b(π2)− COB −
∑

b(ei)π
2
i )(1−R(π)) + (COB

+
∑

b(ei)πi − C ′CM)(1−R(π)) + g −R(π)
∑

b(ei)(π
2
i − πi) (28)

Note that b(π2)−COB−
∑
b(ei)π

2
i ≤ 0. Also, by the condition of the claim, the remaining term

is also negative. Therefore, we get b(π2) − b(π) −
∑
b(ei)(π

2
i − πi) < 0 under the assumption

of δ∗(π) = NA. However,

b(π2)− b(π)−
∑

b(ei)(π
2
i − πi) (29)

= bOB(π
2)− b(π)− bOB(π

2) + bOB(π) (from δ∗(π2) = OB), (30)

= −b(π) + bOB(π) ≥ 0, (31)

which contradicts the assumption. As a result, δ∗(π) cannot be NA. Also note that bOB(π) ≤

bOB(π
2) ≤ bPM(π2) = bPM(π). Therefore, PM cannot be also optimal, which concludes

δ∗(π) = OB.

Proof of Corollary 3:

(a) Applying Proposition 4 repeatedly to both sides of this inequality yields the result.

(b) Since the states along any sample path is in ≺st-increasing order, the result follows directly

from Lemma 1.

(c) Note that R(πk) is non-increasing in k by proposition 3(a). Then, the result follows from

Lemma 2.

(d) For k ≥ k1(π), NA cannot be the optimal action from Lemma 2. Also, for k ≥ k2(π), PM

is preferable to OB since COB+
∑
b(ei)π

k
i is nondecreasing in k in a ≺st-increasing sample path

and C ′PM is constant. Hence for k ≥ k∗, either NA or OB cannot be optimal. For k1 ≤ k < k∗,

OB is optimal, whereas k2 ≤ k < k∗, NA is optimal. For k < min{k1, k2}, OB or NA is

optimal.

Proof of Lemma 5: We apply the similar induction technique used in [11]. Suppose that
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CM0(em+1) = CCM . Also, suppose that V0(π) = 0 for ∀π for an operating system. NA1(π) =

CCM(1 − R(π)) is linear in π. OBn(π) is hyperplane of π and PMn(π) is constant in π

for ∀n. Therefore, V1(π) is piecewise linear concave because minimum of linear functions

is piecewise linear concave. Now, suppose that Vn(π) is piecewise linear concave such that

Vn(π) = min{π · aTn ; an ∈ An} where an is a 1× (m+ 1) dimensional column vector. We only

need to examine NAn+1(π) to show the piecewise linear concavity of Vn+1(π). The first term

of NAn+1(π), (that is, (τT +CMn−T−1(em +1))(1−R(π))) is linear in π. The second term of

NAn+1(π) is,

R(π)Vn(π
2) = R(π)min{π2 · aTn ; an ∈ An} (32)

= R(π)min

{[
(πP )1
R(π)

,
(πP )2
R(π)

, · · · , (πP )m
R(π)

, 0

]
· aTn ; an ∈ An

}
(33)

= min{[(πP )1, (πP )2, · · · , (πP )m, 0] · aTn ; an ∈ An} (34)

= min{π · aTn+1; an+1 ∈ An+1} (35)

Since R(π)Vn(π2) is the minimum of hyperplanes, it is piecewise linear concave, which makes

NAn+1(π) is also piecewise linear concave. Consequently, Vn+1(π) is piecewise linear concave.

And the claim holds for ∀n by induction.

Proof of Theorem 2: Consider the two states π(λ1) and π(λ2) between π and π̂ (π ≺st π̂) where

π(λj) = λjπ+(1−λj)π̂, for j = 1, 2 and 0 ≤ λ1 ≤ λ2 ≤ 1. Then, from
∑

i≥j πi ≺st λ1
∑

i≥j πi+

(1 − λ1)
∑

i≥j π̂i ≺st

∑
i≥j π̂i, we have π ≺st π(λ1) ≺st π̂. In a similar way, we can easily

show that π(λ1) ≺st π(λ2) ≺st π̂. Therefore, π(λ) is in ≺st-increasing in λ, which implies that

bNA(π(λ)) and bOB(π(λ)) is non-decreasing in λ. But, bPM(π(λ)) is constant. Hence, there exists

a control limit λ∗ such that for any λ > λ∗, PM is optimal. The value of λ∗ is straightforward

from Theorem 1. Next, let us consider 0 ≤ λ ≤ λ∗. For this region, we already know that

PM cannot be optimal from Theorem 1. In Lemma 5, we show that NAn(π) is piecewise

linear concave. Thus bNA(π) is also piecewise linear concave, but bOB(π) is hyperplane. Thus,

{π; bNA(π) ≥ bOB(π)} is a convex set and thus, {λ; bNA(π(λ)) ≥ bOB(π(λ)), 0 ≤ λ ≤ λ∗} is

also a convex set. This concludes the AM4R structure.

Proof of Corollary 4:

When λNA≤PM < λOB≤PM , The second NA region of AM4R structure vanishes. So the
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optimal policy structure results in at most three regions. The optimal policy region for PM

is straightforward from the previous discussions.


