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Material for on-line supplement
This e-companion provides a proof of consistency of the computable plug-in estimator, denoted
as MV C(a; fn,Pn), which is a level set whose level is given by the solution of the following opti-

mization problem:
max{y € R*: P,(A,,) > a}, where A, , = {z: f.(z) >y}, (EC.1)

where P, (A) =2 3"  14(x;) is the empirical distribution for giving data points 1, .., x, and ful)
is a kernel density estimator.
The strategy for the proof is to show that the volume and probability mass of the com-

putable plug-in estimator are asymptotically equivalent to those of the original plug-in estimator

MVC(a fn), which is a level set whose level is the solution of the following optimization problem:

max{y €R": [ fo(z)dz > o}, where A, , = {z: f,(z) >y} (EC.2)

Apy
We give the proof of the consistency result after restating the the assumptions and the the-
orem. Recall that the minimum volume cut MVC(«a; f) = {x: f(x) > y*}, where y* solves the

optimization problem

max{y € R : / f(x)dz > a}, where A, ={z: f(x) >y} (EC.3)
Ay
Let © C (0,sup f) be an open interval that contains y* and let || - || stand for the Euclidean norm

over any finite-dimensional space. Let AAB = (AN B¢)U(A°N B) denote the symmetric difference

of sets A and B.

AssumMpPTION EC.1. The kernel function K is continuously differentiable and has compact support.

Moreover, there exists a monotone nondecreasing function p: R, — R such that K(x) = u(||z||) for

all € R?.

AssumpTION EC.2. The density function f is twice continuously differentiable and f(x) — 0 as

]| = o0
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AssumMPTION EC.3. For any t € O, inf -1y |Vf|| >0, where V f(x) is the gradient of f at x.

THEOREM EC.1. Suppose that Assumptions EC.1, EC.2 and EC.8 hold. If the bandwidth h,, used

in the kernel density estimation satisfies that nh®**(logn)* — 0 and nh*?/(logn) — oo, then

/ f(z)dz — a in probability.
MVC(a;fn,Pn)

MMVC(a; fo, P,YAMVC(a; f)} — 0 in probability.

Appendix A: Proof of Theorem EC.1

We show that the volume and probability mass of the computable plug-in estimator are asymp-
totically equivalent to those of the original plug-in estimator MV C(«; fn) Then, the consistency
of the original estimator established in (Cadre 2006) will imply the consistency of the computable
plug-in estimator.

Let M =sup, f(z) and let A, , ={f > %} for k€ K,, :={0,1,...,nM}. Here and throughout
this appendix, we use the abbreviation {f > £} to denote the set {z: f(z) > £}. For each positive

integer n, define a class of indicator functions G, := {14, 4, 1a,,, " len,nM}' For g € G,,, define

Pug) =Y glw) and Plg) = Elg(a)

where x1, >, .., 2, are i.i.d. draws from the probability density f.

By Hoeffding’s inequality (Hoeffding 1963), for any e >0,

P(|P,(9) — P(g)| > €) <2exp(—2ne®),  geG,. (EC.4)
It follows that
Psup {|Pn(9) = Plg)| > e}) < EZG: P(|P.(9) — P(g)] > €) < 2nM exp{—2ne’}. (EC.5)
Thus,
iP(gnggl{an(g) —P(g)|z€}) < i:%Mexp{—%e?} < 0.
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By the reverse Fatou’s Lemma and the Borel-Cantelli Lemma (Williams 1991), there exists a L >0

such that

sup P(sup {|P(g) = Pa(g)| = €}) < P (U sup {|P(g) = P, (g)| ze}> <e. (EC.6)

n>L g€Gn nZLgEG"
Let z, >0 be a solution of optimization problem (EC.1) and let A, ., ={ fu > 2z, }. According to

Assumption EC.1, Assumption EC.2 and Pollard (1984, Example 38 and Problem 28),

lim sup |f,(z) — f(z)| =0, almost surely. (EC.7)

n—oo xT

Thus, there exists a large integer N; such that for n > Ny,
sup | fu(z) — f(z)] <e, almost surely. (EC.8)

Thus, {f >z, +€} C{fn > 2.} C{f > 2z, — €} almost surely for n > N;. Let N, > max(L, N;). We
can choose k (0 <k < N, M) such that kNi; > zn, + € and N% < zn, — €. Then, almost surely, the

following holds:

(25 i 2 a2 )
It follows that
MU 2 3D =M 2 2 AU 2 3D - MU 2 0D, (EC.9)

Because of Assumptions EC.2 and EC.3, by Cadre (2006, Proposition A.2),

k k+1
M f= E}) -A{f = Tz}) <e. (EC.10)

The inequalities (EC.9) and (EC.10) together imply that
k A
)\({fZ E )_)‘({sz 221\’2}) <e (EC'11>

Define H = . {|P(g9) — Pn,(g)| < €}. Then, by inequality (EC.6),

P(H)=1-PH)=1-P| |J {IP(9) - Px,(9)| > ¢}
9€CN, (EC.12)

> 1—supP< U {1P(9) - Pu(9)] Ze}> >1—e

>
n>L 9€Cn
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Let g, = 1AN2,I¢ and ¢, Since g1 and g, are in Gy,, by (EC.12), |P(g1) — Pn,(g1)| <€

= 1AN k41t
2

and |P(g2) — Pn,(g2)| < € with probability at least 1 —e. Using this result, the triangle inequality,

and (EC.10), we obtain that, with probability at least 1 —e,

1 2
[Py (91) = Prvz (92)] ‘ Zl{f> iy (s —EZ%Q%}%-)
=1
<l LS /
=N, & {Fz 3\ s
1 &
/f>,c+1 f= Ezl{fz%}(xi)
= "Ny =1

<|P(g1) = Pn,(91)]

+ +

/ fo 7l (EC.13)
f255 2k
k E+1
1P (o)~ Ploal+ M [X((F 2 500 - A(TF = 52)]
< (M +2)e.
Applying the results of (EC.11), (EC.6) and (EC.13) in order, we obtain that, with at least prob-

ability 1 —e,

P(lfNQEZNQ) — Pn, (1fN2 ZZNQ) -

1 &
=D L sony (@)
/{fNQZZNQ} N2 ; { No= N2}
[ - /
{Fng =2y} {r>75}
1 &
_ 1 ;
/{f>k}f NQZ (2 (1)
N2 Zl{f> 5} () Z {fN2zzN2 i)

<Me+e+ (M+2)e=(2M + 3)e.

<

+

That is, the following holds

< (2M +3)e ) >1—e (EC.14)

1
Z Ay, ) ot 5 (EC.15)
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By the results of (EC.14) and (EC.15),

P(A foa

N27ZN2 2
Let Ny — oo and € — 0 to get the following result:

1
§6+N>21—6-

/ f(z) =« in probability. (EC.16)

An,zn
The proof of the first part of the theorem is complete.

Let €, = sup, | f.(z) — f(x)]. According to the uniform convergence (EC.7), €, — 0 almost surely.

Jo- ]t

Observe that

</f’1{f22n} _1{fn22n}’

EC.17
S/fl{zn—ensjfgzﬂ—en} ( !

S M)\({Zn —€n S f S Zn — en}m (O,Supf]),
which tends to 0 as n — oo according to Cadre (2006, Proposition A.2). This together with (EC.16)
imply that

f— fs (EC.18)

where the level y* satisfies [ Foy f = a. According to Cadre (2006, Proposition A.2), the map
5 ffZS f is continuous and one-to-one, so z, — y*.
Let y, be the solution of optimization problem (EC.2), which defines the original plug-in esti-

mator. According to Cadre (2006, Corollary 2.1),

/ f— f=a in probability. (EC.19)

An,yn f>y*

This together with (EC.16) and the triangle inequality yields

/ < / f-a / f—a
An,znAAn,yn An,zn An,yn

Since fAn,znAAn,yn f> (min{y,, 2.} — €.)A(A, ., AA,, ), we obtain

+ — 0 in probability.

(min{yn, zn} — €,)A(A, ., AA, , ) —0 in probability.
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Because z, — y*, y, — y* (Cadre 2006, Lemma 4.3) and €, — 0, the above result implies
that A(A,. ,AA,, ) — 0 in probability. Tt follows from Cadre (2006, Corollary 2.1) that
MA,.,, A MVC(a; f)) — 0 in probability. Therefore, A(A, ., A MV C(a; f)) — 0 in probability.
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