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Abstract—We develop models and the associated solution tools
for devising optimal maintenance strategies, helping reduce the
operation costs, and enhancing the marketability of wind power.
We consider a multi-state deteriorating wind turbine subject to
failures of several modes. We also examine a number of critical
factors, affecting the feasibility of maintenance, especially the dy-
namic weather conditions, which makes the subsequent modeling
and the resulting strategy season-dependent. We formulate the
problem as a partially observed Markov decision process with
heterogeneous parameters. The model is solved using a backward
dynamic programming method, producing a dynamic strategy.
We highlight the benefits of the resulting strategy through a
case study using data from the wind industry. The case study
shows that the optimal policy can be adapted to the operating
conditions, choosing the most cost-effective action. Compared
with fixed, scheduled maintenances and a static strategy, the
dynamic strategy can achieve the considerable improvements in
both reliability and costs.

Index Terms—Adaptive observers, environmental factors, man-
agement decision-making, reliability management, sensory aids,
wind energy.

I. INTRODUCTION

P ROPELLED by the pressures of mitigating the effects
of climate change and high energy costs, wind power

becomes one of the fastest growing renewable energy sources
around the world. The total capacity of wind energy in the U.S.
rose 45% in 2007 and is forecast to nearly triple by 2012 [1].
Despite the vast capacity of wind power reserve, the share of
wind energy still remains a small portion of the current energy
market.

One of the key factors for enhancing the marketability of wind
energy is to cut its operations and maintenance (O&M) costs
[2], [3]. According to Walford [3], the contribution of the O&M
costs to the total energy production cost is 10%–20% for a wind
farm. Vachon [4] shows that the O&M costs can account for
75%–90% of the investment costs, based on a 20-year life cycle
for a 100-MW wind farm in North America with 600 turbines
of 750 kW each.
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Currently, wind farm operators perform scheduled mainte-
nances on a regular basis. However, wind turbines are subjected
to irregular loading [5]. The deterioration progress of turbine
components could differ considerably from each other. Some
turbine components might deteriorate more slowly than the
average aging process, while the others may be faster. For this
reason, scheduled maintenances might result in unnecessary
visits or could not handle unexpected failures in a timely
fashion.

In the efforts to minimize the O&M costs, wind farm opera-
tors began to realize that condition-based maintenance (CBM)
is essential in an effective maintenance program [6]. Condi-
tion-based monitoring, equipped with sensors inside a wind tur-
bine, provides diagnostic information regarding the health con-
dition of the turbine components. Based on the information, one
can estimate the deterioration progress that may lead to a major
failure or consequential damage. Wind farm operators can plan
maintenance tasks in advance before the problem escalates and
develops into major failures or critical malfunctions.

Studies have been conducted to examine the effectiveness of
CBM strategy for the components in conventional power sys-
tems [7]–[10]. For instance, Jirutitijaroen and Singh [10] ex-
amine the effect of preventive maintenance and inspection on
reliability and costs for a transformer. This study provides prac-
tical insights regarding how preventive maintenance and inspec-
tion would impact on system performance depending on a trans-
former’s deterioration condition. Our work is similar to previous
work like [10] in terms of general methodology but differs in the
sense that we focus on modeling the unique aspects encountered
in wind farm operations and maintenance.

Recently, a few studies have also been conducted to quantify
the benefits of CBM in the wind energy industry. Among them,
McMillan and Ault [11] evaluate the cost-effectiveness of CBM
by using Monte Carlo simulations. Through simulating various
scenarios with different weather profiles and repair costs, they
show that wind farm operators can gain remarkable economic
benefits for onshore turbines by adopting certain CBM strategy.
One would expect more appreciable benefits for offshore wind
turbines since the repairs of those turbines are more costly and
taking maintenance actions faces more constraints. Similarly,
Nilsson and Bertling [12] investigate how much O&M costs can
be reduced by utilizing condition monitoring information, af-
firming a reduction in costs. However, these studies do not dis-
cuss what kind of CBM policy could be the most effective one.

Andrawus et al. [13] use a statistical analysis to model the
failure pattern of wind turbine components. Based on the histor-
ical data coming from wind turbine operations, they calculate an
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optimal replacement cycle for each component that minimizes
the total maintenance costs over the component’s lifetime. For
example, they show that the gearbox and generator should be
replaced every six and three years, respectively, in order to at-
tain the minimum repair costs for the 600-kW horizontal axis
turbines. Their model considers the average aging process of
the components, but the degradation behavior of each individual
component is not captured.

In this study, we propose a new mathematical model to
dynamically schedule maintenance activities based on both the
internal condition of each turbine component and the external
operating environments. The internal conditions include not
only the degree of deterioration status but also the different
failure modes associated with individual components. On the
other hand, the external operating conditions such as weather
climates and lead time to prepare repair resources may not
be significantly related to the degradation or failure of a wind
turbine component, but they can affect the O&M costs and
wind turbine availability considerably [11], [14].

Our model incorporates the information from condition mon-
itoring equipment using a partially observed Markov decision
process (POMDP) in order to represent the internal degradation
(and failure) status. A POMDP is a sequential decision-making
process to control a stochastic system based on the system state
[15], [16]. In the POMDP setting, the system condition cannot
be observed directly, so that the condition is estimated in a prob-
abilistic sense [17], [18]. In the wind turbine monitoring, cheap
but unreliable remote sensors provide abundant yet uncertain in-
formation. In this sense, POMDP provides a suitable framework
to optimize the wind turbine maintenance activities.

We investigate several unique, but critical, aspects of wind
turbine operations. First, we examine the dynamic weather
conditions that could have considerable differences season
by season. Weather conditions affect the wind farm O&M
in several ways. Harsh weather conditions could constrain
repairing activities, and these conditions may occur more often
in certain periods of a year than in other periods. For example,
a wind farm cannot be assessed during storm seasons. In the
winter seasons, climbing up an icy turbine tower is not allowed
for safety concerns. Also, harsh weather conditions cause the
repairing interruption and delay. Many wind turbine-related
repairs take several days because of the physical difficulties to
repair the components. This relatively long duration of a re-
pairing session increases the chance that a repair is interrupted
by adverse weather conditions. With these reasons, it would be
better to shift non-urgent maintenance tasks to less windy time
in spring or fall [3].

The second factor we consider is different failure modes of
each turbine component and the corresponding failure conse-
quences. Each failure mode determines what type of parts/crew
is required, which in turn determines the costs, lead time, and
repair time. Accordingly, the costs of corrective maintenance
(CM) and the downtime due to the occurrence of a turbine
failure could vary for different failure modes. For example, a
gearbox may fail in various subcomponents including bearing
failures, sealing problems, oil system problems, and so on [19],
[20]. According to Ribrant [19], it can take several weeks to fix
the problems associated with bearing failures, partly because

of the long lead time required for skillful labors and cranes to
get ready. On the other hand, oil system problem can be fixed
within hours [19].

The third factor is the revenue losses during downtime. The
inactivity of a wind turbine during lead time and repair time con-
stitutes the unavailability, causing the losses of revenues. Since
wind power generations are maximized in high wind speed sea-
sons, downtime during these seasons could lead to huge produc-
tivity loss [3].

While modeling the above factors related to wind turbine
operations, our model aims to decide the optimal strategy for
proper actions to take. There are three types of actions consid-
ered in our model: preventive maintenance (PM), on-site obser-
vation (OB), and when neither is needed, continue monitoring
and takes no action (NA). Regarding PM, we allow multiple re-
pair levels that can bring an operating system to any state be-
tween the current state and an “as-good-as-new” state. Also, we
examine the effects of each PM on the costs, reliability, and re-
pair durations.

OB is different from the automated remote monitoring
system; rather it is the infrequent, non-periodic on-site in-
vestigation that wind farm operators can take. OB is fulfilled
by either dispatching maintenance crew or, if technologically
feasible, invoking more advanced smart sensors; both options
are generally very costly, but presumably can help understand
the system condition with a high confidence. The co-existence
of a cheap but unreliable remote monitoring and an accurate yet
costly OB is a unique aspect in the wind industry, not always
encountered in other applications.

Taking all of the above aspects into consideration, we de-
rive a season-dependent, dynamic CBM strategy in order to
minimize the total O&M costs over a wind turbine’s lifetime.
This dynamic aspect clearly differentiates this work from our
previous work [21], which considers a static, season-indepen-
dent CBM strategy. In this paper, we formulate the problem as
a finite-horizon POMDP model. Parameters in the model are
heterogeneous (or, non-homogeneous/time-varying) depending
on the prevailing weather conditions, which make the resulting
strategy adaptive to the operating environments. The optimal
policy is constructed from the evolution of the deterioration
states of individual wind turbine components. We introduce
a backward dynamic programming algorithm to solve the
problem. To illustrate the application of the model, we perform
a case study based on the historical industry data. The results
show that significant benefits can be expected by adopting the
proposed strategy in the wind industry practices.

The remainder of the paper is organized as follows. We de-
scribe the specific aspects of modeling the operations and main-
tenance of wind turbines in Section II. Then, we present the
POMDP model and its solution procedure in Section III. The
case study is reported in Section IV. Finally, we conclude the
paper in Section V.

II. MODELING THE OPERATIONS AND MAINTENANCE

IN WIND FARMS

In this section, we examine a number of modeling aspects rel-
evant to the O&M in wind farms. We also consider the different
choices of maintenance action that the wind farm operators can
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take, the corresponding effects on the system condition, and
the associated costs. It is assumed that the wind farm operators
make maintenance decisions in discrete time at ,
where is the terminal period corresponding to the lifetime of
a wind turbine.

A. Partial Information About a System

Suppose that the deterioration levels of an operating system
are classified into a finite number of conditions and
that the system can experience types of failures. Then, the
system condition can be categorized into a series of states,

. State 1 denotes the best condition like “new”,
and state denotes the most deteriorated operating condition
before a system fails. State reflects the th failed mode,

. Let us call the original
state space.

In reality, the physical condition of a turbine component is
not known exactly, but may be estimated from the condition
monitoring sensor signals. Estimations rarely reveal perfectly
the system conditions and health status due to a wide variety
of reasons, such as imperfect models linking measurements to
specific faults, as well as noises and contaminations in sensor
signals [2]. One way to characterize the information from the
sensor signals is to specify a probability vector about the actual
underlying condition. A common treatment of the information
uncertainty under the POMDP setting is to define a state as a
probability distribution, representing one’s belief over the cor-
responding true state. As such, we define the state of the system
as the following probability distribution:

(1)

where is the probability that the system
is in deterioration level . is commonly known as an informa-
tion state in the literature [17]. Then, the state space under the
POMDP setting becomes

(2)

Let us call the partially observed state space.
When one of the elements in the information state is one and

other elements are zero, the state is called the extreme state, de-
noted by , where is

dimensional row vector with a 1 in the th position
and 0 elsewhere. These extreme states reveal the system’s con-
dition perfectly. In other words, denotes the best condition
like an “as-good-as-new” condition, is the most deteriorated
condition, and denotes the th failure mode.

Note that for an operating system since wind
turbines no longer operate upon failures. When a system fails
with the th failure mode, the state becomes .

B. Markovian Deterioration

In this study, we choose a Markov model to represent the
aging behavior of a system because of its flexibility and popu-
larity in many applications including modeling the devices used

Fig. 1. State transition diagram in the original state space � .

Fig. 2. State transition diagram in the partially observed state space � .

in the power systems [7]–[10], [22], [23]. Markov models have
been used to represent the degradation pattern of wind turbine
components in several recent studies [5], [11], [24]. When a
system undergoes Markovian deterioration, the current state is
transited to another state according to a transition probability
matrix, . consists of the four subma-
trices as follows:

(3)

where denotes an transition matrix from an oper-
ating state to another operating state, and is an tran-
sition matrix from an operating state to one of the failure states.

is an zero matrix, whereas is an identity
matrix. Both and matrices together reflect the fact
that once the system fails, it cannot return to any operating state
on its own but remains at the same failure state unless a main-
tenance action is taken. In many practical applications, is an
upper-triangular matrix where the lower off-diagonal elements
are zero because a system cannot improve on its own. Fig. 1 il-
lustrates the state transitions with an upper-triangular matrix
in the original state space .

Suppose that the current information state of an oper-
ating system is and NA is taken. The probability that
the system will still operate until the next decision point is

. People call this probability as the
reliability of the system [18]. Based on the law of conditional
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Fig. 3. Corrective maintenance after a failure with the �th failure mode. The figure illustrates the repairing process after a major failure where ���� � �. For a
minor failure, the process would be similar except ���� � �.

probability [18], the information state after the next transition,
given that the system is not yet failed, is

(4)

As such, the system is transited to the next state
with probability . If the

system fails and results in the th failure mode with probability
, the state becomes in the next

period. Also, the total probability that the system fails until the
next period is , which
is called the hazard rate of the system. Fig. 2 illustrates the
state transition diagram in the partially observed state space
without any maintenance interruption.

C. Corrective Maintenance (CM)

According to Walford [3], the portion of the corrective main-
tenance costs is between 30% and 60% of the total O&M costs.
Not only do the direct costs (to fix the failed components), but
the indirect costs such as revenue losses also contribute consid-
erably to the corrective maintenance costs. This is mainly the
result of a typically long downtime, due to usually restricted ac-
cessibility to a wind farm and limited availability of parts and
crew [14].

Components of a wind turbine may experience different types
of failure, and the consequences of different failures are not the
same, much as expected [25]. Suppose that a system can expe-
rience types of failures. Upon a failure with the th failure
mode, parts are ordered and crews are arranged, which sup-
posedly takes lead time. When all of the parts and crew
are available, and if the weather conditions are good enough to
allow the repair work to go ahead, the crew carry out a CM for
the th failure mode [namely, ] for repair periods
at cost (note: and take non-negative integer
values, meaning 0 period, 1 period, 2 periods, and so on). If the
prevailing weather conditions are not good enough, however, the
crew must wait until the weather conditions permit a repair. Let

represent the probability that the prevailing weather
conditions during the th period are harsh, and CM for the th
failure mode is thus prohibited, .

Without loss of generality, we order the failure states such
that a lower index implies a more serious failure mode. We as-
sume that major repairs that fix serious problems take one full

period [that is, ], whereas the repair time for minor
problems is negligible compared to the duration of a period
[that is, ]. Understandably, major repairs require that
the weather conditions stay permitting for the whole repair pe-
riod, costlier resources, and longer lead time than minor re-
pairs. Therefore, we have

, and for .
Unless the repair is completed, wind turbines can no longer

be operated after a failure, causing revenue losses at pe-
riod . Note that is a time-dependent parameter, varying
season by season. After the repair, the system is renewed to an
as-good-as-new state. Fig. 3 illustrates the repair process after a
failure occurs.

D. Preventive Maintenances (PMs)

PMs are the actions to repair the system that has deterio-
rated but not yet failed [26]. The PMs are divided based on
how system condition can be improved with maintenance ef-
forts. Recall that the condition of an operating system in this
study is modeled by discrete levels, which suggests that there
can be at most choices for the PM actions, namely,

, where denotes the PM action
which repairs the system to the state at cost . For ex-
ample, choosing corresponds to performing a major re-
pair such as overhaul or replacement, which returns the system
to an as-good-as-new state, . On the other hand,
spends the least efforts and time to bring the system state to

. Accordingly, .
Depending on which PM level is chosen, the repair time and

the requirements for weather conditions may differ, and con-
sequently, the production loss during a repair can be different.
Similar to the CM cases, we assume that major PMs require
one full period under good weather windows. If the weather
becomes harsh during a repair, the crew have to hold the re-
pair work until the weather returns to good conditions. On the
other hand, minor PMs could be done almost instantaneously
under tolerable operating conditions. Let represent
the probability that the weather conditions at period do not
allow to be performed, . Then, we
have for .

E. Observation (OB)

Through the remote monitoring system, the wind farm op-
erators can attain the partial (and imperfect) information about
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the turbine system condition, while OB is the action to eval-
uate the system’s exact deterioration level at cost . So the
information state after an OB takes place reverts to one of the
extreme states , where is defined earlier in
Section II-A. After an OB, the decision maker will choose an ad-
equate maintenance action in that same decision period, based
on the updated information state.

III. POMDP MODEL WITH HETEROGENEOUS PARAMETERS

In this section, we present a wind turbine O&M model under a
POMDP framework with heterogeneous parameters. Our model
extends the model introduced in our previous work [21] by in-
corporating more practical aspects of wind turbine operations.
We formulate the problem as a finite-horizon discounted cost
model, and devise a backward dynamic programming to solve
for the optimal policy numerically.

A. Model Formulation

Let denote the minimum expected total cost-to-go
at the th period (the total costs incurred from the current
period to the terminal period ) when the current state is

. Also, let us denote the discount factor by . At each deci-
sion epoch, there are possible action alternatives: NA,

, and OB.
When NA is selected at the current state , the total cost-to-go

is as follows:

(5)

where

(6)

and

(7)

Under NA, the system could either end up with the th failure
mode with probability , or transit to the
next state with probability . In (5), the first term

is the total revenue losses during the lead time, upon a
system failure. If the system fails and the lead time is nonzero
[that is, ], the wind farm would lose the revenue of

, as shown in the first component of (6). Note that
these revenue losses depend on weather conditions, which in-
dicates that if the system fails during the windy seasons and
the failure requires long lead time, one should expect signifi-
cant production losses. On the contrary, the second term in (6)
implies the cases of minor failures with zero lead time.

in (7) reflects the CM costs for the th failure
mode. The first component is the expected costs caused by de-
lays due to harsh weather conditions, which would occur with

probability . The second component indicates the re-
pair costs under good weather conditions. Note that

in (7) specifies the revenue losses during a major repair that
takes one full period. After the repair, the system condition is
restored to the best condition, .

Next, let us consider the actions of PM. action,
, which improves the system condition to the state

, can be categorized into minor repairs and major repairs in
a broad sense. We assume that the repair time for minor repairs
is negligible. Therefore, minor repairs can be carried out almost
instantaneously as long as the weather conditions are good. But,
if the weather conditions are not good during the whole period,
NA is taken. On the other hand, major repairs take one full pe-
riod and if the weather conditions become harsh during the re-
pair, the job has to be halted and will be resumed in the next
period. The following formulation in (8) is the total-cost-to-go
for for :

(8)

Finally, we model the action of OB. The observation costs
are divided into the direct costs to inspect the system and the
post maintenance costs after the system condition is evaluated
precisely. The following and together rep-
resent that after each observation at cost , the state is up-
dated to with probability and then we choose the least
costly action in the same decision period, among NA or

:

(9)

where

(10)

Note that OB cannot be optimal at the extreme points,
because is always greater than

for .
Now, the optimal value function can be written as follows:

(11)

Solving the optimization in (11) gives the optimal decision
rule at the current state . Here, will take one of
the possible maintenance actions, NA, ,
OB, specifying the best action selection when the system occu-
pies the state at a specified decision epoch [27]. The optimal
policy at the state , denoted by , is the vector of the op-
timal decision rules to be used through decision epochs, that is,

, where denotes the terminal pe-
riod.
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B. Solutions: Backward Dynamic Programming

In order to attain the optimal policy and optimal value, we use
a backward dynamic programming [27]. First, we set the set of
states a priori. To do so, let us consider a sample path starting
from a state . A sample path is the series of information states
evolving over time under NA [17], [18]. We denote a sample
path starting from by where

and so on. The last state in the sample path
implies a stationary state or an absorbing state [18], which is
defined by where
with a small . As long as the Markov chain is acyclic,
exists for any [18].

Observing from (5)–(10), one can find that the total cost-to-go
associated with each possible action as well as the optimal value

at and period are only dependent on the values at
the next state and the extreme states .
Utilizing this understanding, we can step backwards along the
path, recursively solving for the corresponding optimal action.
The following algorithm summarizes the solution procedure that
finds the optimal polices along a sample path. We also provide
an overview of the algorithm in Fig. 4.

Backward Dynamic Programming Algorithm

For a given and the parameter values [that is,

], use the following procedure along the
sample path emanating from .

• Step 1) Construct using (4) a sample path
, emanating from . Similarly,

generate the extreme sample paths, ,
originating from the extreme states .

• Step 2) Set the terminal values according to the
business situations. (Alternatively, the terminal values can
be set arbitrarily for large .)

• Step 3) Repeat for :
— a) Set the time-varying parameter values such

as , and
.

— b) Find the optimal decision rule and optimal value
at each extreme point . That is,
compute ,
for . Then, find

and the
corresponding .

— c) Compute the total-cost-to-go for each CM
with the th failure mode, .

— d) For , compute the total cost-to-go
associated with each action,

.
— e) Get the optimal value function

and the corresponding optimal decision rule.
— f) Set , and go back to Step 3a).

At Step 2 of the algorithm, one option to assign the terminal
value is to use the salvage value of the component. Alterna-

Fig. 4. Overview of the proposed backward dynamic programming algorithm.

tively, we can set the terminal values arbitrarily since the ter-
minal value would not affect the optimal decision rules at the
initial periods when is large enough. This is due to having a
discount factor . Without loss of generality,
can be used, .

We evaluate the optimal values at the extreme states at Step
3b), before evaluating the optimal values at other non-extreme
states at Steps 3d) and e). Note that for calculating the optimal
values for the extreme states, OB is not considered as one of
the potential optimal actions for selection because we already
knew that OB cannot be optimal at the extreme points [see (9)
and (10)]. But, in order to compute at the non-extreme
states, we need to know ’s, , which explains
why Step 3b) comes first before Steps 3d) and e).

Since the weather related parameters [that is,
] are season-dependent, the above procedure

generates a non-stationary optimal policy, making the policy
dynamically adjusted to seasonal effects.

IV. CASE STUDY

In this section, we present a case study illustrating the utility
of the proposed dynamic maintenance policy. Most critical
failures of a wind turbine are associated with its gearbox,
generator, or blades because of their large size, long lead time
for repairs, high capital cost, difficulty in replacement, and
lengthy downtime compounded by adverse weather conditions
[11], [19], [20]. In our case study, we examine the failures at a
gearbox because gearbox problems have been identified a long
while ago as one of the most serious problems in wind turbines,
and the recent large-scale wind turbines with new designs still
suffer badly from gearbox failures [12], [28]. We do want to
note, however, that similar analysis can be performed for other
wind turbine components as well.

A. Problem Description

We assume that the wind farm operators make maintenance
decisions on a weekly basis. Appropriate parameter values are
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TABLE I
FAILURE TYPES OF A GEARBOX

selected based on the published data or discussions with our
industry partners.

Ribrant [19], [20] examines the failure frequencies of dif-
ferent failure modes and the corresponding downtime in gear-
boxes of wind turbines with a rated power of 490 kW or more.
Table I summarizes the statistics related to the gearbox failures.
The failures of bearings and gearwheels often demand a total
change of the gearbox, resulting in a long downtime. The un-
specified failure types in the fourth row of Table I sometimes
correspond to other serious failures which require a replacement
of the whole gearbox [19]. The other two failure modes require
minor repairs in general. The first three columns are obtained
from Ribrant’s studies [19], [20]. Based on these numbers, we
set the lead time and repair time for each failure type, as shown
in the fourth and fifth columns.

Generally, a transition matrix can be obtained from oper-
ational data by taking a long-run history about the degradation
states and counting transitions. For critical equipment such as
circuit breakers and transformers in the conventional power sys-
tems, aging-related data have been accumulated for a long time,
and several repair strategies have been presented using a Markov
process [7]–[10], [22], [23]. For the wind industry, there is a lack
of data in the public domain for calculating the precise transi-
tion matrix for wind turbine components. For the time being, the
common remedy researchers adopt is to use the limited amount
of data, combined with expert judgments or simulations, to esti-
mate the transition probabilities, for instance, the approach used
in the study of McMillan and Ault [11].

In this study we follow a similar approach to handle the tran-
sition probabilities as in the above-mentioned literature. We an-
alytically derive the first passage time [29] to the failure as a
function of the elements of a transition matrix, which is called
a mean time to the first failure (MTTF or MTTFF) in the re-
liability study [10]. The inverse of MTTF gives the average
failure frequency. Then, we apply a similar transition matrix
used in [18] and modify the matrix to be consistent with the
overall failure frequency of a gearbox and the frequency of each
failure mode shown in Table I. According to Ribrant [19], the
failure frequency of a gearbox ranges from 0.05–2.29 times per
year, depending on the turbine manufacturers and models. Since
most wind farm operators currently perform scheduled mainte-
nances regularly, we believe that this failure frequency is the re-
sult under the scheduled maintenance practice. Based on these
understandings, we construct the transition matrix with the

following submatrices:

(12)

Since we consider one week as a transition period, rep-
resents a weekly-based deterioration process. The state
can be represented as an eight-dimensional row vector,

. , and are the prob-
abilities of being in a normal, alert, and alarm condition,
respectively, and to represent the five different failure
modes, as shown in Table I.

Remark: Using Monte Carlo simulations, we validate that the
failure frequencies with and in (12) are consistent with
the industry statistics under scheduled maintenance. The param-
eter values presented in (12), however, may not be a definitive
set of values; rather they could be a starting point for deriving
condition-based maintenance policy and evaluating the benefits
of the proposed model framework. As McMillan and Ault point
out [11], future work is needed to better quantify the param-
eter values. Rademakers et al. [14] also suggest that industry
parties should collaborate with one another to collect and share
data for the improvement of wind farm O&M. It also should be
emphasized that a much refined definition of system conditions
allowing more levels of possible PM actions may be necessary
in real situations while we only consider these three levels of
system conditions in this case study. Doing so will need to use
an information state of a higher dimension, but the proposed
methodology can be similarly applied.

Fig. 5 illustrates the partially observed state space for an op-
erating system. In the figure, the -axis denotes the alert prob-
ability , whereas the -axis is the alarm probability . Since

, the origin (0,0) implies the best condition,
. The state space is defined as the triangle surrounded by the
-axis, -axis, and . Note that , and

. Therefore, all states can only fall inside the trian-
gular area, as shown in Fig. 5. The area A in the upper-left corner
of the triangle depicts the states corresponding to seriously de-
teriorating conditions. The states belonging to this area might
need some kinds of remedies to avoid a catastrophic failure in
the near future. On the other hand, the area B in the lower-left
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TABLE II
MAINTENANCE COSTS AND HARSH WEATHER PROBABILITIES FOR EACH MAINTENANCE ACTION

Fig. 5. Partially observed state space for an operating system.

corner implies the healthy conditions. The states outside these
two areas are those whose aging conditions are in between.

There are five types of corrective maintenances,
and two types of preventive maintenances,

and . To get the maintenance costs, we refer to
Andrawus et al.’s study [13]. Rademakers et al. also discuss
different cost factors in their study in [14]. According to
Andrawus et al. [13], a major CM, as a result of unanticipated
failures, costs £78 368, and a major preventive repair costs
£8182. Therefore, we set and to be £78 368
and to be £8182 because , and
correspond to major repairs. There are no cost figures for

in the literature, and not for through ,
either. So based on the suggestions of our industry partners, we
set to be the half of the major CM cost, and
and to be one tenth of the major CM cost, respectively.
Similarly, corresponds to the minor repair and its cost

is assumed to be one third of the major PM cost. The
OB cost of a gearbox is set to be £200 [13]. These costs are
summarized in the second column of Table II.

Furthermore, these maintenance activities are constrained by
the weather conditions. The weather conditions would depend
on the locations, terrains of the wind farm site. We set the prob-
abilities that the harsh weather conditions would occur each
season in the third column of Table II.

Revenue losses per period depend on the weather conditions.
We set the average revenue losses to be £4433 [13]. Then, we
adjust the revenue losses across the four seasons from spring to
winter to be 80%, 120%, 80%, and 130% of the average revenue

TABLE III
REVENUE LOSSES

Fig. 6. Optimal decision rule during spring season. (a) In the beginning of
spring. (b) At the end of spring.

losses, respectively. Table III summarizes the potential revenue
losses per week for each season.

B. Results

With these parameter values, we compute the optimal policy
during a 20-year decision horizon. Since we consider the deci-
sion makings on a weekly basis, we set the discount factor
as 0.99, which is close to one. Figs. 6–8 show, respectively, the
optimal actions for spring, summer, and fall seasons in the first
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Fig. 7. Optimal decision rule during summer season. (a) In the beginning of
summer. (b) At the end of summer.

year of operations along a number of series of the sample paths.
The optimal actions for winter season are almost similar to the
results for summer season.

It is interesting to see that the optimal policy is non-stationary.
That is, the optimal action is not the same throughout the deci-
sion periods. It is worth noting a few features of the optimal
decision rules.

• In the beginning of mild weather seasons such as spring
and fall, we take the major PMs when the system is esti-
mated to be ill-conditioned. Toward the end of mild sea-
sons, the optimal decision is to take the major PMs even
for the moderately deteriorated condition like in order
to minimize the risk of failures during the upcoming harsh
weather seasons.

• The optimal decisions of spring and fall seasons are
slightly different. The NA area at the end of fall season
in Fig. 8(b) is smaller than the one in Fig. 6(b). Fig. 9
compares the two optimal policies in the middle of spring
and fall seasons. The area where the major PM is optimal
in Fig. 9(b) is larger than the area in Fig. 9(a). All these
are because of the more restricted maintainability of the
wind turbines during the (almost entire) winter season.

• In the beginning of harsh weather seasons such as summer
storm season and winter season, it is recommended to take
the minor PMs for the seriously ill-conditioned system to
avoid failures during the remaining harsh weather periods,
occurring of which may cause tremendous repair costs.
However, at the end of harsh weather seasons, NA is domi-
nated in all the states because it would be better to wait for

Fig. 8. Optimal decision rule during fall season. (a) In the beginning of fall. (b)
At the end of fall.

Fig. 9. Optimal decision rule in the middle of spring and fall. (a) In the middle
of spring. (b) In the middle of fall.

the next mild periods rather than performing risky repair
activities right away.
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TABLE IV
AVERAGE OF SIMULATION RESULTS FOR DIFFERENT MAINTENANCE STRATEGIES (STANDARD DEVIATION IN PARENTHESIS)

Fig. 10. Reduction (%) of failure frequency and maintenance costs of the two
CBM strategies compared with the current industry practices.

• OB is taken when the system conditions are not clear. How-
ever, OB is taken more often in the beginning or middle of
harsh weather seasons to decide the most suitable main-
tenance tasks than in the mild seasons. Understandably,
doing so will help reap more economical benefits.

C. Practical Use of the Model

In the interest of making the resulting method easier to use
for practitioners, we hereby summarize the major steps below
regarding how to obtain the non-stationary optimal policy and
how to interpret it for maintenance decisions in practice.

Step 1) Obtain parameter values needed for modeling
using historical data. These parameters in-
clude weather-dependent parameters [

for ], costs [
for ], and failure/degrada-

tion related parameters [ for ].
Step 2) Calculate the optimal maintenance policy of each

week for a whole year using the backward dynamic
programming, explained in Section III-B.

Step 3) Plot the figures as shown in Figs. 6–9 or create some
look-up tables, which represent the options of op-
timal policy of each week.

Step 4) In the beginning of each period, estimate the system
state using sensor data.

Step 5) Get the optimal policy by looking up the figures or
using the look-up table built in (Step 3) and select
the optimal action.

Note that Steps 1)–3) are associated with the derivation of
the optimal policy. Once we obtain the optimal policy for each
period for a whole year, wind farm operators, in the execution
mode, just need to estimate the system states and to check in
which policy region the state estimate falls, and then take actions
according to the corresponding policy type of that region, as
explained in Steps 4) and 5).

Based on the above discussion, the resulting policy (figures)
can be understood as follows: the viable operating region (the

triangle in Fig. 5) can be partitioned into subregions corre-
sponding to different actions (that is, NA, OB, major PM, and
minor PM). Note that each curve in Figs. 6–8 [except Fig. 7(b)]
has a couple of different colors (and shapes) in order to specify
different optimal policies along a sample path. By obtaining
the optimal policies along multiple sample paths, we can easily
identify each region where a specific action is optimal. Then, at
the beginning of each decision period, wind farm operators just
need to estimate the system states ( and , the horizontal
and vertical axes in the figure) and to check which subregion
the state estimate falls in, and then take actions according to
the corresponding type of that subregion. For example, in the
beginning of spring [see Fig. 6(a)], if a state falls in a major
PM area in the upper-left corner surrounded by the red dashed
boundary, wind farm operators should take major preventive
repairs.

D. Monte Carlo Simulation

To quantify the benefits of the proposed dynamic CBM
strategy, we compare the optimal policy with two other main-
tenance strategies. The first strategy is the fixed scheduled
maintenance, reflecting the current industry practices. The
other strategy is a similar CBM strategy, but without consid-
ering the seasonal weather effects.

To compare each strategy, we conduct Monte Carlo
simulations using the same parameter values explained in
Section IV-A. We simulate the system states following the
transition matrix with and in (12). We also simulate
the weather scenarios with the given probabilities in Table II.
For each strategy, 30 trajectories (or, runs) of simulations are
performed over 1040 periods (= 52 weeks 20 years). Then,
we obtain the average failure frequency and O&M costs per
year. Table IV and Fig. 10 summarize the simulation results of
each maintenance strategy, and we will explain the implications
of the results.

1) Results From Current Industry Practices: Current in-
dustry practices are mainly based on scheduled maintenances,
which conducts PMs on a regular basis in low wind speed
seasons [3], [12]. The frequency of the scheduled maintenance
usually depends on the manufacturer’s recommended main-
tenance program [30]. However, according to Nilsson and
Bertling [12], wind farm operators usually carry out minor
maintenances twice a year and major maintenances once every
two to four years, respectively. Following the industry prac-
tices, we set the scheduled minor maintenances to be carried
out in spring and fall, and major preventive maintenances to
be performed once every three years in spring. The simulation
results indicate that generators would fail 1.29 times per year
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Fig. 11. Optimal decision rule under stationary weather conditions.

on average, resulting in £68 320 O&M costs per year under this
scheduled maintenance strategy.

2) Results From the Static CBM Strategy: Suppose that in
order to produce a condition-based maintenance policy, wind
farm operators consider a gearbox’s degradation status but
ignore the weather constraints. That is, the maintenance policy
is obtained with the assumption that maintenance tasks can be
performed anytime although repair tasks are constrained by
seasonal weather effects. To implement this strategy, we set

’s and ’s to be zero, and use constant
for in the proposed procedure in this study. Then, the
resulting decision rules under the assumption of these static
weather conditions are applied at each period in the simulation.
This strategy is similar to the one presented in our previous
study [21] in the sense that homogeneous weather-related
parameters are used, and thus, the resulting strategies are static
over the decision horizon [but the difference is that [21] used
non-zero constants for ’s and ’s].

Fig. 11 illustrates the optimal decision rules under this static
CBM strategy. With this strategy, wind farm operators take the
action based on the degradation state of a gearbox, but the same
maintenance action will be applied to the same state over the
different seasons. The third column of Table IV summarizes the
results from this strategy. Since this strategy considers the dete-
rioration status, one can make timely decisions regarding when
to take maintenance actions to avoid failures. As a result, the
failure frequency is reduced by % ,
compared with the result of the scheduled maintenance. How-
ever, the reduction of maintenance costs comes at an unimpres-
sive % since this strategy does
not consider the weather impacts (see the graph in the left side
of Fig. 10).

3) Results From the Dynamic CBM Strategy: In this strategy,
the optimal maintenance action suggested by this study, which
considers the costs, degradation status, and weather conditions,
is taken at each decision period. The final column of Table IV
summarizes the results from the optimal policy. The reductions
in both failure frequency and O&M costs are remarkable, com-
pared with the scheduled maintenance. The failure frequency
and O&M costs are decreased by %
and % , respectively, demon-
strating that substantial benefits can be anticipated by adopting

the proposed dynamic CBM strategy in the practices of wind
power industry (see the graph in the right side of Fig. 10).

V. CONCLUSION

In this study we construct a new stochastic model for
choosing the cost-effective maintenance actions and sched-
uling adaptive yet costly on-site observations for wind turbine
operations and maintenance. We develop a season-dependent,
dynamic optimal policy to respond to the time-varying weather
conditions. We also examine other unique aspects in wind
turbine maintenance such as different failure modes, partial as
well as perfect repairs, and stochastic revenue losses. All these
factors render critical implications in the actual wind farm
O&M.

The case study of a gearbox, a critical component in a wind
turbine prone to major failures, demonstrates the benefits of
adopting the proposed CBM strategy. The failure frequency
and the overall costs can be considerably reduced when the
proposed policy is applied to a wind farm, instead of simply
following the scheduled maintenance practices. Also, we show
that using a static CBM strategy without considering the sea-
sonal weather effects could potentially improve the reliability
of a turbine component, as compared to the current practices,
but the cost reduction is not as appreciable as the dynamic
CBM strategy can provide. This difference in cost savings is
because the repairing activities during harsh weather seasons
would often result in repairing interruptions and delays, which
lead to the potential production loss.

As future work, we could extend the model to incorporate
multiple components of a wind turbine. In this study we as-
sume the independence of each component operation. How-
ever, when a component fails, it may cause other components
to malfunction; this is known as “cascading effects”. It would
be interesting to see how robust the recommended maintenance
policy can perform for a wind turbine when multiple compo-
nents are considered. In parallel to this study, we are devel-
oping a large-scale simulation model for wind farm operations
with hundreds of turbines, using a discrete event specification
(DEVS) formalism [31]. The model and maintenance strategy
presented in this paper will be integrated into the DEVS simu-
lation model to validate the optimal policy, and to see if further
modifications are necessary.
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