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Decision Fusion from Heterogeneous Sensors in
Surveillance Sensor Systems
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Abstract—Using multiple, heterogeneous sensors in surveillance systems
is desirable, not only to tolerate sensor failures, but also to increase the
accuracy of the event detection process and to provide complementary ca-
pability under different operating conditions. In the operation of multiple,
heterogeneous sensors, we may encounter inconsistent sensor observations.
Motivated by the need to make coherent decisions, we propose in this
study a decision scheme to determine the right interpretations of sensor
outputs when conflict arises. The proposed decision rule considers sensor
heterogeneity in a surveillance system, while attempting to minimize the
expected misclassification cost. Case studies of the surveillance sensor
system in a major U.S. port demonstrate that the proposed decision
scheme achieves a better robustness in the presence of sensor failures than
the popular k-out-of-n decision fusion rule.

Note to Practitioners—The central message from this paper is that when
using heterogeneous sensor systems, the commonly used k-out-of-n deci-
sion fusion rule is no longer optimal. This has important implications for
security surveillance applications because a complex surveillance sensor
system almost always comprises multiple units of different types of sen-
sors. Under those circumstances, a more flexible format of decision fusion
should be allowed. Our paper presents a new optimal decision rule and a
procedure to determine it. Information required for using this proposed de-
cision rule includes the cost factors related to sensors and consequences of
making wrong decisions, as well as the prior belief of how likely an adverse
event would take place.

Index Terms—Homeland security, robust decision fusion, sensor fusion,
surveillance system for ports and waterways.

I. INTRODUCTION

of surveillance sensor systems capable of gathering data from
a specific region, processing the data, and making decisions based on
the observed data. In this paper, we consider surveillance sensor sys-
tems designed to monitor restrictive security areas in ports and wa-
terways. Fig. 1 shows an example of a surveillance sensor system for
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Manuscript received September 20, 2009; revised March 29, 2010; accepted
July 24, 2010. Date of publication September 13, 2010; date of current version
January 07, 2011. This paper was recommended for publication by Associate
Editor R. Fierro and Editor S. Sarma upon evaluation of the reviewers’ com-
ments. This work was supported in part by the National Science Foundation
under Grant CMMI-0529026 and Grant CMMI-0727305.

E. I. Gokce is with the Columbus Radiology Corporation, Columbus, OH
43215 USA (e-mail: elifilke@gmail.com).

A. K. Shrivastava is with the Department of Manufacturing Engineering and
Engineering Management, City University of Hong Kong, Kowloon, Hong
Kong (e-mail: Abhishek.Shrivastava@cityu.edu.hk).

J.J. Cho is with Baker Hughes Inc., Houston, TX 77019-2118 USA (e-mail:
cho.jungjin@gmail.com).

Y. Ding is with the Department of Industrial and Systems Engineering,
Texas A&M University, College Station, TX 77843-3131 USA (e-mail:
yuding @iemail.tamu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2010.2064305

the Houston Ship Channel. In the ship channel, sensors continuously
monitor specific regions called surveillance points. In order to increase
the accuracy of surveillance and to provide complementary capabili-
ties under different environmental conditions, each surveillance point
is monitored by several sensors of different types.

When an event occurs at a surveillance point, the activity is picked
up by each sensor monitoring the region. These sensor observations
can be integrated to obtain decision about the event by using two dif-
ferent methods, namely data fusion [1] or decision fusion [2], [3]. In
data fusion, each sensor sends its original measurement to the fusion
center, which calculates a new estimate of the physical quantities under
surveillance and makes a conclusion based on the new estimate. In de-
cision fusion, each sensor sends a local decision (usually a binary one)
derived by independent processing of its measurement. In surveillance
sensor systems, since the outputs of the sensors is typically images
or videos, the data fusion approach is usually difficult to implement.
Therefore, the decision fusion approach is used, where local decisions
are made either by an automated algorithm or a human operator. In this
study we assume that binary local decisions are available at each sensor
as “event” or “no-event.”

In practice, when an event occurs at a surveillance point, not all
sensors monitoring the region may report an “event.” This happens
because different sensors have different capabilities and their perfor-
mance depends on environmental conditions. Moreover, sensors may
fail or malfunction due to degradation or intentional tampering. This
raises the question of how the final decision should be made, from in-
dividual decisions, in the presence of inconsistent sensor observations.
For instance, what the final decision will be if two out of four sensors
report “event” and the other two report “no-event”? If there is indeed no
event at the point, but the sensor observations are interpreted as “event,”
then a false alarm occurs. Occurrence of false alarms will increase the
operating cost as security forces will be sent to the respective area for
investigation and interdiction. If an event actually takes place at the
point, but the sensor outputs are interpreted as “no-event,” then a mis-
detection occurs. Misdetection cost can be much higher than the false
alarm cost because failure to detect and stop adversary activities in time
may lead to catastrophic consequences. This paper addresses explicitly
the manner in which individual decisions should be combined at a fu-
sion center.

In this paper, we present a decision rule to optimally fuse binary
sensor decisions in a surveillance sensor system. To the best of our
knowledge, optimal decision rules proposed in literature (for example,
[4]-[6]) are in the form of the k-out-of-n rule. That is, if at least & out
of n sensors, monitoring a surveillance point, report “event,” then the
final decision is deemed as “event.” This structure has been proven to
minimize the expected misclassification cost (EMC) when all the sen-
sors are identical [5]. But in our study, we consider surveillance sensor
systems with heterogeneous sensors. Our study shows that for a het-
erogenous sensor system, the k-out-of-n structure is too rigid to always
produce the best result in decision fusion. Our approach is to solve for
the optimal decision rule, which minimizes the EMC, through a binary-
programming formulation without imposing the k-out-of-n structure.
We also present a numerical procedure that can efficiently compute the
decision fusion results. The proposed decision rule is of more flexible
format, and can better handle the situations when sensor failures occur.
We will show that it is more fault-tolerant than the k-out-of-n decision
fusion rule.

1545-5955/$26.00 © 2010 IEEE
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@ : Surveillance point

C1,C2,N1,N2, T1, T2 : Sensor types

Fig. 1. A surveillance sensor system for the Houston Ship Channel. Letters “C”, “T”, and “N” stand for the three classes of surveillance sensors, i.e., CCTV,
thermal/infrared, and night vision sensors, respectively. The number following the letters indicates the existence of multiple sensor types in a given sensor class.

For example, C1 and C2 represent two different types of CCTV cameras.

The remainder of this paper is organized as follows. Section II re-
views the related literature. Section III formulates the optimal deci-
sion fusion problem as a 0-1 integer program. Section IV describes
the optimal decision rule that minimizes the expected misclassifica-
tion cost and compares it with the commonly used %-out-of-n rule. We
also present an algorithm to determine the proposed decision rule effi-
ciently. Section V presents the case studies to computationally evaluate
the performance of the proposed decision rule and compare it with the
k-out-of-n rule. Finally, we conclude this paper in Section VI.

II. RELEVANT LITERATURE

In this section, we briefly review the literature on decision fusion,
which is the focus of the paper. For the related topic of data fusion,
interested readers may refer to [7]-[10].

Classical theory of decision fusion is based on hypothesis testing and
estimation methods [2], [3], [11], [12]. An earlier study [13] introduces
a model under binary hypothesis H; (presence of an event) versus Hg
(absence of an event) and provides a theoretical framework for event
detection using multiple sensors. Each sensor in the system makes an
observation conditioned on the unknown hypothesis. Overall perfor-
mance of the system is measured by the misdetection probability. If
the sensor observations are independent, then the optimal decision at
each sensor is made by employing a likelihood ratio threshold test with
different threshold values. Since thresholds can be chosen in a number
of ways and calculating them is generally difficult, most of the studies
have focused on the cases where the same likelihood threshold is used
at all sensors [1]. In that case, an optimal decision rule is a k-out-of-n
rule [4]. Using Bayesian and Neyman—Pearson criteria, Zhang et al. [5]
determine the optimal k£ and the likelihood threshold that minimizes
the misdetection probability. Methods based on hypothesis testing are
different from our study because, in the above-mentioned literature, a
k-out-of-n rule structure is assumed, and the studies aim to find the
optimal %k and the optimal threshold at individual sensors.

A seminal work on decision fusion is by [6]. Based on the observa-
tion that the sensor faults are likely to be stochastically uncorrelated,
while event measurements are likely to be spatially correlated, [6] pro-
poses letting an individual sensor communicate with its neighbors and
using other’s decisions to correct its own decision. Assuming that the
false alarm probability of a sensor is equal to its misdetection proba-
bility, [6] shows that the majority voting rule is the optimal decision
rule that minimizes the average number of faulty observations. How-
ever, the majority voting rule does not hold its optimality when the as-
sumption that the false alarm probability and misdetection probability
are equal does not hold.

An alternative type of decision fusion is sequential decision making.
In this, sensors sequentially send their observations to the fusion center,
where a binary decision is made at a stopping time [14]. When to stop
taking observations is a part of the overall decision procedure. Such a
decision process has been used, for instance, for container inspection

at the port-of-entry [15], [16]. The difference from our study is that
the surveillance systems of interest here require fusing all observations
simultaneously rather than sequentially.

Decision fusion utilizes processed information as opposed to the
original measurements. Thus, one might expect that systems based on
data fusion perform better than those based on decision fusion. How-
ever, [17] showed that data fusion has the same behavior as decision
fusion under certain regularity conditions. Moreover, [18] compared
algorithms based on data fusion and decision fusion. In the presence of
faulty sensors in a system, [18] found that decision fusion-based algo-
rithms may perform better than data fusion-based algorithms.

III. MISCLASSIFICATION COST AND PROBLEM FORMULATION

Suppose a set of sensors I are deployed to observe a set of surveil-
lance points .J. Each surveillance point j € .J is observed by a subset
of sensors /; C I and each sensor 7« € I may observe more than one
surveillance point. We assume that the performance of a sensor is not
influenced by any other sensor in I; and a sensor makes each of its de-
cisions independently.

Let the actual occurrence of events at surveillance point j be denoted
by the random variable Uy; i.e.,

U, — 1, if a suspicious event occurs at point j
7710, otherwise.

P(U; = 1) is the prior probability of a suspicious event occurring at j .
Let Y;; be the binary decision of sensor ¢ for surveillance point j; i.e.,

1
Yij=<"
={s

Then, the misdetection probability of an event at point j by sensor ¢
is P(Y;; = 0|U; = 1) and, likewise, the false alarm probability is
Py = 1|U; = 0).

Lety; = (Y1, ¥2j-- -, ¥n;;) be the vector of binary 0-1 decisions
from each of the n; (= |I;|) sensors observing point j. Then, we denote
the fused decision at j by «(y;); i.e.,

if sensor ¢ reports “event” at point j
otherwise.

(¥5) 1, if our fused decision at j is “event”
Yi 0, otherwise.

Let PFA; and PMD; be the false alarm and misdetection
probabilities, respectively, and cf and c}* be the false alarm and
misdetection costs, respectively, at point j. Further, define Dpg
to be the set of all y;’s for which the fused decision is “event”;
ie, Dp = {y;j:y; €{0,1}" s.t.2(y;) = 1}, and Dnr to be
the set of all y;’s for which the fused decision is “no-event”; i.e.,
Dne = {y;:y; €{0,1}" s.t. 2(y;) = 0}. Then, the expected
misclassification cost (EMC) at j is given by

Cj=clPFA; +c]'PMD, (1)
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where
PFA; = Y Pla(y;) =1|U; = 0)P(U; = 0)
y;€EDE
and
PMD;= Y Pla(y;) =0U; = LP(T; = 1).

Y;€Dnp

If cf = ¢}' = 1, then C'; = PMC);, the misclassification probability
of the fused decision at j.

Observe in (1) that, for given y;, false alarm cost will be incurred
only if x(y;) = 1; similarly, misdetection cost will be incurred only if
x(y;) = 0. As such, EMC is

Ci= Y  |dP(Y;=y|U; =0)P(U; = 0)a(y;)

v, €{0.1}"3

+ei' P(Y; =y,|IU; = HDPU; = (1 - 2(y;)) |- ()

Using (2), the problem of determining the optimal decision rule, which
minimizes the EMC of sensors observing surveillance point j, becomes
a binary integer programming problem

c*

7

S | PY, = yi|U; = 0) x P(U; = 0)aly;)

y,;€{0,1}"3

= min
+c' P(Y; =y;|U; = 1)
x P(U; = 1)(1 —2(y;))

st a(y;) € {0,1} forall y; € {0,1}"9. 3)

It may be noted that, from a Bayesian decision theory perspective,
C'j is the Bayes risk of z(y ;) using the 0/1 loss function and =" (y;)
is the Bayes estimator.

IV. DECISION RULE

A. Optimal Decision Rule (ODR)

The following theorem gives an explicit description of the ODR,
the optimal solution to Problem (3). (To save space, proofs of the re-
sults presented here have been omitted. They are available at the cor-
responding author’s website: http://ise.tamu.edu/metrology.)

Theorem I: The optimal solution z* to Problem (3) is given by equa-
tion (4) at the bottom of the page.

While Theorem 1 is easy to understand, it is not convenient to use in
practice. In order to present it in a practically useful format, we conduct
the following analysis. Let

I P(U; =0)

P(Y, =y,|U; =1)
T(v.) = j ilYy
¥3) P(Y,; =y,|U; =0)

and t; =

Then, according to Theorem 1, y; is interpreted as “event” (i.e.,
#(y;) = 1)if

T(y;) 2t (&)

and as “no-event” (i.e, z* (y;) = 0) otherwise (i.e., T(y;) < t;). Now,
since the sensors are independent, we have

Hz‘ejj P(Yij = yij|Uj =1)
[Lics, P(Yij = yis|U; = 0)

- 11 PYi; =yi;|U; = 1)
P(Yi; = yi|U; = 0)

T(y;) =

=y

Lety; = argmax {T(y;)|y; € {0,1}"7} and Trmax = T (¥7).
Assuming that the sensors observing j provide acceptable performance
in the absence of any failures we clearly have =* (yJ*) = 1. Note that
y; can be determined by simply maximizing the contributions of each
sensor ¢ in T’ (y;) separately, which reduces to setting y/; = 1 if
(P(Y;; = 1|U; = 1)/P(Y;; = 1|U; = 0)) > (P(Y; = 0|U; =
1)/P(Y:; = 0|U; = 0)) and y;; = 0, otherwise.

Using y; and Ti.x, Lemma 1 presents a different expression for

T(y;).
Lemma 1:
1
i€s(y;)
where
5 = P (Yij = y;7|Uj = 1)
CP (Y =ilU =0)
P (Y =1-y}|U; =0)
r (Yu =1- yfj|UJ = 1)
and

S(y;) = {i € Lilyi; #vi; }-

Using Lemma 1 and (5), we have the following simplification of the
ODR.

Lemma 2: Let 8 = Tinax/t;. In ODR, all outputs y; € {0,1}"
such that

[T s<s (©)

i€S(y ;)

are interpreted as “event”; all the remaining outputs are interpreted as
“no-event.”

Lemma 2 provides a convenient format of the ODR as only the ¢;’s
depend on sensor outputs whereas 3 is fixed once the surveillance
system is known. To understand the ODR specified in Lemma 2, con-
sider the following. 7'(yy; ) is the likelihood ratio, given a sensor output
¥;, that an event occurs versus no-event, and Tinax is the maximum
likelihood ratio, representing the best potential of the sensor system in
detecting an event. The quantity & on the right-hand side does not de-
pend on the actual sensor outputs; rather it depends on the maximum
likelihood ratio, the misclassification cost and the event’s prior proba-
bility ratios (deciding ;). In this sense, 3 can be considered as a perfor-
mance threshold determined by the sensor system and the surveillance
task. On the left-hand side, é; represents the capability of sensor ¢ (i.e.,
false alarm rate and detection power). Apparently, the ODR specified
in Lemma 2 is decided by comparing the sensor detection capability
with a system-level threshold. It is also worth noting that Lemma 2 can

con S 1 it PY; = y,|U; = )P(U; = 1) > ] P(Y; = y;|U; = 0)P(U; = 0)
T (YJ) = J

0, otherwise

@
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TABLE I
SENSOR INFORMATION FOR FOUR SENSOR EXAMPLE
i | P(yy =1U; =1) | Plys; = 1U; =0) | P(ys; =0|U; =1) | P(y;; =0U; = 0) b
1 0.90 0.10 0.10 0.90 81.00
2 0.60 0.45 0.40 0.55 1.83
3 0.99 0.01 0.01 0.99 9801.01
4 0.90 0.04 0.10 0.96 216.00
ODA (I)) TABLE II
- . TEST INSTANCES [19]
Step 0: Determine ¢; for i € I;, yj, and
Step 1: Apply ProcQ(J;, ) to generate ) N 1| n | minn | ave n; | max g
Step 2: For each S € )
Set yi; = 1 —yy; fori € S L4123 2 4 6
vi=v; foriel;\§ 2|1 | 42|26 2 4 6
Report that y; means “event 3 1 2 | » ) 4 6
Fig. 2. Optimal decision algorithm. 4 1 4 | 26 2 4 7
5 3 42 | 25 2 4 6
ProcQ (I;, )
— 63 |4|23] 2 4 6
Step 0: Set t=1,r=argmax{i € ;|4 < p},
St={i} fori={1,...,7}, 7 3 42 | 22 2 4 6
Q={s%,....,5} 8 | 3 |42 |24 2 4 6
Step 1: For each S} € @ such that £ <,
9 1 84 | 38 2 3 5
g=argmax{i=1,...,7 | [Les: 0 < £}
fori=£4+1,...,q 10| 1 | 84 | 40 2 3 5
Set St = StuU {i} and Q = QU SIH! 1| 1 | 8437 2 3 5
end for 12| 1 | 84 |40 2 3 4
Step 2: Set t=t+1
If ¢t < r, then go to Step 1 1313 84 | 41 2 4 6
else Stop 14| 3 84 | 41 2 4 5
Fig. 3. Procedure ProcQ. 15 3 84 | 40 2 3 6
16 | 3 84 | 39 2 3 5

be used not only for individual sensors, but also for sensor combina-
tions (pay attention to the product at the left-hand side over the set of
sensors in S).

B. ODR Versus k-out-of-n Rule

To realize that the ODR is different from a k-out-of-n rule, consider
an example of four sensors monitoring a single surveillance point, with
sensor characteristics as given in Table I. Let P(U; = 1) = 0.02,
cf =100, and ¢}* = 250. Then, y; = (1,1,1,1) and § = 1,360.37.
The last column in Table I gives the é; values for the sensors. Fory; =
(1,1,1,0) and y; = (1,1,0,1), the decisions according to ODR are
1 (event) and O (no-event), respectively. This clearly is in conflict with
any k-out-of-n rule.

While the ODR is different from the %-out-of-n rule in general, the
ODR reduces to a k-out-of-n rule when the sensors are identical. In
that case, we have 6, = 62 = --- = ép;, = dandy; = (1,1,...,1).
Thus, Lemma 2 implies, for all S C I; such that s1ol < 3, the
output y;, where y;; = 1fori € I; \ Sandy;; = 0 fori € S,

means “event.” In other words, if (n; — [In(3)/in(8)]) sensors re-
port “event,” then the decision from our ODR is “event,” effectively a
(nj — |[In(8)/In(6)])-out-of-n; rule.

C. Optimal Decision Algorithm

The ODR proposed in Section IV-A can be generated (as a list of
y;’s for which the decision is “event”) by exhaustively enumerating
all possible sensor outputs (y;’s) and using the condition in Lemma
2. But this may be computationally demanding for a large surveillance
system. In this section, we present an efficient algorithm to achieve this
task. The algorithm primarily attempts to exploit the properties of the
6;’s to avoid complete enumeration of sets.

Fig. 2 shows the overall algorithm for generating the ODR for a
surveillance point j. Step 1 is the main step of the algorithm, which
calls the procedure ProcQ. The procedure ProcQ, detailed in Fig. 3,
efficiently finds the set (), consisting of all subsets .S of I; such that

HieS b6 < 3.
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TABLE III
DESCRIPTION OF DECISION RULES
Rule name | Conditions under which the rule reports “event”
l-out-of-n | One of the sensors that observe j reports “event”
n-out-of-n | All sensors that observe j report “event”
Majority More than half of the sensors that observe j report “event”
Best-k For the sensors that observe 7, let k}-out-of-n rule be the k-out-of-n rule with the smallest EMC.
At least k] of the sensors that observe j report “event”

ProcQ assumes that the indices in I; have been ordered such that
61 < by < -+ < Oy InFig. 3, 57" denotes a subset of I;, where (
denotes the largest index in 57" (i.e., { € argmax {6;|¢ € S{"}) and
m is the cardinality of S7* (i.e., m = |S}|). For example, S, = {i};
S7 = {1, 4}. ProcQ starts with generating the single-element sets in ().
Then, at each iteration ¢, the (¢ + 1)-element sets in () are generated
using the t-element sets. The process iterates until all sets in () are
generated.

The run time of computing all 61,..., 0, ; ’s and their combinations
by calculating all subsets is O(2"7). However, because we do not in-
vestigate all subsets in ProcQ, our run time is less than O(2"7). Ateach
iteration ¢, ProcQ checks at most (n; — t)(n; + 1 —1/2) < O (n3)
sets that are not in (). Since there are at most n; iterations, the run time
of ProcQ is O (|Q] + n?).

Step 0 in ODA takes O(n;) time. Since Step 1 applies ProcQ to
generate @, its run time is O (|Q] + n?}). The run time of Step 2 is
O(n;|Q]). The dominant run time of ODA is Step 2. Thus, ODA runs
in O(n;|Q|). If we used implicit enumeration method instead of ProcQ
in ODA, the run time would be O (n;2"7).

V. CASE STUDY AND EVALUATION

We use the surveillance sensor system in a major US port to compare
the proposed ODR and the existing k-out-of-n decision rule. Wilhelm
and Gokce [19] generated optimal surveillance system layouts for 16
different realistic instances of the Houston Ship Channel. We use these
16 instances (see Table II) in our study. Due to space limitation, we omit
the detailed description of the instances, but provide some summary
information in Table II; for detailed description please refer to [19]. In
Table II, NV denotes the instance number. Fig. 1 shows the layout of
surveillance sensors for instance 16.

For each of the 16 test instances, we simulate the probabilistic de-
tection behavior of the surveillance sensor system, including random
sensor failures. We assume that a failed sensor always reports “no-
event.” We compare several variants of the k-out-of-n rule, listed in
Table III, with the proposed ODR in these simulations. The best-% rule
uses different k’s for different surveillance points. For each surveil-
lance point j, the £} value is chosen by comparing the performance
of every possible k-out-of-n rule. Each simulation is run for 10° event
occurrences so that inferences are based on the steady-state behavior
of the surveillance system.

In the simulation study, we use the misdetection probabilities
(MDPs) and sensor failure probabilities given in [19]. However, [19]
does not specify the false alarm probabilities (FAPs) or the misclassifi-
cation costs (i.e., false alarm and misdetection costs). Since we did not
find any consensus in literature for selecting the FAPs, we compared
the decision rules for various choices of FAPs, both fixed and varying
with the MDPs. The conclusions were similar. Here we only present
the results for two cases: FAP = MDP and FAP = MDP/100. For

45
40 |
g st -0-0DR
é 30 |- --m-- Majority
S
é 25 - —+— Best-k
3 20 —— 1-out-of-n
<
é 151 R —e—n-out-of-n
[ IR0 .
10-. » : RSN |
5 Lo o =0 o= PN
T -t T T ks SN T oS T R i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sensor layout instances

Fig. 4. FAP = MDP, ¢,, = 100cy.
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0.010

—a \ s
~gook So--0
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& -

0.005 -
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sensor layout instances

Fig. 5. FAP = MDP/100,¢,, = c;.

the misclassification costs, we again consider two cases: c}”/c]f =100
and ¢}’ / cf = 1. We believe that the first case better reflects a surveil-
lance application as the consequence of a missed detection can have a
much more serious consequence than a false alarm.

The comparison results for FAP = MDP, ¢,,, = 100cy and FAP =
MDP/100, ¢,, = cy are presented in Figs. 4 and 5, respectively. To
save space, we have omitted the results for the other two cases as they
lead to the same conclusion. However, these are available at the corre-
sponding author’s website (http://ise.tamu.edu/metrology). Note that
in Fig. 5, results for the 1-out-of-n are not shown. This is because the
misclassification cost in this case is an order of magnitude larger than
the other rules. From the figures, it can be observed that the proposed
ODR outperforms all the k-out-of-n variants in all the scenarios. Since
the decision rule computations (implicitly) assume that all the sensors
are working, these results clearly show that the proposed ODR is more
robust than any variant of the k-out-of-n rule. Further, among the dif-
ferent k-out-of-n rules, we find that there is no single rule that outper-
forms the others in all the cases (for instance see Fig. 5). While the
best-£ rule is optimal, it is so only when there are no sensor failures.
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VI. CONCLUSION

In this paper, we propose a decision fusion rule to determine the ro-
bust interpretations of outputs from heterogeneous surveillance sen-
sors. We formulate the event detection problem as a 0-1 integer pro-
gram. Using this model, we define the optimal decision rule that min-
imizes the expected misclassification cost. Using 16 test instances of
a surveillance sensor system for a major U.S. port, we compare the
performance of the proposed ODR with several variants of the popular
k-out-of-n rule. Our comparisons demonstrate that the proposed ODR
is more robust to sensor failures, always attaining the smallest misclas-
sification cost. Intuitively, the robustness is because the ODR does not
depend on the number of sensors (it mostly disregards any number of
poor performing sensors) whereas the k-out-of-n rule does.

An important extension to the problem considered here is the case
of sequential decision making from heterogeneous sensors. This is rel-
evant to scenarios where a target object may be observed over a period
of time before taking a decision. One way ODR may be extended to
this case is by using event prior probabilities updated with the ODR
performance at the previous decision point. However, this idea needs
to be refined and forms part of our future work.

REFERENCES

[1] P. K. Varshney, Distributed Detection and Data Fusion.
Springer-Verlag, 1997.

[2] R. Viswanathan and P. K. Varshney, “Distributed detection with mul-
tiple sensors: Part 1—Fundamentals,” Proc. IEEE, vol. 85, pp. 54-63,
Jan. 1997.

[3] R. S. Blum, A. Kassam, and H. V. Poor, “Distributed detection with
multiple sensors: Part 2—Advanced topics,” Proc. IEEE, vol. 85, pp.
64-79, Jan. 1997.

[4] W. Shi, T. W. Sun, and R. D. Wesel, “Quasi-convexity and optimal
binary fusion for distributed detection with identical sensors in gener-
alized Gaussian noise,” IEEE Trans. Inform. Theory, vol. 47, no. 1, pp.
446-450, Jan. 2001.

[5] Q. Zhang, P. K. Varshney, and R. D. Wesel, “Optimal bi-level quanti-
zation of i.i.d. sensor observations for binary hypothesis testing,” IEEE
Trans. Inform. Theory, vol. 48, no. 7, pp. 2105-2111, Jul. 2002.

[6] B. Krishnamachari and S. Iyengar, “Distributed bayesian algorithms
for fault-tolerant event region detection in wireless sensor networks,”
IEEE Trans. Comput., vol. 53, no. 3, pp. 241-250, Mar. 2004.

[7]1 K. Marzullo, “Tolerating failures of continuous-valued sensors,” ACM

Trans. Comput. Syst., vol. 8, no. 4, pp. 284-304, 1990.

L. Prasad, S. S. Iyangar, R. L. Rao, and R. L. Kashyap, “Fault-tolerant

sensor integration using multiresolution decomposition,” Amer. Phys.

Soc., vol. 49, no. 4, pp. 3452-3461, 1994.

[9] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proc. IEEE, vol. 85, pp. 6-23, Jan. 1997.

[10] E.F.Nakamura, A. A.F. Laureiro, and A. C. Frery, “Information fusion
for wireless sensor networks: Methods, models, and classifications,”
ACM Comput. Surveys, vol. 39, no. 3, pp. 1-55, 2007.

[11] S. C. A. Thomopoulos, R. Viswanathan, and D. K. Bougoulias, “Op-
timal distributed decision fusion,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 25, no. 5, pp. 761-765, Sep. 1989.

[12] X. Luo, M. Dong, and Y. Huang, “On distributed fault-tolerant detec-
tion in wireless sensor networks,” IEEE Trans. Comput., vol. 55, no. 1,
pp. 58-70, Jan. 2006.

[13] R. R. Tenney and N. R. Sandell, “Detection with distributed sensors,”
IEEE Trans. Aerosp. Electron. Syst., vol. 17, no. 4, pp. 501-510, 1981.

[14] V. V. Veeravalli, “Sequential decision fusion: Theory and applica-
tions,” J. Franklin Inst., vol. 336, pp. 301-322, 1999.

[15] D.Madigan, S. Mittal, and F. Roberts, “Sequential decision making al-
gorithms for port of entry inspection: Overcoming computational chal-
lenges,” in Proc. IEEE ISI, New Brunswick, NJ, May 2007, pp. 1-7.

[16] E.A.Elsayed, C. M. Young, M. Xie, and Y. Zhu, “Port-of-entry inspec-
tion: Sensor deployment policy optimization,” IEEE Trans. Autom. Sci.
Eng., vol. 6, no. 2, pp. 265-276, Apr. 2009.

[17] M. M. Kokar, J. A. Tomasik, and J. Weyman, “Data vs. decision fusion
in the category theory framework,” in Proc. FUSION, 2001, vol. 1, pp.
TuA3-15-TuA3-20.

New York:

[8

[l

[18] T. Clouquer, K. K. Saluje, and P. Ramanathan, “Fault tolerance in col-
laborative sensor networks for target detection,” IEEE Trans. Comput.,
vol. 53, no. 3, pp. 320-333, Mar. 2004.

[19] W. E. Wilhelm and E. I. Gokce, “Branch-and-price decomposition to
design a surveillance system for port and waterway security,” IEEE
Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 316-325, Apr. 2010.

Distributed Optimization for Model Predictive Control
of Linear Dynamic Networks With
Control-Input and Output Constraints

Eduardo Camponogara and Helton F. Scherer

Abstract—A linear dynamic network is a system of subsystems that ap-
proximates the dynamic model of large, geographically distributed systems
such as the power grid and traffic networks. A favorite technique to operate
such networks is distributed model predictive control (DMPC), which ad-
vocates the distribution of decision-making while handling constraints in
a systematic way. This paper contributes to the state-of-the-art of DMPC
of linear dynamic networks in two ways. First, it extends a baseline model
by introducing constraints on the output of the subsystems and by letting
subsystem dynamics to depend on the state besides the control signals of
the subsystems in the neighborhood. With these extensions, constraints on
queue lengths and delayed dynamic effects can be modeled in traffic net-
works. Second, this paper develops a distributed interior-point algorithm
for solving DMPC optimization problems with a network of agents, one for
each subsystem, which is shown to converge to an optimal solution. In a
traffic network, this distributed algorithm permits the subsystem of an in-
tersection to be reconfigured by only coordinating with the subsystems in
its vicinity.

Index Terms—Convex optimization, distributed optimization, interior-
point methods, linear systems, model predictive control.

[. INTRODUCTION

ODEL predictive control (MPC) is a leading technology for
controlling complex dynamic systems, mostly because of its
ability to handle constraints systematically and the potential to reach
optimal solutions [1]. The applications of MPC abound, including the
control of logistics networks [2], mobile robots [3], and intelligent
transportation systems [4]. In essence, MPC converts a dynamic con-
trol problem into a series of time-overlapping static optimization prob-
lems that are solved with standard optimization algorithms. At each
sample time, the system state is measured and an optimization problem
is solved over a finite-time horizon. Only the control signals for the first
time interval are implemented, but the long-term effects on the objec-
tive are accounted for in the predictions.
The centralization of computation and the communication with re-
mote sensors are the principal obstacles to the application of model
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