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Material for on-line supplement

This e-companion provides a proof of consistency of the computable plug-in estimator, denoted

as MVC(α; f̂n, Pn), which is a level set whose level is given by the solution of the following opti-

mization problem:

max{y ∈R+ : Pn(Ân,y)≥ α}, where Ân,y = {x : f̂n(x)≥ y}, (EC.1)

where Pn(A) = 1
n

∑n

i=1 1A(xi) is the empirical distribution for giving data points x1, .., xn and f̂n(x)

is a kernel density estimator.

The strategy for the proof is to show that the volume and probability mass of the com-

putable plug-in estimator are asymptotically equivalent to those of the original plug-in estimator

MVC(α; f̂n), which is a level set whose level is the solution of the following optimization problem:

max{y ∈R+ :
∫
Ân,y

f̂n(x)dx≥ α}, where Ân,y = {x : f̂n(x)≥ y}. (EC.2)

We give the proof of the consistency result after restating the the assumptions and the the-

orem. Recall that the minimum volume cut MVC(α;f) = {x : f(x) ≥ y∗}, where y∗ solves the

optimization problem

max{y ∈R+ :
∫
Ay

f(x)dx≥ α}, where Ay = {x : f(x)≥ y}. (EC.3)

Let Θ⊂ (0, supf) be an open interval that contains y∗ and let ‖ · ‖ stand for the Euclidean norm

over any finite-dimensional space. Let A∆B = (A∩Bc)∪ (Ac∩B) denote the symmetric difference

of sets A and B.

Assumption EC.1. The kernel function K is continuously differentiable and has compact support.

Moreover, there exists a monotone nondecreasing function µ : R+→R such that K(x) = µ(‖x‖) for

all x∈Rd.

Assumption EC.2. The density function f is twice continuously differentiable and f(x)→ 0 as

‖x‖→∞.



e-companion to Park, Huang and Ding: A computable plug-in estimator of MV-sets ec3

Assumption EC.3. For any t∈Θ, inff−1({t}) ‖∇f‖> 0, where ∇f(x) is the gradient of f at x.

Theorem EC.1. Suppose that Assumptions EC.1, EC.2 and EC.3 hold. If the bandwidth hn used

in the kernel density estimation satisfies that nhd+4
n (logn)2→ 0 and nhd+2

n /(logn)→∞, then

∫
MVC(α;f̂n,Pn)

f(x)dx→ α in probability.

λ{MVC(α; f̂n, Pn)∆MVC(α;f)}→ 0 in probability.

Appendix A: Proof of Theorem EC.1

We show that the volume and probability mass of the computable plug-in estimator are asymp-

totically equivalent to those of the original plug-in estimator MVC(α; f̂n). Then, the consistency

of the original estimator established in (Cadre 2006) will imply the consistency of the computable

plug-in estimator.

Let M = supx f(x) and let An,k = {f ≥ k
n
} for k ∈Kn := {0,1, . . . , nM}. Here and throughout

this appendix, we use the abbreviation {f ≥ k
n
} to denote the set {x : f(x)≥ k

n
}. For each positive

integer n, define a class of indicator functions Gn := {1An,0
,1An,1

, · · · ,1An,nM
}. For g ∈Gn, define

Pn(g) =
1
n

n∑
i=1

g(xi) and P (g) =E[g(x1)],

where x1, x2, .., xn are i.i.d. draws from the probability density f .

By Hoeffding’s inequality (Hoeffding 1963), for any ε > 0,

P (|Pn(g)−P (g)| ≥ ε)≤ 2exp(−2nε2), g ∈Gn. (EC.4)

It follows that

P ( sup
g∈Gn

{|Pn(g)−P (g)| ≥ ε})≤
∑
g∈Gn

P (|Pn(g)−P (g)| ≥ ε)≤ 2nM exp{−2nε2}. (EC.5)

Thus,
∞∑
n=1

P ( sup
g∈Gn

{|Pn(g)−P (g)| ≥ ε})≤
∞∑
n=1

2nM exp{−2nε2}<∞.
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By the reverse Fatou’s Lemma and the Borel-Cantelli Lemma (Williams 1991), there exists a L> 0

such that

sup
n≥L

P ( sup
g∈Gn

{|P (g)−Pn(g)| ≥ ε})≤ P

(⋃
n≥L

sup
g∈Gn

{|P (g)−Pn(g)| ≥ ε}

)
≤ ε. (EC.6)

Let zn > 0 be a solution of optimization problem (EC.1) and let Ân,zn = {f̂n ≥ zn}. According to

Assumption EC.1, Assumption EC.2 and Pollard (1984, Example 38 and Problem 28),

lim
n→∞

sup
x
|f̂n(x)− f(x)|= 0, almost surely. (EC.7)

Thus, there exists a large integer N1 such that for n≥N1,

sup
x
|f̂n(x)− f(x)| ≤ ε, almost surely. (EC.8)

Thus, {f ≥ zn + ε} ⊂ {f̂n ≥ zn} ⊂ {f ≥ zn− ε} almost surely for n≥N1. Let N2 ≥max(L,N1). We

can choose k (0≤ k ≤N2M) such that k+1
N2
≥ zN2

+ ε and k
N2
≤ zN2

− ε. Then, almost surely, the

following holds:

{f ≥ k+ 1
N2

} ⊂ {f̂N2
≥ zN2

} ⊂ {f ≥ k

N2

}

It follows that

λ({f ≥ k

N2

})−λ({f̂N2
≥ zN2

})≤ λ({f ≥ k

N2

})−λ({f ≥ k+ 1
N2

}). (EC.9)

Because of Assumptions EC.2 and EC.3, by Cadre (2006, Proposition A.2),

λ({f ≥ k

N2

})−λ({f ≥ k+ 1
N2

})≤ ε. (EC.10)

The inequalities (EC.9) and (EC.10) together imply that

λ({f ≥ k

N2

})−λ({f̂N2
≥ zN2

})≤ ε. (EC.11)

Define H =
⋂
g∈GN2

{|P (g)−PN2
(g)|< ε}. Then, by inequality (EC.6),

P (H) = 1−P (Hc) = 1−P

 ⋃
g∈GN2

{|P (g)−PN2
(g)| ≥ ε}


≥ 1− sup

n≥L
P

( ⋃
g∈Gn

{|P (g)−Pn(g)| ≥ ε}

)
≥ 1− ε.

(EC.12)



e-companion to Park, Huang and Ding: A computable plug-in estimator of MV-sets ec5

Let g1 = 1AN2,k
and g2 = 1AN2,k+1

. Since g1 and g2 are in GN2
, by (EC.12), |P (g1)−PN2

(g1)|< ε

and |P (g2)−PN2
(g2)|< ε with probability at least 1− ε. Using this result, the triangle inequality,

and (EC.10), we obtain that, with probability at least 1− ε,

|PN2
(g1)−PN2

(g2)|=

∣∣∣∣∣ 1
N2

N2∑
i=1

1{f≥ k
N2
}(xi)−

1
N2

N2∑
i=1

1{f≥ k+1
N2
}(xi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
N2

N2∑
i=1

1{f≥ k
N2
}(xi)−

∫
f≥ k

N2

f

∣∣∣∣∣
+

∣∣∣∣∣
∫
f≥ k+1

N2

f − 1
N2

N2∑
i=1

1{f≥ k+1
N2
}(xi)

∣∣∣∣∣+
∣∣∣∣∣
∫
f≥ k

N2

f −
∫
f≥ k+1

N2

f

∣∣∣∣∣
< |P (g1)−PN2

(g1)|

+ |PN2
(g2)−P (g2)|+M

[
λ({f ≥ k

N2

})−λ({f ≥ k+ 1
N2

})
]

≤ (M + 2)ε.

(EC.13)

Applying the results of (EC.11), (EC.6) and (EC.13) in order, we obtain that, with at least prob-

ability 1− ε,

∣∣∣P (1f̂N2
≥zN2

)−PN2
(1f̂N2

≥zN2
)
∣∣∣= ∣∣∣∣∣

∫
{f̂N2

≥zN2
}
f − 1

N2

N2∑
i=1

1{f̂N2
≥zN2

}(xi)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
{f̂N2

≥zN2
}
f −

∫
{f≥ k

N2
}
f

∣∣∣∣∣
+

∣∣∣∣∣
∫
{f≥ k

N2
}
f − 1

N2

N2∑
i=1

1{f≥ k
N2
}(xi)

∣∣∣∣∣
+

∣∣∣∣∣ 1
N2

N2∑
i=1

1{f≥ k
N2
}(xi)−

1
N2

N2∑
i=1

1{f̂N2
≥zN2

}(xi)

∣∣∣∣∣
<Mε+ ε+ (M + 2)ε= (2M + 3)ε.

That is, the following holds

P

(∣∣∣∣∣
∫
ÂN2,zN2

f − 1
N2

N2∑
i=1

1ÂN2,zN2

(xi)

∣∣∣∣∣< (2M + 3)ε

)
≥ 1− ε. (EC.14)

By the definition of ÂN2,zN2
,

α≤ 1
N2

N2∑
i=1

1ÂN2,zN2

(xi)≤ α+
1
N2

. (EC.15)
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By the results of (EC.14) and (EC.15),

P

(∣∣∣∣∣
∫
ÂN2,zN2

f −α

∣∣∣∣∣≤ ε+
1
N2

)
≥ 1− ε.

Let N2→∞ and ε→ 0 to get the following result:

∫
Ân,zn

f(x)→ α in probability. (EC.16)

The proof of the first part of the theorem is complete.

Let εn = supx |f̂n(x)−f(x)|. According to the uniform convergence (EC.7), εn→ 0 almost surely.

Observe that ∣∣∣∣∣
∫
f≥zn

f −
∫
Ân,zn

f

∣∣∣∣∣≤
∫
f |1{f≥zn}− 1{f̂n≥zn}|

≤
∫
f 1{zn−εn≤f≤zn−εn}

≤Mλ({zn− εn ≤ f ≤ zn− εn}∩ (0, supf ]),

(EC.17)

which tends to 0 as n→∞ according to Cadre (2006, Proposition A.2). This together with (EC.16)

imply that ∫
f≥zn

f →
∫
f≥y∗

f, (EC.18)

where the level y∗ satisfies
∫
f≥y∗ f = α. According to Cadre (2006, Proposition A.2), the map

s 7→
∫
f≥s f is continuous and one-to-one, so zn→ y∗.

Let yn be the solution of optimization problem (EC.2), which defines the original plug-in esti-

mator. According to Cadre (2006, Corollary 2.1),

∫
Ân,yn

f →
∫
f≥y∗

f = α in probability. (EC.19)

This together with (EC.16) and the triangle inequality yields

∫
Ân,zn∆Ân,yn

f ≤

∣∣∣∣∣
∫
Ân,zn

f −α

∣∣∣∣∣+
∣∣∣∣∣
∫
Ân,yn

f −α

∣∣∣∣∣→ 0 in probability.

Since
∫
Ân,zn∆Ân,yn

f ≥ (min{yn, zn}− εn)λ(Ân,zn∆Ân,yn), we obtain

(min{yn, zn}− εn)λ(Ân,zn∆Ân,yn)→ 0 in probability.
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Because zn → y∗, yn → y∗ (Cadre 2006, Lemma 4.3) and εn → 0, the above result implies

that λ(Ân,zn∆Ân,yn) → 0 in probability. It follows from Cadre (2006, Corollary 2.1) that

λ(Ân,yn∆MVC(α;f))→ 0 in probability. Therefore, λ(Ân,zn∆MVC(α;f))→ 0 in probability.
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